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Path planning and collision avoidance are common problems for researchers in vehicle and
robotics engineering design. In the case of autonomous ships, the navigation is guided by
the regulations for preventing collisions at sea (COLREGs). However, COLREGs do not
provide specific guidance for collision avoidance, especially for multi-ship encounters,
which is a challenging task even for humans. In short-range path planning and collision
avoidance problems, the motion of target ships is often considered as moving at a constant
velocity and direction, which cannot be assumed in long-range planning and complex envi-
ronments. The research challenge here is how to factor in the uncertainty of the motion of
the target ships when making long-range path plans. In this paper, we introduce a long-
range path planning algorithm for autonomous ships navigating in complex and dynamic
environments to reduce the risk of encountering other ships during future motion. Based
on the information on the position, speed over ground, and course over ground of other
ships, our algorithm can estimate their intentions and future motions based on the proba-
bilistic roadmap algorithm and use a risk-aware A* algorithm to find the optimal path that
has low accumulated risk of encountering other ships. A case study is carried out on real
automatic identification systems (AIS) datasets. The result shows that our algorithm can
help reduce multi-ship encounters in long-term path planning. [DOI: 10.1115/1.4056064]
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1 Introduction
Maritime transport is the most economical way of transporting

goods globally. Over 80% of international trading is carried out
by sea [1]. Among all types of accidents, ship collisions are the
main type on the ocean [2]. The International Maritime Organiza-
tion (IMO) has carried out the international regulations for prevent-
ing collisions at sea (COLREGs) [3] to guide collision avoidance
actions. COLREGs have defined three different situations of ship
encounters, which are overtaking, head-on, and crossing. The
responsibility of the encountered ships is also defined in
COLREGs, which helps a ship determine whether it is a give-way
ship or a stand-on ship and what action it should take to avoid col-
lisions. However, COLREGs do not provide specific guidance for
collision avoidance, and mariners must tell themselves what the
situation is and what action they should take. In addition, the
three situations defined in COLREGs only cover two-ship encoun-
ters. This leaves the multi-ship encounters a complex and risky
situation, where a ship can be the give-way ship to one ship and
be the stand-on ship to another ship at the same time. The safety
of navigation still highly depends on the mariner’s experience and
judgment. Oftentimes, human errors are the main cause of ship col-
lisions [2].
To overcome human error in collision avoidance of ships, auton-

omous or unmanned ship has become an important direction of
research in the shipping industry. In most cases, the state of a
ship can be described on a 2D plane with its position, velocity,
and course (orientation). Many algorithms have been developed

for path planning and collision avoidance in dynamic environments
where multiple other ships are detected. Although these algorithms
can make a short-range plan and avoid collision with the existence
of other dynamic obstacles, most of them assume that all target
ships are moving at a constant direction and velocity, which may
be violated in long-range cases. Another common assumption is
that the encounter of ships happens in the open area, which is not
true in complex environments, such as San Francisco Bay area.
In this paper, we propose a path planning algorithm to reduce the

risks of the autonomous ship encountering other ships in long-range
motion in complex and dynamic environments. Our approach does
not rely on the constant direction and velocity assumption, and the
path planned by our algorithm is based on the estimation of the
intentions of other ships. Our algorithm can help autonomous
ships, as well as human mariners, to avoid complex encountering
situations and thus improve the safety of navigation.
The rest of the paper is organized as follows: Sec. 2 provides a

review of related work in path planning in complex and dynamic
environments, including their assumptions and limitations.
Section 3 describes our proposed method to estimate the intention
and future position of target ships and plan the path with a probabi-
listic roadmap and risk-aware A* algorithm to reduce the risk of
encountering target ships. Section 4 shows the case study conducted
on the real automatic identification systems (AIS) data. In Sec. 5, a
detailed discussion on the result of the case study is presented. The
last section describes the conclusions and the limitation of this work
and points out future research directions.

2 Related Work
Path planning has been a hot research topic for years. The colli-

sion avoidance of ships and autonomous surface vehicles (ASV)
can be modeled as a path planning problem in dynamic
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environments. Due to the limited control capability of ships and
ASVs, constraints on ship dynamics are usually considered in the
planning, which makes the problem more complicated.
Many researchers used variants of a rapidly-exploring random

