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A B S T R A C T   

Self-organizing systems feature flexibility and robustness for tasks that may endure changes over time. Various 
methods, e.g., applying task-field and social-field, have been proposed to capture the complexity of task envi-
ronments so that agents can remain simple. To expand to complex task domains, the multiagent reinforcement 
learning (MARL) approach has been taken to train agent teams to be more capable and intelligent, permitting 
reduced complexity in task descriptions. MARL depends on the design of reward functions, which has been a 
challenging endeavour thus far. This paper investigates the impact of reward shaping in the context of an “L- 
shape” assembly task that involves collision avoidance. After introducing a general form of reward shaping 
function, various types of reward shaping fields are studied empirically with agent teams of different sizes. The 
experiment results have shown that reward shaping can be highly effective, and the singularities, the proper 
forms of the fields, and the suitable shaping field gradients are essential for successful agent team training. 
Furthermore, the effect of reward shaping functions depends highly on the size of agent teams.   

1. Introduction 

During the late 20th century, industry 4.0 was proposed to show an 
era in which industrial production follows the latest developments [1]. 
In the factory, smart digital devices are networked [1] for higher flexi-
bility and productivity [2]. Meanwhile, collaborative robots are devel-
oped with a higher degree of artificial intelligence and are expected to be 
smarter to cooperate with each other, even humans. They have advan-
tages like performance boost, reliability enhancement, and simplifying 
the design [3]. Therefore, they are assigned to more repetitive tasks, 
allocated to higher workloads, and placed in hazardous environments 
[2]. Collaborative robots mark a departure from traditional robots that 
fulfill independent functions [4]. 

The assembly tasks involve physically coupling multiple separated 
parts together to form a new sub-component or finished product [5]. 
With the increasing demands for solving complex assembly tasks in the 
changing environment with unpredictable, undesirable, and must-avoid 
conditions [6], collaborative robotic teams are gradually taking the 
place of human beings. However, there exist challenges like bidirec-
tional recognition [6] and letting robots adopt human beings [7]. In 
order to achieve the desired autonomy, self-organizing approaches have 
attracted more researchers’ attention thanks to the high-level 

adaptability of the self-organizing systems [8]. 
Self-organization refers to an ability of a class of self-organizing 

systems (SOS) to change their internal structure and/or function in 
response to changing external circumstances [9]. One significant 
advantage of the self-organizing systems approach is that each agent, or 
robot, in a self-organizing system can be kept relatively simple, i.e., 
possessing minimal knowledge, and the emergent behaviour of the 
overall system can be expected to be sophisticated enough to deal with 
various demanding tasks. Previous work has demonstrated that a field- 
based behaviour regulation (FBR) mechanism can be devised to allow 
simple agents to self-organize by following the guidance of artificial 
fields [10]. Depending on the complexity level of a given task, the fields 
can be composed of a task-field, formed based on the task and envi-
ronment information [10], or a social-field, formed based on the agents 
involved and their relationships [11], or both [10 11]. 

Although the field-based behaviour regulation approach is effective, 
developing definitions of both task-field and social-field for complex 
task domains can be challenging due to a lack of prior knowledge of the 
effect of possible actions. In order to overcome this issue, a machine 
learning approach has been proposed to let agents acquire their 
behaviour knowledge through reinforcement learning (RL) [8]. In this 
approach, the multiagent reinforcement learning (MARL) method is 
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employed, where multiple agents learn how to accomplish the shared 
task collaboratively by maximizing a shared common reward function. 
This approach assumes that composing reward functions is more 
attainable than defining the task-field and social-field functions. 

In MARL, reward functions play a crucial role in encouraging 
exploration and provide a gradient in the learning process, which 
greatly influences training efficiency, learning speed, and the task per-
formance of the trained systems. For agents to learn about their action 
behaviors for relatively complex tasks from the reward functions, one 
needs to understand the properties of various types of reward functions 
for given task domains. While reward function design highly relies on 
designers’ instincts, experiences, observations, and prior knowledge 
[12], the lack of a systematic understanding of how reward functions 
and problem properties interact may lead to systems inefficiency and 
failure risks. 

This paper explores the problem of reward function design in the 
context of engineering assembly tasks. It especially focuses on investi-
gating how various reward signals and different forms of reward func-
tions may impact the agent teams’ training and task performance. Thus, 
this paper addresses the following questions: How do different reward 
shaping fields impact the task performance of agent teams? How may such an 
impact interact with agent team sizes? 

In the rest of the paper, the related work in RL reward function 
design, especially reward shaping, is reviewed in Section 2. Section 3 
presents the methodology of this study on MARL and reward shaping 
and introduces a 2D “L-shape” assembly task and its reward function 
designs. In Section 4, the design of simulation-based reward shaping 
experiments is described with the definitions of independent, depen-
dent, and control variables. The details of case studies are presented in 
Section 5 with illustrative results, evaluation metrics, and in-depth 
discussions. The conclusions are drawn in Section 6, together with the 
directions for future work. 

2. Related work 

Robots are gradually replacing humans to conduct assembly tasks. 
Much research has been done to solve various challenges in assembly 
tasks. Prasad et al. propose a computative strategic planning projections 
algorithm to solve the assembly sequence problem [13]. By extracting 
directions that are required to test geometric feasibility and detecting 
collisions between parts, it can help test the geometric feasibility. Kumar 
et al. also focus on assembly sequence problems in oblique orientations 
[14]. The authors propose an Oblique-directional interference matrix 
(ODIM) [14] to generate the optimal solution of assembly. In [15], au-
thors propose a stability concept to mitigate the computational 
complexity problem in parallel assembly sequence planning. It defines 
various kinds of stabilities between mating parts in a matrix to identify 
valid subassemblies. 

However, the above methods are developed targeting computer- 
aided design CAD tools, which limits the application range. It requires 
that engineers prepare all parts as CAD format files first. Besides, those 
methods rely on“ if-else-then” logic rules to process geometric re-
lationships among parts. That puts high requirements on the designer’s 
knowledge to manually classify, analyze, summarize, and process 
different geometrical relationships. In order to overcome those draw-
backs, a more automated and universal method is expected to be 
developed. 

