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The goal of this research is to develop a computer-aided visual analogy support (CAVAS)
framework to augment designers’ visual analogical thinking by stimulating them by provid-
ing relevant visual cues from a variety of categories. Two steps are taken to reach this goal:
developing a flexible computational framework to explore various visual cues, i.e., shapes
or sketches, based on the relevant datasets and conducting human-based behavioral studies
to validate such visual cue exploration tools. This article presents the results and insights
obtained from the first step by addressing two research questions: How can the computa-
tional framework CAVAS be developed to provide designers in sketching with certain
visual cues for stimulating their visual thinking process? How can a computation tool
learn a latent space, which can capture the shape patterns of sketches? A visual cue explo-
ration framework and a deep clustering model CAVAS-DL are proposed to learn a latent
space of sketches that reveal shape patterns for multiple sketch categories and simulta-
neously cluster the sketches to preserve and provide category information as part of
visual cues. The distance- and overlap-based similarities are introduced and analyzed to
identify long- and short-distance analogies. Performance evaluations of our proposed
methods are carried out with different configurations, and the visual presentations of the
potential analogical cues are explored. The results have demonstrated the applicability
of the CAVAS-DL model as the basis for the human-based validation studies in the next
step. [DOI: 10.1115/1.4055623]
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1 Introduction
In engineering design, mental stimulation is useful to boost inno-

vative solutions for ill-defined design problems. During conceptual
design, designers, especially novices, usually struggle to choose
among various sources to gain insights when attempting to generate
creative concepts. In our previous work, it has been shown that the
shapes and structures, in addition to behaviors, of a design artifact
tend to be more stimulating than the functions [1]. Researchers have
observed that designers often search intensively for images from
various websites for inspiration [2,3]. Most existing design-
dedicated analogy search tools and methods [4–6] require designers
to initiate a search by entering keywords and using semantic-based
approaches for fixation avoidance. Few computational tools exist to
support design-by-analogy based on the visual similarity analysis.
The core research problem in this article is to explore the roles of
computational support for visual analogy and investigate how to
learn visual features from raw image data and discover potential
short- and long-distance analogies based on visual similarities.
The overall goal of this research is to develop computer-aided

visual analogy support (CAVAS) framework that can augment
designers’ visual analogical thinking by stimulating them by pro-
viding various relevant visual cues. Two steps are needed to
reach this goal. The first is to develop a flexible computational
framework that can explore various visual cues, i.e., shapes or
sketches, based on relevant datasets, and the second is to conduct
human subject-based behavioral studies to validate the effectiveness

and efficiency of such visual cue exploration tools. This article
reports the first step of this research together with the overall
CAVAS framework description.
Sketching is an efficient way for designers to have their brief and

ambiguous ideas taking shapes on paper [7]. The briefness acceler-
ates the transformation of a rough thought into a reality. The ambi-
guity of an open-ended visual representation contributes to more
possible interpretations. Sketching in conceptual design primarily
provides potentially meaningful clues for a designer to infer emerg-
ing design concepts [8,9]. The inspiration for sketches mostly
comes from the shapes and the relationships among them. Design-
ers can manipulate given shapes in imagery and combine them into
meaningful and even new concepts in a short time. Sketching can
reflect premature design ideas in designers’ minds, and it is also
an ideal stimulant to facilitate creative idea generation. Therefore,
the first question for this research is: How can the computational
framework CAVAS be developed to provide designers in sketching
with certain visual cues for stimulating their visual thinking
process?
Research has been done to investigate visual analogies in the field

of design. Goldschmidt and colleagues demonstrated that visual
analogy is considered an effective cognitive strategy to stimulate
designers to create innovative concepts for solving ill-structured
design problems [10–12]. For novel idea generation, the use of
visual stimuli outperforms words [13,14]. In design, shapes may
represent semantic concepts and objects to reflect designers’ under-
standing of the visual world. In this article, we assume one sketch
only, which includes one shape or one object. A sketch category
is the name or the label of the shape or object. From a cognitive
point of view, when making a visual analogy, designers can map
shapes from high (geometric) dimensions to low (symbolic, concep-
tual) dimensions [15,16]. At low dimensions, they are capable of
interpreting and detecting the similarities between shapes in the
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same or different categories. It means that designers can abstract
perceptual information to some shape patterns, which represent
the shape features in a cognitive space [17]. In that space, they
can manipulate and transform shapes by exploiting their domain
knowledge. From an engineering design point of view, the high-
dimensional geometric features signify the lower-dimensional
semantic features [18,19], meaning that the high-dimensional
shape features can be reduced to a space of a low dimensionality
that still preserves the underlying patterns, constraints, and config-
urations. It is more efficient to explore and exploit the low-
dimensional design space to discover novel designs. In the same
spirit, computationally transforming high-dimensional image
sketches (e.g., 2304) represented as pixels into low-dimensional
ones (e.g., 128) captured as features can, on the one hand, keep
the underline shape patterns of the sketches and, on the other
hand, allow the efficient computational shape analysis. In this
article, we call the “low-dimensional” space a latent space. There-
fore, the second question for this research is: How can a computa-
tion tool learn a latent space that can capture the shape patterns of
sketches from multiple categories?
The precondition for making a visual analogy is a visual similar-