tree (RRT) to do the planning. RRT is a sampling-based algorithm
that is efficient at finding a feasible path from the starting point to
the goal. By adding constraints in the process of tree growth,
RRT can be used to produce a smooth path that is friendly to the
ship dynamics. Sun et al. used bi-directional RRT and Dijkstra’s
algorithm to plan the path in narrow water areas [4]. Zaccone and
Martelli designed a multi-objective cost function of RRT* and gen-
erated a collision-free path in dynamic environments [5]. This work
is later expanded to find COLREGs-compliance paths by introduc-
ing the vector representation of collision avoidance rules in the
RRT* algorithm [6]. Chiang and Tapia stored the joint state of
ships in each RRT node, so a forward simulation can be conducted
to find a COLREGs-compliance path [7]. Assuming that the target
ships are moving at constant velocities, RRT can be used to find a
collision-free path that satisfies the COLREGs regulations and ship
kinematic or dynamic constraints.
As a popular path planning algorithm in the robotics area, the

artificial potential field (APF) algorithm can also be applied to
find safe trajectories for ships. Naeem et al. introduced the
COLREGs zones to the target ships so that the trajectory produced
by APF can adhere to the COLREGs regulations [8]. Mei and
Arshad proposed a smart algorithm that can identify the encounter
situation and determine whether the ASV should obey the
COLREGs while avoiding other ships [9]. Lyu and Yin modified
the repulsion potential field function, and their algorithm showed
impressive performance in simulation with 5 static obstacles and
11 target ships randomly changing courses in a large open area [10].
Some other researchers modeled the path planning problem as an

optimization problem and used heuristic methods to solve it. Evolu-
tionary algorithms can be applied to find an optimized path in
complex or dynamic environments. Lazarowska proposed an
approach to path planning in dynamic environments based on the
Ant Colony algorithm [11]. Tam and Bucknall designed a path
planning algorithm based on an evolutionary algorithm to find a
collision-free trajectory when the future motions of all obstacles
are known [12]. Wang et al. developed a trajectory optimization
algorithm with an improved gray wolf optimizer [13]. The algo-
rithm can find the optimal path in complex situations with multiple
statical obstacles and known environmental disturbances such as
water currents. Kang and his team carried out a ship domain
model and used particle swarm optimization to find the collision-
free trajectory in two-ship encounters [14]. A path optimization
method using a genetic algorithm is introduced by Kim and his
team, which considers the environmental loads [15]. These
studies have shown that evolutionary algorithms can be used in
the path planning of ships in different complex situations, and con-
straints can be applied to the problem by setting proper fitness/eval-
uation functions.
Recent progress in deep reinforcement learning has pointed out a

new way to solve collision avoidance problems. Liu and Jin studied
knowledge transfer in reinforcement learning-based collision avoid-
ance [16]. Wu and his team proposed the deep reinforcement learn-
ing method ANOA and achieved a higher success rate than the
recast navigation method in dynamic environments [17]. Both
results have shown that when properly designed and trained, rein-
forcement learning-based methods can achieve excellent perfor-
mance in collision avoidance.
Besides the methods mentioned earlier, researchers have also

tried many other algorithms to deal with the collision avoidance
problem. Singh and his team proposed an A* approach that can
deal with both static and dynamic obstacles and environmental con-
ditions such as current and wind [18]. Different variants of the fast
marching method are developed and can produce decent solutions
to collision avoidance in dynamic environments [19–21].
Williams and Jin designed a risk assessment method and provided
a flexible and safe path in situations where the future motion of

target ships is unknown [22]. He et al. modeled a fuzzy propor-
tional–integral–derivative (PID) controller to meet the COLREGs
during collision avoidance [23]. Song and his team applied fuzzy
rules with the eccentric expansion of obstacles to produce
COLREGs-compliant plans [24]. Campbell and Naeem designed
a rule-based heuristic A* algorithm to meet the regulations of
COLREGs [25]. Gupta and his team developed a long-range path
planning algorithm with novel heuristics and graph construction
methods in dynamically changing environments [26]. They also
worked on different path planning tasks in uncertain and dynamic
environments [27–29], assuming that the goal or the future
motion of target ships is known or a prediction can be made by
the Monte-Carlo sampling and heuristic evaluation techniques.
All these algorithms have displayed the capability of finding
collision-free paths in dynamic environments.
From the algorithms mentioned earlier, one can find that the

current research is focused on the short-range collision avoidance
problem. These algorithms usually assume that all the target ships
are moving at a constant velocity and direction, and the encounter
happens in an open area. Although some of them do not rely on
the constant velocity assumption [10,22,28] or can handle encoun-
ters in complex environments [19], none of them discusses situa-
tions where the environment is complex, and the long-term future
motion of the target ships is unknown. In this paper, we address
the problem of design under uncertainty: how we can model the
risks in complex environments when the future motion of target
ships is unknown, and how this risk modeling can help autonomous
ships in path planning.