The RL method enlightens a new direction in solving assembly tasks, 
and many techniques are booming to support its realization. Oikawa 
et al. proposed a method to select pre-defined stiffness matrices to 
control the movement of pegs or gears in insertion tasks [16]. It applies 
deep RL to output optimal local trajectory modifications based on the 
sensor data, such as tip position and external force. However, the 
designed reward function is sparse and only provides reward/punish-
ment in accordance with the success/failure of the task. The reward 
function provides gradients for iterations, and it is crucial for learning 

equality. As the tasks become more complex, how to enrich reward 
functions under the condition of limited resources is an unavoidable 
question to be answered. 

When applying RL in self-organizing systems to solve assembly tasks, 
the goal is to find an optimal policy for each agent to map state and 
action. The individual agent follows the policy to cooperate and behave 
in the team to achieve the team’s goal. The set of action policies can 
collectively maximize the return defined by the reward function. One 
major challenge for both RL and MARL is how to design a proper reward 
function as the task complexity rises. It has drawn great attention from 
researchers since reward functions play crucial roles in conveying a 
designer’s preference for the system by training ignorant agents into 
intelligent ones. 

Reward shaping (RS) is deemed an important method to incorporate 
additional information into the system when solving complex problems 
[17] by accelerating the learning process and improving the training 
quality. There are two main methods of RS, i.e., potential-based reward 
shaping (PBRS) [17] and difference reward shaping (DiRS) [18]. 

PBRS is an effective way to apply the designer’s heuristics to inform 
agents of the system’s preference. Wiewiora et al. proposed two forms of 
PBRS, look-ahead advice and look-back advice [19]. The methods shape 
rewards targeting different state-action pairs and recommend using 
them under different conditions [19]. Plan-based reward shaping has 
been proposed and applied in both single-agent [20] and MARL [21]. 
This method applies a reasoning technique to search for a path from the 
initial state to the goal state. And the trajectory of states can be used to 
define a potential field. Badnava et al. presented a novel potential-based 
reward shaping method to accelerate the learning speed by making a 
reward function changing each step that can push agents to make 
progress frequently in the task [22]. Brys et al. proposed a method that 
uses expert demonstrations to speed up learning by biasing exploration 
through shaping reward by calculating the similarity between state- 
action pairs [23]. Mannion et al. [24] discussed the theoretical impli-
cations of applying these shaping approaches to cooperative multi- 
objective MARL problems and evaluated their efficacy using two 
benchmark domains. 

DiRS uses a shaping reward signal to help an agent learn the con-
sequences of its actions on the system objective by removing a large 
amount of the noise created by the actions of other agents active in the 
system [25 26]. Its applications are restricted to certain problem do-
mains and demonstrated to work only in cooperative tasks. Devlin et al. 
have combined the two methods in a novel reward function to leverage 
their benefits [27]. 

All methods described above require domain-specific heuristic 
knowledge [22 28], and previous applications of potential-based reward 
shaping to MARL have been implemented in relatively simple problem 
domains. Thus, this paper focuses on developing a better understanding 
of how the reward shaping signals and different forms of reward shaping 
fields may impact the training process of agent teams and lead to 
different results in the task performance of the trained agent teams. By 
applying our findings, the enhanced MARL with reward shaping fields is 
expected to be more effective in utilizing heuristic knowledge in the 
learning process and lead to a more intelligent self-organizing system. 
Besides, it excels at high flexibility in designers’ knowledge level on 
tasks and the number of performers. 

3. Methodology 

3.1. Reinforcement learning 

Reinforcement learning (RL) is a paradigm that makes an agent learn 
from trials in the process of maximizing the reward. In a finite MDP, a 
tuple of < S,A,P,R, γ > describes the interaction between an agent and 
an environment in a sequence of discrete-time steps [29]. At each time 
step t, the agent selects an action At ∈ A based on some representation of 
the environment’s state St ∈ S it receives [29]. The dynamics of the MDP 
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are defined by a transition matrix P that maps the state and action to the 
next step’s state and reward with a certain probability. R defines a 
reward function that tells numerical rewards that agents can receive 
based on their states and actions, and γ is a discount factor that is used 
for calculating return values, Gt =

∑T
t+1γT− t− 1Rt, where t stands for cur-

rent timestep and T represents the timestep when an episode ends. An agent 
receives an immediate reward Rt at each time step, its goal is to maxi-
mize the total rewards it receives, which means the cumulative reward 
in the long run [29]. The problem of solving an MDP is to find a policy π 
that can maximize the accumulated reward [30]. 

Q-learning [31] is a popular RL algorithm that updates the cumu-
lative rewards of actions based on the temporal difference of value 
estimations: 

Q(St,At)←Q(St,At)+α[Rt+1γmaxαQ(St+1, α) − Q(St − At) ] (1) 

Deep Q-learning [32 33] has been developed in recent years to 
replace the Q-table with a Q-network with weights θi to process complex 
situations in an end-to-end way. The Q-network updates its weights θi at 
each iteration i by minimizing the loss function shown as: 

Li(θi) = E
[
(Rt+1 + γmaxαQ(St+1,α) − Q(St,At) )

2 ] (2)  

3.2. Multiagent reinforcement learning 

While the single-agent RL is concerned with one agent, multiagent 
reinforcement learning (MARL) addresses the RL of multiple agents in a 
shared environment. In MARL, joint action learners and multiple indi-
vidual learners are two common approaches to solving the problem 
[34]. Joint action learners apply specific algorithms for multiagent 
systems (MAS) to learn joint actions. However, it suffers an exponential 
increase in computational resources since its value functions consider all 
the possible combinations of actions by all agents [35]. In the case of 
multiple individual learners, each agent of the system performs its 
single-agent RL algorithm [31] and the system actions are a joint set A =

A1 × ⋯ × An [36], where n is the number of agents. In cooperative tasks, 
all agents share a team reward function for a common goal but train 
separate neural networks to behave and learn their own roles in the 
teamwork [37]. 

This paper takes a multi-individual learner’s approach and considers 
cooperative task domains. For such MARL tasks, the goal is to maximize 
the accumulative reward resulting from all agents’ actions over time. 
Their separate neural networks contribute to capturing behavior codes 
on how to benefit the team and impart agents with the intelligence of 
interacting with a dynamic environment influenced by others. The 
trained neural networks can be reused for different teams of the same 
size, or even different sizes, in similar tasks if agents are homogeneous 
[6]. 