ity existing between the source and target domains [2]. In most
research on searching for visual stimuli, the magnitude of visual
similarity is qualitatively determined by designers [20–22]. The
notion of distance is central to measuring visual similarity. Short-
distance analogies occur when the source concept is very similar
to the target concept; long-distance analogies occur when the
source concept is very different from the target concept. The dis-
tance can be measured in a feature (i.e., latent) space, representing
the dataset. In the latent space, sketches are distributed based on
their shape features. Clustering is an essential data analysis and
visualization tool and provides a way to group sketches in the
latent space based on visual similarity. The traditional way of
using a deep neural network for clustering images is to train the
model for extracting shape features first and then apply clustering
algorithms on the extracted features into group images. This leads
to a possible mismatch between the learned shape features in the
latent space and the clustering of shape patterns and hence the infe-
rior quality of visual analysis [23]. Therefore, the third research
problem in this article is that given a latent space for representing
shape features from raw pixels, how can a tool properly cluster
image sketches into different shape groups based on their inherent
shape patterns and analyze the short- and long-distance analogies
based on shape similarity?
In this article, we apply unsupervised deep learning techniques to

build a model, called CAVAS through deep learning, or CAVAS-DL
for short, to learn a low-dimensional latent space, in which shape
patterns can be found to distill shape features of the sketches
from multiple categories. A clustering layer is constructed to
directly cluster images in the latent space during, instead of after,
the training process. The distance- and overlap-based similarities
are applied to quantitatively measure visual relationships between
one category and other categories in the latent space. Short- and
long-distance analogies for each category are determined based
on the visual similarity metrics. Besides, the connections between
different groups of categories are identified to explore how visual
analogies can happen.

2 Related Work
2.1 Computational Tools for Design by Analogy.

Design-by-analogy consists of two main steps: retrieving poten-
tially inspirational information in the source domains and
mapping the inspirational information from source domains to the
target domain [24]. Designers often face difficulties when retrieving
fitting inspirational sources. Therefore, using effective searching
and retrieving tools have the potential to enhance design-by-
analogy. A large number of inspirational resources available in
various databases can benefit designers who have limited domain

knowledge. Many computational tools and methods have been
developed to support and enhance searching and retrieval in
design-by-analogy. The goals are to strengthen designers’ abilities
and reduce the influence of experience gaps. Currently, biological
systems and patents are two major inspiration sources for
design-by-analogy.
Biological systems provide a fruitful source of inspiration for

engineering design. Vincent and Mann proposed bio-TRIZ, which
adds biological information and principles to the TRIZ database
[25]. Chakrabarti et al. created an automated analogical tool
called IDEA-INSPIRE that searches relevant ideas from a biologi-
cal database to solve a given design problem [26,27]. Shu et al. used
the natural language analysis to correlate functional basis terms with
useful biological keywords [28,29]. DANE (Design by Analogy to
Nature Engine) was proposed by Goel et al. to search and retrieve
the functioning of biological systems in the structure-behavior-
function library [30,31]. Nagel and Stone put forward a computa-
tional method to generate biologically inspired concepts based on
function-based design tools [32]. ASKNATURE is a web-based tool
to interactively classify biological information in the Biomimicry
Taxonomy [33].
Patent databases can offer enormous cross-domain technical