3 Methods
When the future motion of the target ships is unknown, we

cannot predict their exact positions. Instead, our proposed algorithm
will estimate the intention of target ships and find possible paths
they will take. A risk model is devised to assess the level of prob-
ability of encountering target ships at a certain position in the
future, and a risk-aware A* algorithm is introduced to find a path
with a low accumulated risk of encounters. In this paper, the
phrase “target ship” refers to all other ships, and the phrase “own
ship” refers to the ship under our control.

3.1 Studied Area and Data. We choose San Francisco Bay as
the area of interest, as shown in Fig. 1(a). Several ports locate in this
area, and usually, over 100 ships are anchored here. In busy hours,
more than 50 ships are moving in the Bay, from ocean to port, port
to port, port to the ocean, etc. This makes it hard to predict the
motion of target ships since we do not know their intentions.
These ships will not move in straight lines, and they may also
change their speed due to the complex environment and encounter
situations.
The nautical chart we use in this research is from the National

Oceanic and Atmospheric Administration2 (NOAA), which pro-
vides such maps of the ocean in different formats. Our work is
based on the electronic nautical chart (ENC). We selected the lon-
gitude (LON) from 122.67 W to 122.22 W and latitude (LAT)
from 37.54 N to 38.17 N, extracted the information of the land
area from the ENC, and constructed a pixel map, as shown in
Fig. 1(b). The white areas represent the land areas, while the
black areas are the water areas. The length change of a degree of
longitude or latitude is neglected due to the scale problem and is
estimated at (37.84 N, 122.40 W). The ratios are 87.81 km per lon-
gitude degree and 111.19 km per latitude degree. In this map, each
pixel represents a “10 m× 10 m” square, which finally produces a
map size of 7004 × 3951.
Currently, most ships are required to be equipped with the AIS,

which keeps publishing and receiving the ship information every

2https://www.noaa.gov/
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2–10 s, including the ship’s identity (Maritime Mobile Service
Identity, MMSI), position (longitude and latitude), course (direction
of motion, in degrees), and speed (in knots). The AIS system can
build ship-to-ship and ship-to-port communications, providing
more information to mariners and helping improve navigation
safety.
There exist many public AIS datasets, and one can also collect his

or her own data with an AIS device. In this research, we use public
data fromMarineCadastre3. MarineCadastre has provided daily AIS
records since 2018, which include the MMSI, record time, LON,
LAT, course over ground (COG), speed over ground (SOG), and
heading. We built our test case with the AIS data recorded on
07/04/2020.

3.2 Intention Estimation. Stationary and moving ships:
Ships in the studied area include both stationary and moving
ships. Figure 2(a) shows all the latest AIS data of the stationary
ships whose SOG is less than 0.5 knots (around 0.26 m/s) recorded
at 21:00, 07/04/2020. These ships are regarded as anchored or
stopped and signify possible port or berth locations, which will
be used as possible ship destinations. Their speed, if any, is
caused by either wind or water currents. On the other hand, the

trajectories of all the moving ships, also called target ships, are
plotted in Fig. 2(b). The ships are not taking random actions or
steers during the motion; instead, most of them have a clear destina-
tion, e.g., moving to a port or into the ocean. Therefore, in this
research, it is assumed that each target ship always has its own des-
tination. This makes it possible to estimate the intention of target
ships.
Destination identification: The first step of intention estimation

is to choose some positions as possible destinations. Besides the
water areas on the margins of the map, a port or an anchoring
area on the map can also be a destination. Thus, we collect the
AIS data of the stationary ships, recorded at 21:00 with SOG≤
0.5, and use hierarchical clustering to determine the possible
destinations. The distance threshold of the clustering is set as 400
pixels, and the median of each cluster is then used as a possible
destination. The positions of all the possible destinations are
shown in Fig. 3.
Intention estimate: To estimate the level of intention toward a

certain destination, we need to compare the current movement
with the path leading to that destination. If the current motion of
the ship aligns with the path, there is a high probability that the
ship will follow that path in the future motion. However, each
pixel of the water area in the map can be the possible position of
a ship. This requires the algorithm to find the path from each
pixel to each destination efficiently.

Fig. 1 (a) San FranciscoBay on a regular nautical chart and (b) the extracted pixel map fromENC (ENC ID: US3CA14M). The land
areas are white, and the water areas are black.