3.3. Reward shaping 

Reward functions provide a numerical score to offer a gradient for an 
RL algorithm’s iteration, guide agents’ learning, and encourage explo-
ration. It usually includes local and global rewards to direct agents’ 
behaviors [27]. While local rewards regulate a partial system that an 
agent can directly observe around itself, global rewards judge the 
outcome of agents’ performances. Local and global rewards alone are 
often insufficient to guide agents’ learning for complex tasks, such as 
assembly task that requires specific configurations. Agents need more 
information for effective learning. 

Reward shaping is a technique to provide additional reward signals 
that can improve agents’ learning efficiency and final performance [24 
38]. It provides a way to incorporate knowledge from different sources 
to guide searches in RL. 

In MARL, difference-rewards can be introduced as a reward signal 
that helps an agent learn the consequences of its own actions on the 
system after removing the other agents’ influences or noises [26], as 

shown below. 

Di(z) = G(z) − G(z− i) (3)  

where z represents a general term of states or state-action pairs. G(z) is a 
return of all agents and G(z− i) is a return without the work of agent i. 

Difference reward shaping (DiRS) [18] focuses on quantifying each 
agent’s contribution to the system, but it works only for cooperative 
tasks. For a team with homogeneous agents, DiRS has limited power to 
stimulate individual agents’ learning and is ineffective in learning speed 
improvement since each agent’s outcome may be minor compared to the 
team, making G(z) very close to G(z− i). 

Potential-based reward shaping (PBRS) [17] helps express a prefer-
ence for agents to reach a particular state by constructing a potential 
field Φ. The field function Φ can be defined over different terms, 
including state s, action a, or state-action pair (s, a) based on different 
algorithms. Generally, it can be presented as: 

PBRS = γΦ(s
′

, a
′

) − Φ(s, a) (4)  

where γ is a discount factor, and Φ is a field function. 
The potential field Φ is usually built manually by system designers 

based on their understanding of the tasks. A field is efficient for incor-
porating heuristic knowledge and provides the gradient to deliver the 
information [41]. However, this method requires designers to possess 
high-level prior knowledge of the tasks, and developing the field func-
tion can be mathematically challenging, making applying this method a 
challenge. 

Targeting to solve the difficulties of reward function design in as-
sembly tasks, we remodel the shaping reward in the form of multivariate 
fields, which will be introduced in detail in the next section. It is 
designed for several improvements. First, it provides a universal way for 
assembly scenarios with geometrical precision requirements. Secondly, 
unlike the sparse problems that previous methods may face, it has a high 
tolerance to be effective when designers hold incomplete task knowl-
edge. Thirdly, it is flexible to be scaled up to fit cases like higher task 
complexity or heterogeneous agents. 

The design situation is usually full of challenges of limited resources. 
Therefore, it is meaningful to seek ways of a better information carrier 
and fill the understanding gap between human beings and artificial 
agents. It is a necessary step toward solving more complex engineering 
tasks. 

3.4. Task description and shaping reward design 

In order to empirically investigate how reward shaping influences 
the learning process and the task performance of MARL self-organizing 
systems, a specific MARL task is introduced, and the shaping reward 
design issues for the task are explored. 

The Task: The target problem is an “L-shape” assembly task, in 
which an agent team learns to push each part from separation to the goal 
configuration, i.e., the “L” shape. At the same time, the task requires 
agents to avoid collision with surrounding walls in the process. 

Fig. 1 shows the task environment of a 1000 × 1000 pixels field. The 
upper-left rectangle is a dynamic box that agents can push, and its mass 
equals 1 and size is 180 × 60. The middle-right rectangle is a static box 
that is a target to form an“ L” shape. The agent team (the green squares 
in the figure) with limited sensing capabilities needs to spontaneously 
organize themselves to push the dynamic box towards the target box, 
end with an “L” shape, and avoid the box colliding with the surrounding 
walls. Detailed settings of the task environment are introduced in 
Table 1. 

The obstacles can be added in the field shown in Fig. 1. Those ob-
stacles increase the complexity of tasks. Considering that the effect of 
task complexity will not be discussed in this paper, we only show the 
results in the scenarios with surrounding walls. 

In assembly tasks, the precision of the final configuration is 
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important. To achieve the task’s goal, robot teams are supposed to 
master strategies not only about the dynamic box’s trajectory but also its 
rotation and displacement. They need to cooperatively control the box’s 
orientation along with the final “L” configuration. When all agents push 
the box together at each step, the box’s movement depends on joint 
impulses. That increases tasks’ difficulty and puts a higher requirement 
on the group’s intelligence. Considering above, two boxes are initiated 
with different orientations and put away at a certain distance in the 
field, which provides agent teams with space to try and adjust pushing 
strategies. 

The agents are homogenous with the same action space and sensing 
capability. To complete the task, they self-organize themselves to work 
cooperatively as a team and are controlled by their own neural net-
works. During the training, they consider other agents’ influence as a 
part of the environment. The self-organizing system is trained by deep 
Q-learning, and an ε–greedy strategy is applied to explore optimal policy 
[37]. The hyperparameters of the algorithm are shown in Table 2. 

State Space and Action Space: The state space is set as a 63-digit 
tuple, S = < vicinity situation, vx, vy, vangular >. The vicinity situation 
is sensed by sensors on the box in the range of 200-pixel. The action 
space is as A = < a1, a2, a3, a4, a5, a6 >, which separately represents 
pushing the box with 1 N⋅s impulse in six different positions: two on each 
of the two long sides of the box and one on each of the two short sides. 

Local Reward: The local reward includes rotation reward Rrotation, 
which works to control the rotational dynamic, as shown in equation 
(5). 

Rrotation = Cr⋅(cos(Δρi) − cos(Δρcontrol)) (5)  

where ρ is the angle of the dynamic box’s rotation. Δρi is the change of 
rotational angle of the box at step i. Δρcontrol is a hyperparameter that is 
set manually before the task begins. It represents an angle change 
threshold for receiving punishment when exceeded; it is set as 11◦ in all 
cases. Cr is a hyperparameter that works for tuning the collective effect 
with other rewards. It is set as 10 in our cases. Although Δρi is globally 
available information, each agent observes its own values and updates 
its policy. This allows us to introduce local noises and assess the impact 
of partially observable states. 