knowledge to inspire designers. Various computational tools and
methods have been proposed to retrieve and analyze patents to
support design-by-analogy. Murphy et al. proposed a search meth-
odology to identify inspiring patents, which have functional similar-
ities with design problems [34]. A computation method was put
forward for clustering patents based on their functional and
surface similarity; then, designers can automatically retrieve ana-
logical stimuli from these patents [35]. As many patent retrieval
computational tools focus on mining patents generally, Song and
Luo proposed a data-driven method to retrieve patents precisely
related to a specific product [36]. Fu et al. proposed a technological
distance to measure the “near” and “far” analogical stimuli based on
the relative similarity of clusters of patents [37].
While the research into searching and retrieving analogies from

biological systems and patents is prolific, the foundation of most
research is in linguistics and semantic transfer for analogical reason-
ing. There are few computational methods and tools that support
and guide visual analogy. Luo and coworkers put forward visual
analogy support tools based on visual maps of technology
domains or technical concepts to guide the search for inspirations
across domains or assist the analogical inference from concepts to
concepts [38–41]. However, the big difference between the visual
cues in this article with theirs is that our visuals are the images
and graphics, whereas their visuals are the structures of relations
among semantic constructs and design domains.

2.2 Visual Analogy in Engineering Design. CAD, sketches,
photographs, and line drawings are the major visual sources that
promote analogical thinking [2,42]. In engineering design, many
researchers used a large assortment of visual displays to stimulate
designers to generate creative design concepts. Jin and Benami indi-
cated that meaningfulness and relevance are the two overwhelm-
ingly important creative properties of visual stimuli that influence
design stimulation [1]. Yang et al. showed that the quality and
realism of the design can be improved when sketching during
concept generation [8,43]. Goldschmidt et al. demonstrated that
visual stimuli are useful for both expert and novice designers to
improve the quality of design and are more effective for novice
designers [11,12]. Linsey et al. illustrated that designers often
prefer visual representations to textual descriptions for idea genera-
tion, and photographs are growing in popularity due to easy
retrieval from the Internet [44,45]. McKoy et al. showed that
novice designers can generate higher quality and more novel
design concepts when presented with sketches rather than text-
based examples [46].
However, displays of visual representations are less effective in

producing creative design than reasoning by visual analogy.
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Casakin et al. found that if no instructions or directions are provided
to guide visual analogy, the quality of the design solutions is mostly
diminished [47,48]. It is often said that designers think more visu-
ally in their working environment. Designers are more likely to take
advantage of shapes and forms of visual displays as stimuli to tackle
given design problems [10]. Shape emergence means unexpected or
implicit shape features and relations appear only after the manipu-
lation and transformation of explicit shapes [15]. Visual imagery
may provide a theoretical foundation for shape emergence in
design by linking shape perceptions and cognitive processes of
visual reasoning. Therefore, designers often take advantage of
visual imagery to reinterpret and reformate underlying shapes
from the visual stimuli for idea generation. The precondition for
shape emergence is shape ambiguity, which refers to the existence
of numerous interpretations of the visual representation [49].
Designers are prone to use sketches to represent rough ideas and

obtain hints from the shapes of sketches [7]. The sketch is an infor-
mal visual representation that has the property of ambiguity.
Because of this property, designers can perceive two or more differ-
ent shapes from one single sketch. The power of visual analogy is
that the designers making the analogy can see the similarities of
underlying shapes despite the differences in superficial shapes.
Therefore, sketches are an ideal source to serve as a visual stimulus.
Recently, the authors introduced computational tools to apply visual
analogy in engineering design [50,51]. How to effectively support
visual analogy from sketches remains to be a major research ques-
tion in the design research community.

2.3 Deep Learning Models for Sketch Representation.
Recent advances in deep neural network models drastically
increased computers’ ability to learn a common and general
feature space for sketches and images [52–54]. Karimi et al. used
a supervised learning method to learn the feature vectors of sketches
given the category labels and then create clusters of visually similar
sketches based on the learned feature vectors [55]. Jiang et al. intro-
duced a supervised convolutional neural network (CNN)-based
approach for patent image vectorization to support visual design
stimuli retrieval in design-by-analogy [56,57]. However, in our
research, the goal is to learn a latent space that represents the
object shape features by using only lines and curves in the sketches
rather than having the labels of categories. Therefore, an unsuper-
vised learning approach is needed. Sketch-rnn is an unsupervised
learning model based on Variational AutoEncoder (VAE) for con-
structing stroke-based drawings of common objects; it can mimic
how humans sketch and draw similar but unique objects [58,59].
Sketch-rnn uses a bidirectional recurrent neural network (RNN)
[60] as an encoder to capture the features of training data in a
latent space Z (e.g., the feature distribution of training data) and
applies an autoregressive RNN [61] as a decoder to reconstruct
data via a sampled vector z from Z. It means all training data can
be mapped to a latent space Z, which can capture shape features.
However, the performance of sketch-rnn to extract shape features
of objects from multiple categories is not satisfactory [23,58,62].
Therefore, a new sketch-rnn is needed to robustly present underly-
ing shape features of multicategory objects in a latent space, which
can support the measurement of shape similarity.
In summary, a rich body of research on design by analogy has yet