3https://www.marinecadastre.gov/
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Our approach uses a modified probabilistic roadmap algorithm
(PRM). PRM is a popular sampling-based path planning algorithm
in robotics [30–32]. In our planning problem, we need to find paths
from different positions to the same destination. We initialize the
vertex set with the position of all possible destinations and then
do random sampling in the water area to build a roadmap. The
vertex number is set to 15,000, and the max neighbor number of
each vertex is set to 16. This roadmap covers the water area on
the map and can be used to generate a path from each vertex to
each destination.
Path cost function: For water transportation, the path length,

radius of turning, clearance height of bridges, and water depth
should be considered in the path selection [33]. To simplify the
problem, we assume that all ships have the same maneuverability
and share the same cost function of the path. The cost function con-
siders the length of the path and the radius of turning. We also
assume that the effect of wind, waves, and tides can be neglected,
the clearance height of bridges in this area is high enough for all
ships to go through, and all ships have the same draught so that
all ships plan the path on the same map.
Due to the limited maneuverability of ships, the optimal path on a

graph should consider both the path length and steering angles on each
node of the path. For container ships, the fuel consumption rate is
mainly determined by their sailing speed and grows with speed in

the form of a power function [34]. Thus, when the path has already
been determined, there is a tradeoff between travel speed and fuel con-
sumption. In this research, we assume that the own ship is already
moving at a speed so that the travel time and fuel consumption are
balanced, and the speed does not change in the future motion. In addi-
tion, we assume that the own ship prefers small steering angles and
will try to find a smooth path. Noticing that the optimal path from a
vertex to a destination is also the optimal path from the destination
to that vertex, we can build a tree from the destination vertex and
span it to cover the space so that a path on the tree is the optimal
path from the vertex to the root. Such a tree is referred to as the desti-
nation tree in this paper. Here we use a modified Dijkstra’s algorithm
[4] to build the destination tree. Since ships have only limited steering
capability, a steering cost is introduced to build the tree. The path cost
is defined as Eqs. (1)–(4).

PathCost = DistCost + α · SteerCost (1)

DistCost =
∑

i,j
dist(vi, vj) (2)

SteerCost =max (Steer(vi, vj, vk)) + β
∑

i,j,k
Steer(vi, vj, vk) (3)

Fig. 2 (a) AIS records at 21:00, 07/04/2020 (SOG ≤ 0.5) and (b) all ship trajectories recorded on 07/04/2020
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Steer(vi, vj, vk) =
tan(0.5(φ j.k − φi,j))

min(dist(vj, vk), dist(vi, vj))
(4)

vi, vj, vk∈V are vertices on the roadmap, and (vj, vk), (vi, vj)∈E are
edges on the roadmap. dist(vi, vj) is the length of the edge (vi, vj),
and is calculated by the Euclidean distance. φi,j is the course angle
from vi to vj. The pseudo-code of the construction of the destination
tree is shown in Algorithm 1.

Algorithm 1 construct_destination_tree

Inputs: vertex_set (V), edge_set (E), root_vertex (d)
1. heap= [ [0, d] ] # heap of [cost, Vertex()]
2. destination_tree= empty
3. visited= empty set
4. while heap is not empty:
5. cost, vertex= heap.pop()
6. if vertex not in visited:
7. add vertex to visited
8. add vertex to destination_tree
9. for neighbor in E[vertex]:
10. calculate the new_cost of neighbor by Eqs. (1)–(4)
11. push [new_cost, neighbor] into heap
12. end for
13. end if
14. end while
15. return destination_tree

The PathCost consists of the cost of path length and accumulated
steering cost. The steering cost is defined in Eq. (4) and encourages
smooth turns. A max function is used in the SteerCost in Eq. (2) to
avoid the situation where a sharp turn is made to reduce future steer-
ing costs. In our case, α= 1000, β= 0.1. Some examples of destina-
tion trees are shown in Fig. 4.
Intention score: The intention of each ship is then modeled by

the level of alignment between the present motion of the ship and
the optimal path to each destination. Due to the wind/water

current on the ocean, a ship may change its heading to counteract
the drifting. Thus, we use the true direction of motion, which is
the COG, to evaluate the intention of a ship. A cosine distance is
used to determine the intention weight for each destination. Given
the current position and COG of a ship, the closest vertex on the
roadmap is selected as the starting point, and a path from this
vertex to each destination is found on the destination trees. The
intention score is calculated by Eq. (5).

IntentionScore = cos (COG − φstart,m) (5)

In Eq. (5), COG is the course angle of the ship, and φstart,m is the
course angle from vstart to vm, where vm is the first vertex along the
path that satisfies the length of Path(vstart, vm) is greater than
100-pixel length. The weight of each destination is calculated by
the IntentionScore by Eq. (6).