Global Reward: The global rewards in this study are calculated based 
on the global parameter values and fed to each agent simultaneously as a 
reward signal. They include goal rewards Rgoal, distance rewards Rdistance 
and collision rewards Rcollision. 

The goal reward Rgoal gives a big positive reward when the agents 
achieve the goal (form an “L” shape with two boxes). It is set as: 

Rgoal = Cgoal⋅IGOAL (6)  

where IGOAL is a unit indicator of the event GOAL (the “L”-assembly goal 
is achieved). Cgoal is a hyperparameter and is set as 1000 in our cases. 

The collision reward Rcollision works to avoid any collisions that happen 
during the task, and it is set as: 

Rcollision = Ccollide− wall⋅ICOLLIDE− wall +Ccollide− obs⋅ICOLLIDE− obs (7) 

where ICOLLIDE− wall is a unit indicator of the event COLLISION_WALL 
(the dynamic box collides onto the walls) and ICOLLIDE− obs an indicator of 
the event COLLISION_OBS (the dynamic box collides with the obstacles). 
The Ccollide− wall and Ccollide− obs are hyperparameters and are set as − 100 
and − 200, respectively, in all cases. 

The distance reward Rdistance is designed to encourage agents to push 
the box toward the target box and punish them if they go in the opposite 
direction. It is set as: 

Rdistance = Cdistance⋅Δdi (8)  

where Δdi is the distance difference from the current box’s position to 
the target box at step i. It is a positive number when the box moves 
nearer to the target at step i. Cdistance is a hyperparameter and is set as 0.1 
in our cases. 

Shaping Reward: The reward shaping field is designed to allow the 
exploration of multiple different shaping reward categories. Considering 
the task’s goal (“L-shape” configuration) and sensing capability, two 
parameters are selected to form a signal vector, s→ = < α,β >. The first 
one, named α, is the box’s rotation angle from the vertical line, as shown 
in Fig. 2-(a). Since, in the beginning, the moving box’s longitudinal axis 
is aligned with the vertical (or north) line, the α angle changes in the 
range from 0◦ to 180◦. The second parameter, named β, is the angle 
between the horizontal line and the line connecting the centers of the 
two boxes, as shown in Fig. 2-(a). 

These two angles are chosen as reward signals because 1) they 

Fig. 1. Task of ’L-shape’ assembly: (a) task environment, (b) task start and goal status illustration.  

Table 1 
Environment settings in Task: “L-shape” assembly.  

Field size (pixel) 1000 * 1000 
Box size (pixel) 180 * 60 
Target box size (pixel) 180 * 60 
Box start center coordinates. (150, 180) 
Target box center coordinates (950, 500) 
Box mass (kg) 1 
Push impulse (N ⋅ s) 1  

Table 2 
Hyperparameter settings.  

Training episodes 16,000 
Discount factor 0.99 
Memory buffer size 1000 
Mini-batch size 32 
Target network update frequency 200 
Learning rate 0.001 
Neural network size (63, 64, 128, 6) 
epsilon 1 → 0.01  
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together fully define both the transient process (i.e., changes of the 
parameter values) and the final angular relation of the two boxes, while 
other reward terms are employed to reward either the local (e.g., the 
rotational angle change) or the final positions of the boxes (e.g., collision 
or goal states); 2) they both can be obtained directly from the sensors on 
the box, no need to add new sensors for the shaping purpose. 

From the geometrical relationship of the two boxes, we know that 
when the angle α equals 90◦ (π/2rad) and angle β equals 135◦ (3π/4rad),
the final configuration is shaped as “L” perfectly, as shown in Fig. 2-(b). 
Thus, two hyperparameters can be defined in equations (9) and (10). 

αgoal = 90◦ or π/2rad (9). 
βgoal = 135◦ or 3 π/4rad (10). 
Based on the above, one can devise mathematical functions to 

describe the task’s preference. And the shaping reward can be written as: 

Rshaping = Cshaping⋅f (t)⋅Φ( s→) (11)  

Φ( s→) = h(α)⋅g(β) (12)  

where f(t) represents the task progress in controlling the iteration steps. 
h(α) and g(β) are functions that represent the task’s preference for pa-
rameters α and β, respectively. 

The simplest form that can be used for angle α is: 

h(α) = |sinα| (13) 

That is consistent with the system’s preference, which means it 
provides the max reward when the angle α equals 90◦, and the reward 
gradually decreases when the angle α gets deviates from 90◦. Some other 
forms that can be used for angle α are: 

h(α) = exp
(
− Ca⋅

⃒
⃒α − αgoal

⃒
⃒
)

(14)  

where αgoal is a constant that means our training goal for angle α and 
αgoal = 90◦. Ca is a constant coefficient to tune the gradient. 

Compared to the reward functions without reward shaping terms, 
the reward shaping items provide additional information that is coded 
based on the system designer’s heuristic knowledge on how the system 
should move through the transient process (e.g., equations (11) and 
(12)) into the goal state (i.e., equations (9) and (10)). Therefore, reward 
shaping provides space and opportunities to explore the reward land-
scape to deepen our understanding of task dynamics from a learning 
perspective, making it possible for us to develop a reward field in which 
the agents can learn about the task and social fields [5 6]. 

Similar steps can be carried out with the reward shaping with regard 
to the parameter β. Specifically, g(β) can be set as: 

g(β) = exp
(
− Cβ⋅

⃒
⃒β − βgoal

⃒
⃒
)

(15)  

where βgoal is a constant to indicate our training goal and its value is 
shown in equation (10). Cβ is a constant coefficient to tune the gradient. 

In this study, the resulting “L” configuration is good or not only can 
be known at the end of the task progress; thus, we set f(t) = 1, meaning 

to check the configuration when the task ends. To investigate how 
different reward shaping impacts the learning process and task perfor-
mance, we examine different reward shaping fields of different forms. 
Following is a list of the reward shaping fields being studied. 