to be expanded by integrating the extensive work on visual analogy
and advanced deep learning technologies. Our goal in this article is
to fill the gap in the three research areas by developing a computa-
tional method that can learn the visual similarity from sketches and
provide highly effective visual stimuli to enhance the visual analogy
of designers.

3 CAVAS: A Visual Analogy Support Framework
Creative designers usually employ inspirational sources that are

not directly linked to the design problem at hand, take advantage
of incidentally presented cues, and tend to collect a wide range of

ideas, sometimes seemingly irrelevant and highly dissimilar,
which may lead to insights. Divergent thinking helps designers
imagine the world from multiple perspectives, see problems in
new ways, and escape stereotypical thinking. There is significant
anecdotal and experimental evidence [2,12,63] for the importance
of visual analogy to stimulate the originality and creativity of
designers. Simply trying to think of or reason analogies and analo-
gous domains is difficult even for experienced engineers. One of the
main principles for enhancing analogical reasoning is to provide a
variety of related effective cues. Imagine, for instance, a designer
is undertaking a concept car design project and wants to employ
other domains’ styles or technology but is unsure of which to use.
In this case, the designer will need to retrieve several short- and
long-distance analogy domains to a car, based on the visual similar-
ity from his/her mind and from anywhere possible when his/her
mind is not enough.

3.1 Major Functions. Following our previous work on the
generate-stimulate-produce (GSP) model of creative stimulation
[1], a process of called CAVAS can be introduced, as shown in
Fig. 1. A designer initiates his/her design process by starting sketch-
ing. When the designer carries out the design alone, as shown in
Fig. 1(a), the sketches the designer generated will be perceived
by the designer, hence visually stimulating the designer and
leading to further cognitive processes, such as association or
analogy. The results of the cognitive processes will be the produc-
tion of more design operations, such as sketching, which will then
generate more sketches as design entities. The GSP process keeps
going on as design ideas become clearer and design concepts are
solidified.
The computer support in the proposed CAVAS is based on a

human–computer interaction framework, in which the role of the
computer is defined as “to provide highly relevant and stimulating
visual cues to the designer at the right timing during the early idea
shaping stage of design.” As shown in Fig. 1(b), for a computer
system, called the CAVAS system, to fulfill this role, it must
possess the following six major functions, namely, learn, analyze,
generate, extract, search, retrieve, and present.
Learn and analyze previous designs from all available

sources: The previous design materials such as sketches, CAD
drawings, photographs, and line drawings in the open-source data-
sets are collected and converted into images. The visual patterns of
these images can be learned and represented by the CAVAS system.
Then the system can analyze the visual similarity between different
domains based on the learned representations.
Generate visual analogy databases: After learning and analyz-

ing previous designs, the CAVAS system can generate visual
knowledge in visual and textual formats, which captures the
shape patterns of and similarity relationships among the visual com-
ponents. The generated knowledge is stored in one or multiple
visual analogy databases, which can be reused and updated.
Extract essential shape information, search and retrieve visual

analogies: The sketches drawn by designers are fed into the
CAVAS system. The system can extract and represent the essential
shape information from the sketches and then search and retrieve
the relevant visual cues stored in the visual analogy database.
Present relevant visual cues: After the relevant visual cues are

retrieved from the visual analogy database, the CAVAS system
then presents the visual cues to designers in the ways that the
designers are stimulated to find appropriate source analogies from
their memory and external databases. The visual cues should
increase the chances for designers to retrieve relevant visual analo-
gies. The system can present to designers several short- and long-
distance analogy domains to the target design domain based on
visual similarities.