Weight(d) =
eλ · IntentionScore(d)∑
d e

λ · IntentionScore(d) (6)

By applying Eq. (6), the weight of each destination will sum up to
one. d is the index of possible destinations. The λ is a user-defined
coefficient that scales how much weight a high intention score gets.
To determine the value of λ, an empirical study was carried out, in
which λ values were set, and then the corresponding possible trajec-
tories were observed. By comparing the trajectories with the AIS
data shown in Fig. 2(b), the λ values that give a high weight to tra-
jectories not observable in the AIS records are discarded. As a result
of the study, λ= 7 has been set.
A visualized result of the weight destination and path is shown in

Fig. 5. The path to each possible destination is drawn with a green
line, and the line width represents the weight of the path, which
shows the level of intention that the ship will follow that path.

3.3 Risk Modeling. After we get all possible paths that a ship
may take and the corresponding weights of the paths, we can assess
the risk of the own ship encountering a certain ship at a position in a
future time. The position is estimated by assuming the ship is

Fig. 3 (a) The clusters of all stationary ships, (b) the median of each cluster, and (c) all the possible destinations shown in
squares (cluster medians+water area on margin of the map)
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moving at a constant speed along the path, and a disk-shaped area
centered at that future position will be regarded as a risky area
since the ship may not strictly move along the estimated path and
the uncertainty associated with its speed and direction during the
motion needs to be accommodated.
Considering that the average speed of the ship can be different

from that in the latest AIS record, as time goes on, the error of
future position estimation will become larger and larger. Thus, we
use a Gaussian model with time-varying variance in the sense that
the long-term estimation will not be as reliable as a short-term esti-
mation. The risk model is described in Eqs. (7) and (8).

Risk(x, y, t) =
∑

k

∑
d
Weight(d) · 1

σ(t)
· e−

(x−xk (t)
2+(y−y(t)

k
)
2

2·σ(t)2 (7)

σ(t) = σ0 + σ1 · t (8)

In Eq. (7), d is the index of possible destinations, and k is the
index of target ships. The total risk value is calculated by

summing up the weighted risk value received at position (x, y)
from each target ship. The time-varying variance of the risk function
is defined in Eq. (8). The selection of coefficients in Eq. (8) should
be careful. On the one hand, when the variance is too large, almost
everywhere will be identified as risky, which is not meaningful; on
the other hand, when the variance is too small, most of the area will
be identified as not risky, which does not help the decision making.
A good risk model should show better performance in the risk value
by intention estimation than that by the constant speed assumption.
It remains an open question of how to select the coefficients. In this
paper, the coefficients are empirically selected so that the average
risk value received by the intention estimation at the true future
position of target ships is higher than that by the constant speed esti-
mation in long-term prediction. In our case, σ0= 10 and σ1= 0.02.
We calculate the risk values using both the constant velocity

method and the proposed intention estimation method on ten ran-
domly generated roadmaps. The results are shown in Fig. 6. It
can be seen that the performance of the constant velocity solution
is slightly better than the solution by our approach in short-range

Fig. 4 The path from each node of the tree to the root is the optimal path to the root regarding the distance and steering cost.
The roots are shown in squares: (a) roadmap built by PRM, (b) root= (1674, 3409), (c) root= (2788, 4320), and (d ) root= (1500,
2211).

Fig. 5 Possible paths a ship may take given its initial position and course angle. The line width represents the weight of the
path: (a) pos= (2500, 1800), COG=60, (b) pos= (2800, 3000), COG=160, (c) pos= (2500, 2000), COG=210, and (d ) pos=
(2500, 3500), COG=180.

041007-6 / Vol. 23, AUGUST 2023 Transactions of the ASME



estimation. This is because the roadmap in our approach is not
smooth, and the target ships cannot change their courses greatly
in the short-range prediction. However, our approach starts to out-
perform the constant velocity solution when the prediction horizon
is greater than 20 min. This tendency presents in all combinations of
the values of the coefficients in Eq. (8) that we have tested, implying
that our approach can better estimate the long-range risk of encoun-
tering other ships, and the magnitude of the long-range risk values is
not negligible compared to the short-range value.

3.4 Risk-Aware A* Algorithm. A modified risk-aware A*
algorithm4 is used in this study to find a path on the roadmap
with a low cost for the own ship. The cost function is defined as
a weighted sum of the distance cost, steering cost, and risk cost,
as defined in Eqs. (9)–(13).

ownPathCost = ownDistCost + α · ownSteerCost + γ · ownRiskCost
(9)

ownDistCost =
∑

i,j
dist(vi, vj) (10)

ownSteerCost =max(ownSteer(vi, vj, vk))

+ β
∑

i,j,k
ownSteer(vi, vj, vk) (11)

ownSteer(vi, vj, vk)= tan(0.5(φ j,k −φi,j)) (12)

ownRiskCost =
∑

i

Risk(xi, yi, ti) (13)

Like the definition in Eqs. (1)–(4), vi, vj, vk∈V are vertices on the
roadmap, and (vj, vk), (vi, vj)∈E are edges on the roadmap. The xi, yi
in Eq. (13) is the position of the vertex vi, and ti is the arrival time of
that vertex. Thus, for the same vertex on the road, the arrival time
and the cost may differ if the parent path is different.