P0 : No Reward Shaping Field (16)  

P1 : Rshaping = Cshaping⋅|sinα| (17)  

P2 : Rshaping = Cshaping⋅|sinα|⋅exp
(
− Cβ⋅

⃒
⃒β − βgoal

⃒
⃒
)

(18)  

P3 : Rshaping = Cshaping⋅exp
(
− Ca⋅

⃒
⃒α − αgoal

⃒
⃒
)
⋅exp

(
− Cβ⋅

⃒
⃒β − βgoal

⃒
⃒
)

(19)  

P4 : Rshaping = Cshaping⋅exp
(
− Ca⋅

⃒
⃒α − αgoal

⃒
⃒
)

(20)  

P5 : Rshaping = Cshaping⋅exp
(
− Cβ⋅

⃒
⃒β − βgoal

⃒
⃒
)

(21) 

Fig. 3 and Fig. 4 are visualizations of these fields, in which the x-axes 
are angles of α and/or β, and y-axes are field values. 

The difference between the |sin(x − G)| field and exp( − (x − G) ) field 
indicates two different training tendencies of the agents toward the goal. 
The former implies the fast approaching early on and slow adjustments 
at the end around the goal. The latter is the opposite, slowly approaching 
early on and significant adjustments at the end. Furthermore, the cases 
of P1, P4, and P5 simulate situations where only a partial signal, α or β, is 
available for the purpose of reward shaping. 

Based on the state space, action space, and the reward function 
introduced previously in this section, the deep Q-learning algorithm 
(hyperparameters shown in Table 2) with the designed reward shaping 
fields (in equation (16) - (21)) inserted in the reward function (Rt+1 in 
equation (2)) can be applied to train. Agent teams learn to conduct the“ 
L”-assembly task throughout thousands of episodes, and their optimal 
policies are saved and retrieved for outputting the task-performing 
procedure. The agent teams’ performances are supposed to be 
different as the shaping rewards vary. In order to find effective ways of 
transiting the task information to artificial agents, the influences of 
various forms of reward shaping fields are analyzed from several per-
spectives. The experiments are designed for that goal and are introduced 
in the following section. 

It is worth mentioning that the proposed reward shaping method-
ology is applicable based on several prerequisites. Firstly, the selected 
signals in the shaping reward (e.g., α, β in our cases) are assumed to be 
known by robots in some ways, either from their own sensors or global 
controllers. Secondly, the preferable values of the selected signals (like 
αgoal and βgoal in our cases) are supposed to be constants and can be 
inputted as hyperparameters in the algorithm. Lastly, the preferences of 
all selected signals do not exist in conflict, but the signals are NOT 
required to be independent of each other. 

In our cases, we are shaping one equation of an angle (βgoal = 135◦ ) 
and one perpendicular relationship (αgoal = 90◦ ). Besides, the method 
can be applied to various geometrics based on task requirements if a 

Fig. 2. Box self-angle α and relative angle β: (a) angles in a pushing process, (b) angles at the goal position.  
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geometry can be written in an equation in terms of detectable signals. 
For example, “parallel” can be transformed as a function of two isotropic 
angles. 

4. Experiment design 

The physical dynamics of the box movement are simulated in pygame 
[39] and pymunk [40] models. The early simulation studies have 
demonstrated that the local rewards and global rewards alone frequently 
failed to guide agents to form needed configurations with desired pre-
cision in assembly tasks. Therefore, the reward shaping potential fields 
introduced above are investigated to further our understanding of the 

impact of various shaping potential fields in the context of different team 
sizes. Specifically, the experiment design intends to address the above-
mentioned research questions related to the impact of different reward 
shaping fields, and its interaction with the size of agent teams. 

Fig. 5 illustrates the experiment design of this study. All experiments 
are based on solving the 2D “L-shape” assembly task introduced in 
Section 3.4. In order to address the research questions, three of inde-
pendent variables are set as inputs of the studies, which are RS fields 
shown in Fig. 3 and Fig. 4, RS field gradients ranging from 0.1 to 10, and 
Agent team size with possible values of 3, 5, 7 and 9. Correspondingly, 
Task performance is applied as metrics for evaluation. Details of these 
variables are described in the following subsections. 

Fig. 3. Illustrations of reward shaping fields P1, P4 and P5.  

Fig. 4. Illustrations of reward shaping fields P2 and P3.  

Fig. 5. Experiment design.  

B. Huang and Y. Jin                                                                                                                                                                                                                           



Advanced Engineering Informatics 54 (2022) 101800

7

4.1. Independent variables 

RS fields: The first research question asks how different kinds of 
reward shaping signals influence the learning process and, conse-
quently, task performance. Although there can be unlimited forms of 
possible reward shaping functions, our study focuses on differentiating 
between “convex vs concave” functions, “continuous vs with a singu-
larity (cusp)” functions, as well as “partial vs complete” reward shaping 
signals. “Concave vs convex” signifies different ways of approaching 
task goals: fast-first-then-gradual or gradual-first-then-fast; “continuous 
vs w/singularity” categorizes two groups of functions that treat the goal 
point significantly differently; and “partial vs complete” checks if 
limited reward shaping is still meaningful. It is further expected that the 
impact of these RS fields will interact with the size of the agent teams. 
The independent variable “RS fields” shown in Fig. 5 has six possible 
variable formations with different properties (see Fig. 3 and Fig. 4 and 
equations through (16) to (21)):  

• P0 (baseline),  
• P1 (“concave”, “continuous”, “partial”),  
• P2 (“concave”, “continuous”, “complete”),  
• P3 (“convex”, “w/singularity”, “complete”),  
• P4 (“convex”, “w/singularity”, “partial”),  
• P5 (“convex”, “w/singularity”, “partial”), 

RS field gradient: Our initial simulation studies by varying RS fields 
from P0 to P5 revealed significant results with P3. In order to further 
explore the details of RS fields’ impact on the system learning and task 
performance, we introduced another independent variable, “RS field 
gradient.” This variable is composed of two hyperparameters Cα and Cβ 

shown in equation (19). The possible values of these two parameters 
range from 0.1 to 10 to regulate the field gradients. The results are ex-
pected to give hints on designing an RS field with appropriate gradients 
for a certain task and control its output in a predicted way. Again, it is 
expected that the team size will interact with the gradients. 