3.2 Visual Augmentation Processes. Among the major func-
tions in the CAVAS framework described earlier, learn and analyze
functions are the key ones. Figure 2 shows the entire visual
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augmentation process, which consists of two main functions and six
stages. Each stage is explained as follows.
In stage 1, sketches are collected as the previous designs. In this

research, the visual cues to be used as visual stimuli are identified
based on shape similarities. Sketches made by people often offer
various opportunities for interpretation and/or self-reflection. In the
eyes of a particular viewer, a sketch could bear a resemblance to an
object, person, animal, texture, or place. This ability of cross-domain
transformation of shapes can provide a degree of diversity, ambigu-
ity, and uncertainty in the information gathering and idea generation
process, which makes it possible for designers to seek inspirations
different from their original domain area, e.g., a car designer consid-
ers trends in the design of boats. Therefore, sketches are the ideal
sources to discover visual cues to enhance designers’ visual analogy.
One challenge in augmenting human visual analogy is to make

the computer “understand” the sketches (or images) and supply
the relevant visual cues to the designer when needed. Since com-
puter images are represented as pixels, given a sketch of 48 × 48
pixels, a black-and-white image can take a space of 2304 dimen-
sions. For grayscale and color sketches, the dimension size can
easily rise to as high as tens or hundreds of thousands. In
stage 2, a dimension reduction approach is taken. Instead of identi-
fying similar sketches in the enormously high-dimensional pixel
space, a relatively small number of shape features are identified
that form a smaller dimensional space for representing the sketches

collected in stage 1. Once this shape feature-based space, called
latent space, is established, it becomes computationally feasible
to analyze the sketches to provide relevant visual cues to the design-
ers. It is worth mentioning that the best sets of shape features can be
identified by learning from the given datasets collected in stage 1.
The inherent shape patterns of collected sketches can be discov-

ered by analyzing and comparing their shape features in the latent
space. In stage 3, a soft clustering approach is taken to cluster the
sketches into different shape clusters or groups (the nouns cluster
and group are used interchangeably in this article to indicate the
result of the clustering process), i.e., shape patterns, based on
their relative “distances” in the latent space. Instead of the “yes or
no” designation of a sketch to a given group, each sketch is assigned
different probabilities of belonging to multiple groups. This soft-
ness preserves ambiguity, which is essential for supporting design-
ers’ visual analogy [1]. It is assumed that (1) visually similar shapes
should be clustered in the same group to represent one shape
pattern, and (2) the sketches of different categories that belong to
the same group can be more effective in stimulating designers’ ana-
logical thinking due to the shape similarity. These assumptions are
established for us to develop the visual cue exploration methodol-
ogy, and subsequent human-based behavioral studies will be
carried out to check their validity.
As the clustering process converges, the size of each cluster

becomes stable. In stage 4, a ratio is calculated based on dividing

Fig. 1 An illustration of the proposed computer-aided visual analogy support (CAVAS) in a
human–computer interaction framework: (a) designer’s thinking process and (b) computer
stimuli generation process

Fig. 2 An entire process of learn and analyze functions in the CAVAS framework
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the number of cluster assignment changes by the total number of
sketches. If it is smaller than the predefined threshold δ, then exit
the learning process and jump to stage 5; otherwise, proceed to
stage 2.
During the process of providing visual analogy support, the

CAVAS system extracts a designer’s design sketch information,
searches for relevant visual cues, and then presents the visual
cues to the designer in stimulating ways. The relevance here is
determined by the similarity measures. In stage 5, two metrics are
introduced to analyze the visual similarity between sketches. The
first metric is called distance-based similarity, which measures
the distances among centroids of different sketch categories in the
latent space. The shorter distance between two centroids means
higher visual similarity between the two categories. The second
metric is called overlap-based similarity, which measures the
amount of overlap among cluster probability distributions of differ-
ent sketch categories. The larger overlap between the two categories
means higher visual similarity between the two. These two metrics
work together to deal with different scenarios and provide more
accurate measurements for visual similarity.
In stage 6, long- and short-distance analogies for each sketch cat-

egory are identified based on visual similarity measures mentioned
earlier. Sketch categories with high visual similarity are classified as
short-distance visual analogies; otherwise, they are classified as
long-distance visual analogies. A sketch category can easily build
a visual relationship with short-distance categories. Bridge catego-
ries are identified to provide a way to discover valid long-distance
visual analogies.
The proposed visual augmentation process is applied to sketches

acquired from QuickDraw [64] as a case study. Section 4 presents
detailed descriptions of the two main functions of the CAVAS
framework.