Notice that when there is no target ship, the risk value will be
zero, and the path cost will only depend on the distance and steering
cost. Thus, like how we build the destination tree, we can build a
tree from the goal vertex using the cost function from
Eqs. (9)–(12) with zero risk cost. The path from each vertex to
the goal vertex on the goal tree is the optimal path when there is
no target ship, and the cost received at each vertex on the goal
tree will be used as the heuristic distance in the risk-aware A*.
The pseudo-code of the risk-aware A* is shown in Algorithm 2.

Algorithm 2 risk-aware A*

Inputs: vertex_set (V), edge_set (E), start_vertex (s), goal_vertex (g),
goal_tree(GT)
1. heap= [ [0, 0, None, s] ] # heap of [cost_f, cost_g, parent, Vertex()]
2. child_parent_set= empty set
3. visited= empty set
4. while heap is not empty:
5. cost_f, cost_g, parent, vertex= heap.pop()
6. if vertex== g:
7. break
8. end if
9. if vertex not in visited:
10. add vertex to visited
11. add [vertex, parent] to child_parent_set
12. for neighbor in E[vertex]:
13. calculate cost_g of neighbor by Eqs. (9)–(13)
14. cost_h= cost_from_GT(neighbor, GT)
15. cost_f= cost_g+ cost_h
16. push [cost_f, cost_g, vertex, neighbor] into heap
17. end for
18. end if
19. end while
20. path= find_path_from(child_parent_set)
21. return path

The risk-aware A* algorithm is complete in space, which guaran-
tees to visit every vertex in the connected graph (V, E). However,
each node will only be visited once, which implies that the solution
is not complete in the time domain. That is to say, the risk-aware A*

Fig. 6 Risk values calculated by both methods on ten random roadmap initializations at different prediction horizons:
(a) boxplot of risk values at different prediction horizons, whisker= [5%, 95%] and (b) mean of risk values at different prediction
horizons

4The algorithm can be found at https://github.com/hu-chuanhui/RiskAware-Astar
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will try to find a smooth path with low risk instead of taking a detour
or even circular motions to find a risk-free path.

4 Case Study
Our proposed algorithm is applied to make a long-range plan in

complex environments. As a result of minimizing the risk defined
above, the algorithm seeks to reduce the duration of encounters
and the number of ships encountered at the same time, thus reducing
the complexity of the encountering situation and helping autono-
mous ships make safe navigation decisions.

4.1 Environment Setup. The test data comes from the true
AIS records on 7/4/2020. We chose to use the data recorded from
21:56:57 to the end of the day and selected the ship with ID
MMSI 477655900 as our reference ship or the own ship mentioned
above. This is a 5041 TEU (20 equipment units, or 20-foot con-
tainer) container ship and has a length of 294.13 m.
The position of the reference ship at 21:56:57 is used as the starting

point, and the position recorded at 22:59:56 is used as the goal point.
The SOG recorded at the starting point is ten knots (around

5.14 m/s). The length of the recorded path of the reference ship is
29.62 km. The reference ship accelerated during the motion, and
it took the reference ship about an hour to reach the goal point.
In our case study, we remove the AIS records of the reference

ship and use all the remaining AIS records to rebuild the situation.
Our proposed algorithm is used to estimate the risk in the environ-
ment, and the risk-aware A* is applied to find a path from the start-
ing point to the goal point. Considering that many of the ships are
stopped, we set a sog_threshold to trigger the intention estimation.
Only those whose SOG is greater than sog_threshold will be consid-
ered in using the intention estimation to assess future risk. Other-
wise, the future position of the ship will be predicted by
assuming it is moving at a constant velocity. For example, when
sog_threshold is two knots, the risk value from those whose SOG
is less than two knots will be estimated by letting them move
forward at the speed of two knots, and the future position and
risk of those moving faster than two knots will be estimated by
letting them follow the paths leading to the possible destinations.
The own ship plans a path at the beginning of motion with the

latest AIS data received at that moment and follows the planned
path with constant speed without further planning. The planned
path of one test case is shown in Fig. 7. The own ship needs to
find a safe path to go through the narrow area, where there are
ports on either side, and a lot of ships are moving in this area. It

is inevitable to encounter other ships in such a situation, and our
objective is to minimize the duration of encounters and reduce the
number of ships encountered at the same time.