Agent team size: Our research question addresses the interaction 
with team size in MARL, which is a critical aspect to be considered in 
multiagent system design. For further understanding of how the impact 
of RS fields interacts with team size, “agent team size” is introduced as the 
third independent variable, as shown in Fig. 5. The possible values of 
“agent team size” are set to be 3, 5, 7, and 9 in the context of various RS 
fields. Given the task complexity, computational resources, and the 
box’s dynamic movements, the minimum team size is set as 3 due to the 
dynamic box shown in Fig. 2-(a) requires both displacement and rota-
tion, and the maximum team size is set as 9 for current studies due to the 
referential experiences from previous studies [37]. As the task 
complexity grows in future studies, bigger sizes of agent teams will be 
considered. 

4.2. Dependent variables 

Task performance, shown in Fig. 5, is an important aspect of evalu-
ation. Task performance focuses on how well an assigned task is 
completed by learning agent teams. The following paragraphs introduce 
the general concepts of performance measures. Further details are 
described in the next section, with corresponding results and 
discussions. 

Task performance: As shown in Fig. 1-(b), we are especially inter-
ested in the Task performance measured as an “L” configuration of the 
trained agent teams since it indicates the quality of the assembly task. 
The collision avoidance requirement is fulfilled by the collision pun-
ishment in the reward function and the episode termination condition 
(terminate once collide on walls or obstacles). Therefore, by querying 
two parameters, α and β shown in Fig. 2-(a), the Task performance can be 
presented and evaluated quantitively. As shown in Fig. 6, task results of 
learning teams are presented in a coordinate system whose x-axis is 

angle α, the y-axis is angle β, and one dot presents one learning team’s 
task result. A perfect “L-shape” means α = 90◦ and β = 135◦ (defined in 
equations (9) and (10)), represented by a red dot shown in Fig. 6. Other 
dots are the task results of the trained agent teams. The closer to the red 
dot the results are, the better quality of the final “L-shape” is. 

Furthermore, the statistical aspects can be assessed by calculating the 
Euclidean Distance between a learning team’s performance and the goal 
in the space of s→ = < α,β >, which can be expressed as: 

Di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
αi − αgoal

)2
+
(
βi − βgoal

)2
√

(22)  

where αi and βi are obtained from the ith learning team’s final config-
uration. and αgoal and βgoal are known from equations (9) and (10). The 
Euclidean distance measure assists in understanding the impact of reward 
shaping quantitatively and further processing the results. Smaller dis-
tance values indicate better final configurations, while zero distance 
means a perfect “L-shape”. 

5. Experiment results and discussion 

5.1. Effect of reward shaping functions and signals 

As illustrated in Section 4, the experiments are conducted with 
varying RS fields from P0 to P5 in the context of team sizes of 3, 5, 7, and 
9, respectively. For every group of experiments, we run 20 training cases 
with 20 different random seeds. Considering that training results with 3, 
5, 7, and 9 team sizes have shown a similar tendency, we select the 5- 
agent teams’ results for presentation in this section, as shown in 
Fig. 7. The team size effect will be discussed in Section 5.3. Quantitively, 
the mean of Euclidean distance and the standard deviation introduced in 
Section 4.2 are presented in an upper-left box in each plot in Fig. 7. 

No Reward Shaping: As shown in equation (16), the P0-field works 
as a benchmark in which the agent teams are trained without a reward 
shaping field. The training results with P0-field are shown in Fig. 7-(a), 
showing cases with a team size of 5. Compared with other results, the 
final configurations with P0-field suffer a significant variance. All data 
points distribute sparsely and are far from the target position (red dot), 
which means no team can produce a good “L-shape”. It indicates that the 
agents can hardly find a good policy to push the box into the desired 
shape without additional guidance, even if the goal position has been 

Fig. 6. Illustration of final configuration scatter plots in the form of angle α and 
angle β. 
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imparted and rewarded with an enormous positive value through Rgoal 
in the reward function. The results call for applying reward shaping 
fields to provide needed guidance for seeking the task performance of 
the trained agent teams. 

Partial Reward Shaping: As shown in equations (17) (20) (21), P1- 
field, P4-field, and P5-field provide the reward shaping information on 
either angle α or angle β, but not both. These cases simulate situations 
where system designers may have an incomplete understanding of the 
problem or only a partial reward signal is observable by agents. By 
incorporating either α or β in the reward shaping field, the results show 
that even partial shaping information can improve the training quality 
and hence the task performance, but to different degrees. Fig. 7-(b), 
Fig. 7-(e), and Fig. 7-(f) are the training results with a team size of 5. 
They show that the data points become more concentrated in the target 
position (red dot) compared to the benchmark, which means the reward 
shaping fields helped the agent team learn better. Besides, it shows that 
different information has specific effects on tuning its own corre-
sponding behavior; the field of α helps agents form a better box’s rota-
tional position, and the field of β guides agents to explore a good strategy 
to arrive at a good relevant position between the two boxes. 

Convex Singular vs Concave Continuous Reward Shaping: 
Comparing Fig. 7-(b) and Fig. 7-(e), one can observe that different fields 
have different impacts on learning quality. Reward shaping fields con-
structed by a convex function with a singularity at the goal perform 
better on guiding agents than those by a concave and continuous func-
tion. The singularities in the reward shaping fields are especially effec-
tive in stimulating agents’ learning and resulting in better training 
quality. The convex function leading to the sharper changing rate 
around the goal provides better gradient information and clearer signals 
for agents to capture the required “knowledge” for achieving the “L- 
shape” configuration. Gradient information is crucial for RL training, 
especially when reward shaping is involved. The results indicate that 
using convex functions in reward shaping fields is more effective for 
training than concave functions. 

Complete Reward Shaping: The P2-field and P3-field simulate the 
situations when complete information is available for reward shaping, 
such as degrees of freedom of a desired shape and signals that are needed 
to configure that shape. By incorporating more information, different 
reward shaping fields can be composed. P2-field applies a concave 
function without singularity on the angle α and a convex function with 
singularity on the angle β, while P3-field applies two convex functions 

with singularities on both angles α and β. By comparing the performance 
results of the trained agent teams in Fig. 7-(c) with Fig. 7-(d), one can see 
that P3-field excels over the P2-field on training quality greatly. In 
Fig. 7-(d), a majority of training cases gather around the target point 
(red dot), indicating that P3-field is much more effective in guiding 
agents to learn how to complete the assembly task. It proves again that 
the gradient information does impact the shaping significantly, and 
convex functions have better effects than concave functions. 