4.2 Results. In this case study, we compare the result of the
path plan using intention estimation with the plan assuming all
ships are moving at constant velocity. This comparison is realized
by setting different sog_threshold. When sog_threshold is set to
two knots, the intention estimation is activated, and the risk will
be analyzed based on the possible path a ship may take. When
sog_threshold is set to infinity, the future position will be barely
predicted with the constant velocity assumption.
The effect of different weights γ of risk cost is also shown in the

result of the case study. By setting different values, the level of risk
tolerance can be modified to decide whether the own ship will take a
shortcut with a higher risk of encounters. Since the roadmap con-
struction depends on random sampling, we generate ten roadmaps
and test the performance of both planners on them. The result of
the case study is shown in Table 1, and the human performance
is also listed in Table 1. The term steer in the table is the steer
cost at each node along the path as defined in Eq. (12).
One weakness of both methods is the steering cost. It can be seen

that the steering cost of the human path is much smaller than that
found on the roadmap by both algorithms. The reason is that the
human path is reconstructed from each piece of the AIS records
and has a much smaller step size than the edge length on the
roadmap, which makes the human path smoother.
The performance is evaluated by the path length and the duration

of encounters. In this case, if a ship appears within 0.5 nautical
miles (0.926 km) to the own ship, it is regarded as encountered.
Considering that encountering multiple ships at the same time is
more complex, we show the duration of encounters by the
number of ships encountered. The duration of encountering at
least one ship, at least two ships, and at least three ships are
shown in Table 1. We can see that the mean path lengths of the
two planners are similar, but the encounter duration of the one
based on intention estimation is much shorter than the one based
on the constant velocity assumption. The paths taken by the two
planners are plotted in Fig. 8. Although the paths of the two plan-
ners look similar, Table 1 shows that the performance of our pro-
posed algorithm is much better, which proves that the intention
estimation can make a better assessment of future risk. A one-tailed
paired t-test is conducted on the encounter duration as shown in
Table 2. The result also supports that our proposed method has a
better performance in the encounter duration.

Fig. 7 A sample path taken by the proposed risk-aware A* in one of the test cases. The own ship and the path are shown in
green: (a) t=0, (b) t=1970, (c) t=3940, and (d ) t=5910.
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5 Discussion

As shown in Table 1, our proposed algorithm for autonomous
ships outperforms the planner that assumes all ships are moving
at a constant speed and direction. The average lengths and
average steering costs of the paths planned by the two planners

are similar, but the duration of encounters by our proposed algo-
rithm is much shorter. Our algorithm can better assess the risk of
encountering other ships in the long term. It takes the own ship
around 100 min to reach the goal, and the constant velocity and
course direction assumption no longer hold in such a long-time
horizon in complex environments. Our algorithm utilizes the

Table 1 Performance comparison of different planners on the ten randomly generated roadmaps

Human Constant velocity planner Intention based planner

Weight of RiskCost (γ) / 10,000 20,000 10,000 20,000
SOG threshold (knots) / infinity infinity 2 2
Mean of path length (km) 29.62 29.45 30.05 29.46 30.19
Std of path length (km) / 0.94 0.60 0.90 0.61
Mean of sum{steer} 2.11 4.89 5.34 5.06 5.77
Std of sum{steer} / 0.61 0.78 0.78 0.81
Mean of max{steer} 0.17 0.30 0.38 0.29 0.38
Std of max{steer} / 0.05 0.14 0.06 0.08
Mean of duration
encounter≥ 1 (s)

1910.00 2206.90 2054.10 2065.00 1900.20

Std of duration
encounter≥ 1 (s)

/ 241.00 118.09 219.19 240.94

Mean of duration
encounter≥ 2 (s)

657.00 728.10 623.40 609.00 475.20

Std of duration
encounter≥ 2 (s)

/ 137.53 102.51 154.96 152.33

Mean of duration
encounter≥ 3 (s)

10.00 143.10 158.90 54.70 45.10

Std of duration
encounter≥ 3 (s)

/ 83.23 52.79 67.98 64.57

Mean of planning time (s) / 171.46 246.38 960.77 1344.85
Max of planning time (s) / 216.38 316.82 1133.80 1527.85
Std of planning time (s) / 28.15 33.21 99.69 103.32

Note: The resulting encounter durations of the proposed algorithm are shown in bold.

Fig. 8 The paths are taken by the planner based on intention estimation and constant velocity
assumption on ten randomly generated roadmaps. The light color path is a human-taken path
recorded in AIS data is also shown in the figure: (a) the ten paths taken by the planner based on
intention estimation and (b) the ten paths taken by the planner based on constant velocity
assumption.
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information gained from the map and the AIS data and finds possi-
ble destinations for each ship. Since the optimal path from the goal
to a starting point is also the optimal path from that starting point to
the goal, it is possible to construct a goal tree for each destination
that spans the water area and provides a near-optimal path from
each point in the water area to the destination. By this approach,
the pathfinding task for each ship to each destination can be
reduced to the problem of finding the closest vertex on the destina-
tion tree and retrieving the path from the tree.
This makes it possible to include the risk assessment in the

risk-aware A* algorithm. Since the construction of the roadmap
and the destination trees just need to be done once, the time com-
plexity of the risk calculation at each vertex is O(N ·D · log(p)),
where N is the number of ships, D is the number of possible desti-
nations, and p is the number of vertices on the path. The overall
complexity of the risk-aware A* algorithm is O((|V|+ |E|) ·N ·D ·
log(p)), where |V| and |E| are the number of vertices and edges on
the roadmap, respectively. From Table 1, one can find that the var-
iances of the duration of encountering at least three ships are very
high. This is because the current planner just plans the path at the
beginning of motion and then follows the path without any
replan. In such a case, the randomness in the roadmap generation
can affect the quality of the path. A periodic replan may relieve
this problem. However, the planning time of the proposed method
is over 16 min, which makes it hard to implement the algorithm
in real-time.
The path planned by humans shows better performance in the

duration of encountering at least three ships. This result is reason-
able since the human keeps receiving real-time information and
has more flexibility in the control of the ship. The human can
change the speed of the ship to drive through risky areas quickly,
and the real-time information also helps the human to modify the
plan according to the situation.
Currently, this algorithm does not satisfy the real-time require-

ment. It takes over 16 min for a gaming laptop to generate a plan
in such a complex environment in the test case. The code is
written in PYTHON, and the calculation is done by an AMD Ryzen
7 5800H CPU with 3.20 GHz speed and 16 GB RAM. During the
planning, the risk value at each vertex is the sum of the risk value
of each target ship, and the risk value of each target ship is calcu-
lated in parallel by 16 threads. The complexity of the proposed algo-
rithm grows linearly with the number of ships. In the test case, there
are more than 200 ships in this area, and over 50 of them are
moving. Future studies on intention modeling and risk assessment
are needed to improve the efficiency of the algorithm.

6 Conclusions and Future Work
In this paper, we introduced a risk-aware path planning algorithm

for autonomous ships navigating in complex and dynamic environ-
ments. Hierarchical clustering is applied to determine all possible
destinations of other ships, and a pathfinding algorithm based on
a probabilistic roadmap algorithm and modified Dijkstra’s algo-
rithm is developed to find the possible path an unmanned ship
may take. This approach does not rely on the constant velocity
assumption, which is common in similar research.

A time-varying Gaussian model is used to assess the risk of
encountering a ship at a future time. Our proposed algorithm will
find a path with a low risk of encountering other ships. The
risk-aware A* algorithm can be used to reduce the duration of
encounters and reduce the number of ships encountered at the
same time. This helps lower the complexity of encounter situations
and can help autonomous ships make safe navigation.
The proposed algorithm can make a long-range plan in complex

and dynamic environments. In the test case, it takes the own ships
100 min to reach the goal, and the risk of encountering other
ships can be properly assessed by our algorithm. Our algorithm
has a much shorter duration of encounters against the same
planner with the constant velocity assumption. This implies that
the constant velocity assumption does not hold in such a complex
situation, and our algorithm can handle the situation well. The
average encountering time of the paths planned by our algorithm
is comparable to that of humans.
However, the human path has a longer duration of encountering

at least two ships and a shorter duration of encountering at least
three ships. This implies that the human is sacrificing the overall
duration of encounters to avoid the complex situation of encounter-
ing many ships at a time. Thus, an in-depth study of how various
parameters in the current model interact with each other and conse-
quently impact the path planning performance is needed, and
detailed modeling of different encountering situations will be war-
ranted. The current approach assumes that all the ships have the
same maneuverability and physics constraints. How to model the
intention for different ship types and sizes through a data-driven
approach is another future direction. Furthermore, the efficiency
of the risk assessment algorithm needs improvement. The current
approach takes all target ships into consideration, while many of
them may not be threatening to the own ship. A better risk assess-
ment process will be developed in our future research for develop-
ing a data-driven and highly intelligent path planning and collision
avoidance framework for autonomous ships.
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