The above results show that the final configuration of the “L-shape” 
assembly task is highly influenced by different reward shaping fields. A 
better design of the reward shaping field can improve the precision of 
the final assembly configuration. 

5.2. Impact of reward shaping gradients 

As indicated in Fig. 7 and the discussion in Section 5.1, reward 
shaping fields constructed by convex functions with singularities can be 
more effective for guiding agent teams in learning for assembly tasks. To 
go further, we focus on P3-field and investigate how the reward shaping 
gradients impact the training quality by measuring the following 
metrics:  

• Best performance—i.e., the closest learning team’s result to the goal 
position.  

• Average performance—i.e., the mean of all learning teams’ results.  
• Majority performance—i.e., the mean learning performance of the 

main results cluster.  
• Deviation from the mean—i.e., the standard deviation of the learning 

teams’ results from the average performance. 
• Outliers—i.e., the learning teams’ results that are significantly devi-

ated from the majority of teams. 

Fig. 8 shows a set of convex functions applied to reward shaping 
fields. They have different gradients controlled by the coefficients Cα 
(Fig. 8-(a)) and Cβ (Fig. 8-(b)) in equations (14) and (15). One can see 
that the bigger the coefficients are, the steeper the fields; hence, stricter 
rules are applied in the training process of the agent teams. 

Fig. 9 shows the final configurations of the results trained by the P3 
reward shaping field for 5-agent teams. The coordinates and the results 
plotted in the figures follow the same convention as described in Section 
4.2. The mean (average performance) and standard deviation (deviation) 

Fig. 7. Final configurations with P0 to P5 reward shaping fields for 5-agent teams.  
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can be found in the upper-left blue box in each plot in Fig. 9, the same as 
in Section 5.1. Similarly, considering that training results with 3, 5, 7, 
and 9 team sizes have shown a similar tendency, only 5-agent teams’ 

results are presented here, and the training results with 3-, 7- and 9- 
agent teams are completed and will be discussed in Section 5.3. 

While Fig. 9 provides straightforward views of the agent teams’ task 

Fig. 8. Convex shaping reward functions with different gradients.  

Fig. 9. Final configurations for 5-agent teams with P3-fields of various gradients Cα & Cβ.  
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performance under different settings, some critical metrics of training 
results can be quantitively summarized in boxplots, as shown in Fig. 10. 
Fig. 10 describes the distribution of final configuration data with 5-agent 
teams (shown in Fig. 9), where x-axes present coefficient values (same 
Cα and Cβ) in the reward shaping fields varying from 0.1 to 10, and y- 
axes are the statistical indicators. In each box plot, the orange line 
represents the median Euclidean distance of one group of training (20 
cases), and the box area (majority performance) shows the data range 
from the first quartile (Q1) to the third quartile (Q3). Flier points shown 
in Fig. 10 are those out of the 1.5 * IQR (Q3-Q1) (outliers). 

Effective Range: As shown in Fig. 9, the task results of the trained 
teams follow a pattern that the proportion of cases with the higher best 
performance and majority performance and lower majority deviation rises 
as the coefficients increase, but at the cost of more outliers. 

At the same time, there exist thresholds of the coefficients. The 
training suffers the risk of having very low best, average, and majority 
performance and high deviation when coefficients are out of that range 
and below or over the thresholds. In Fig. 9-(k), the data points are 
distributed very sparsely, indicating that nearly no teams can learn well 
when the coefficients are set to 10. From a statistical perspective, Fig. 10 
shows the same tendency. When the coefficients are out of the effective 
range, the data distributions deviate from the goal extremely. 

Mild Reward Shaping: Fig. 9-(b), Fig. 9-(c) and Fig. 9-(d) show the 
results trained by a mild or flatter reward shaping field whose co-
efficients are 0.1, 0.3 and 0.5. All the cases are distributed around the 
target shape (good average performance), but the high deviation means 
only a few of them can perform perfectly. 

It indicates that flatter reward shaping fields can benefit learning by 
lowering the barrier of catching the system preference but limit the 
teams’ potential to perform perfectly. A mild reward-shaping field leads 
to somehow ’okay’ results but far from ’perfect’. 

Sharper Reward Shaping: As reward shaping fields become sharper 
(i.e., coefficient values are bigger), the distributions concentrate more 
on the central point, meaning the agent teams can learn better and 
create close to perfect configurations with higher best performance, 
better majority performance, and lower deviation of the majority teams. 

Fig. 11 focuses on tracking the performance of the majority of teams 
(majority performance) that are the main data clusters. In Fig. 11, the 
orange error bars present the mean (average performance) and deviation of 
the majority of teams among 20 trials, while the blue error bars present 
all teams as a comparison. One can observe that the majority of teams 
behave much better than the whole teams, with smaller mean and de-
viation when the coefficients increase. It indicates that the shaper reward 
shaping fields encourage pioneering teams to outperform others and 
become more capable of performing given tasks. 

However, as the gradient increases, overfitting happens, and more 
outliers appear, gradually leading to larger deviations, as indicated in 

Fig. 9-(h), Fig. 9-(i), and Fig. 9-(j). The blue error bars for 1.2, 1.4, and 3 
coefficients in Fig. 11 show the same tendency. 

The results have revealed that sharper reward shaping is desirable 
but may risk overfitting for training failures. Therefore, engineers can 
regulate the risk by tuning the gradients of the reward shaping field, 
pointing to the scale of the rules’ strictness of reward shaping field 
analysis and design. 

5.3. Interaction with team size 

An organization’s performance is influenced greatly by its size, 
which also applies to self-organizing systems. Usually, small teams have 
higher flexibility and spend lower costs on team coordination and task 
performance, but their ability and capacity are limited. Contrastively, 
large teams, have a larger potential to implement more complex stra-
tegies, but at the cost of higher requirements on the information inte-
gration in a complex system for teams’ efficient training. In this 
subsection, the effect of team size on reward shaping with different 
gradients is assessed. 

Based on the simulation results of P3-field with different gradients 
(0.1, 0.3, 0.5, 0.7, 0.8, 1, 1.2, 1.4, and 3) in the context of team sizes of 3, 
5, 7, and 9, the statistics of Euclidean distance to the goal position of the 
task performance including standard deviations are examined and pre-
sented in Fig. 12, which illustrates how different reward shaping fields 
interact with team size. Considering that the gradient “10′′ failed to 
provide effective training for all teams, as shown in Fig. 9, we neglect it 
in this ”team-size“ study. In Fig. 12, the x-axis represents gradient 
values, and for each value, there are task results of four trained teams 
with the size of 3, 5, 7, and 9, respectively. The y-axis indicates the mean 
of Euclidean distance of 20 training trials and their standard deviations. 
Consistent with Section 4.2, zero Euclidean distance means a perfect ”L“. 

In Fig. 12, it can be seen that larger teams favour the reward shaping 
fields with bigger gradients, while smaller teams perform better under 
reward shaping with lower and middle-range gradients. In 3-agent 
groups and 5-agent groups, they exhibit better means and smaller de-
viations when the coefficients are in the range of 0.3 to 0.5, and their 
team performance excels the larger teams. When the coefficients become 
larger (such as 1.2 and 1.4), the sharp fields begin to hurt the teamwork, 
resulting in larger mean and bigger deviations. On the other hand, for 7- 
agent teams and 9-agent teams, the performance gradually improves as 
the field gradients increase. While too mild fields cannot lead to efficient 
learning, the large teams’ potentials are simulated after the gradients 
arrive at 0.7. Their performance turns to exceed the small teams with 
smaller mean and deviation. That implies that more complex organiza-
tions demand stricter rules to acquire effective learning. 

Furthermore, it is intriguing to see that for a team of a given size 
Fig. 10. Euclidean distance boxplot of training results with P3-fields of various 
gradients for 5-agent teams. 

Fig. 11. Mean and standard deviation of Euclidean distance with different 
reward shaping fields for 5-agent teams. 
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there exists a “sweet spot” gradient that leads to the best training 
outcome, such as better average performance (i.e., closer to the goal 
configuration) and much smaller deviations of the agent teams in 
acquiring the assembly knowledge. From Fig. 12, one can observe that 
the ’sweep spots’ of 3-agent teams and 5-agent teams appear at Cα =

Cβ = 0.5, while 7-agent teams have their best performances around 
Cα = Cβ = 1, and 9-agent teams reach the best output when the gra-
dients are around 1.4. The trend shows that the ’sweet spots’ get larger 
as the team size increases. That provides hints of designing an effective 
multiagent RL on proper reward shaping field selection corresponding to 
the size of the agent teams. Furthermore, 3-agent teams’ performance is 
not as good as other teams in the “L-shape” assembly task, indicating 
that a certain number of agents is needed for a complex task to release 
teams’ potential and make an optimal policy practical. 

6. Conclusion and future work 

Self-organizing systems are desirable for performing complex tasks 
with changing situations as long as the agents in the system possess 
sufficient knowledge. The approaches of applying task fields and social 
fields aim to use simple agents that self-organize in artificial fields with 
complex mathematical forms. MARL opens ways to attain more so-
phisticated and knowledgeable agents through training, but its success 
depends on how the reward functions are designed given the task 
context. In this paper, the impact of reward shaping in MARL is inves-
tigated in the context of “L-shape” assembly tasks. Based on the exper-
iment results and ensuing discussions, the following conclusions can be 
drawn.  

• Reward shaping fields can be highly effective in guiding agents’ 
learning process when the proper reward shaping functions and 
important reward signals are included in the fields. Even partial 
reward shaping can improve task performance to a certain extent.  

• Convex functions with singularity can offer effective guidance for 
agents to learn how to achieve the best task performance. The task 
goals should be framed as singular points in reward shaping func-
tions. Convex functions are preferred to provide effective gradients 
than concave functions for agent teams to learn.  

• The gradient of reward shaping fields is an essential factor for the 
successful training of agent teams. Sharper fields benefit teams to 
reach excellent task performance but at the cost of risking overfitting 
and bigger deviation, while milder gradients generate overall normal 
results with fewer outliers.  

• The effective range of gradient changes depending on the size of 
agent teams. In general, large teams tend to favor steeper gradients, 
and smaller teams call for milder gradients. For a given agent team of 
any size, there is an effective range and even a “sweet spot” of the 
gradient value that leads to the most effective training and best task 
performance. 

It is worth mentioning that this study is limited by the “L-shape” 
assembly tasks and the reward shaping functions studied. The long-term 
goal of this research is to develop mappings between specific engi-
neering tasks and the reward shaping fields for training agent teams. Our 
ongoing work extends this study to more complex assembly tasks with 
more components, component shapes, and more complex 
configurations. 
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[38] M. Grześ, D. Kudenko, Online learning of shaping rewards in reinforcement 
learning, Neural Networks 23 (4) (2010) 541–550. 

[39] P. Shinners, Pygame – Python Game Development, 2011. Retrieved from http 
://www.pygame.org. 

[40] V. Blomqvist, Pymunk: A easy-to-use pythonic rigid body 2d physics library 
(version 5.6.0). Opgehaal van, 2007. https://www.pymunk.org. 

[41] T. Brys, Reinforcement Learning with Heuristic Information (Doctoral dissertation, 
PhD thesis, PhD thesis, Vrije Universitet Brussel), 2016. 

B. Huang and Y. Jin                                                                                                                                                                                                                           

http://refhub.elsevier.com/S1474-0346(22)00258-0/h0055
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0055
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0065
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0065
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0065
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0070
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0070
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0070
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0075
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0075
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0075
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0080
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0080
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0105
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0105
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0115
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0115
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0115
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0120
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0120
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0120
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0130
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0130
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0145
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0150
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0150
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0150
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0165
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0165
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0165
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0170
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0170
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0185
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0185
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0190
http://refhub.elsevier.com/S1474-0346(22)00258-0/h0190
http://www.pygame.org
http://www.pygame.org
https://www.pymunk.org

	Reward shaping in multiagent reinforcement learning for self-organizing systems in assembly tasks
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Reinforcement learning
	3.2 Multiagent reinforcement learning
	3.3 Reward shaping
	3.4 Task description and shaping reward design

	4 Experiment design
	4.1 Independent variables
	4.2 Dependent variables

	5 Experiment results and discussion
	5.1 Effect of reward shaping functions and signals
	5.2 Impact of reward shaping gradients
	5.3 Interaction with team size

	6 Conclusion and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