4 Methods
4.1 Learn Shape Representations and Patterns With Deep

Clustering. As mentioned earlier, a dimension reduction approach
is taken to learn about the low-dimensional latent feature space of
the given sketch datasets. More specifically, it is desired that a gen-
erative model can be trained that can discover embedded shape pat-
terns of different sketch categories in the latent feature space
without supervised information (e.g., category labels). Among
various deep generative models for reconstructing images, VAE
is one of the most widely used techniques because of its good

performance in generalizing and learning a smooth latent represen-
tation of the input images.
Ha and Eck [58] proposed a sequence-to-sequence VAE for gen-

erating sketch drawings for completing a user’s stroke-based
drawing sequence of common objects. In this model, the stroke-
based sketch drawings are captured as a RNN that can carry out
conditional and unconditional sketch generation. Partly due to its
stroke-based modeling approach; however, it has a key limitation,
which is the insufficient quality of learning latent representations
of sketches from multiple categories. The limitation made it inade-
quate for CAVAS, as visual relationships between multiple catego-
ries need to be learned.
To overcome the limitation of learning from single-category

sketches, Chen et al. [62] replaced the RNN layers with CNN
layers so that they can deal with pixel-based sketches (i.e.,
images). This change also removed the limitation of single-category
sketch drawings and made it possible for CNN to learn from
sketches of multiple categories and generate a wide variety of
sketches based on the user’s input.
Since the CAVAS framework considers visual analogies from

multiple categories, our generative model must learn from sketches
of multiple categories. Following Ref. [58], the CAVAS deep
learning-based sketch generative model called the CAVAS-DL
model is defined as follows.

4.1.1 Shape Feature Learning. Given n sketches x = {xiϵX}
n
i=1,

X is the data space (i.e., the space of all the sketches, represented as
images), CAVAS-DL encoder qϕ(·) compresses x into n latent
vector z = qϕ(x) = {ziϵZ}

n
i=1. Z is the latent space. The dimension-

ality of Z is typically much smaller (e.g., 128) than X (e.g., 2304).
CAVAS-DL decoder pθ(·) samples n sketches conditional on

x′ = pθ(z) = {x′iϵX}
n
i=1 given latent vector z. The loss function of

the model can be defined as follows:

Lr = Eqϕ(z|x)[log pθ(x
′|z)] (1)

where ϕ and θ are the parameters to be trained in the encoder and
decoder, respectively. The parameters are typically the weights
and biases of the neural networks. Eqϕ(z|x)(·) is the reconstruction
loss that ensures the close resemblance between the generated
sketches and the original sketches.
As shown in Fig. 3, the CAVAS-DL encoder qϕ(·) is imple-

mented as a deep CNN that maps the black-and-white images in
the space of 48 × 48= 2304 dimensions into vectors in a latent
space Z of 128-dimension. Because the encoder is modeled as a

Fig. 3 Structure of CAVAS-DL
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generative variational autoencoder, the vectors in Z capture the
shape feature in terms of normal distributions of the shapes in the
original space and take pairs of mean and standard deviation as
values. The CAVAS-DL decoder pθ(·) is modeled as an RNN
that samples from the latent space Z and reconstructs the corre-
sponding sketch images.

4.1.2 Embedded Clustering. To identify short- and long-
distance analogies, sketches sharing more shape features should
be grouped and separated from other groups. Clustering is an unsu-
pervised learning method that can cluster similar data points into the
same group. In ordinary situations, clustering of data points starts
when the dimensional space of the data points is given and
depends only on the settings of distance measures and clustering
objectives. In the case of the CAVAS-DL model, however, cluster-
ing of sketches happens in the latent space Z that is being learned
through training. The challenge here is how we can devise a cluster-
ing process that can not only perform the clustering task in Z but
also help the training process of learning about Z and hence the
mapping parameters of qϕ(·) and pθ(·).
Xie et al. [65] proposed a deep embedded clustering (DEC)

method to provide a way to simultaneously learn feature represen-
tations and clustering assignments using deep neural networks. This
is especially difficult because of the nature of unsupervised learning
in clustering. The key idea of DEC is to iteratively refine clusters
with an auxiliary target distribution derived from the current soft
cluster assignment between the data points and the cluster centroids.
This process gradually improves the clustering as well as the feature
representation.
The DEC method is adopted in CAVAS-DL for improved

mapping and clustering. As shown in Fig. 3, the clustering layer
clusters all vectors in the latent space Z by simultaneously learning
a set ofK cluster centers {μjϵZ}

K
j=1 and mapping each latent vector zi

into a soft label qi by Student’s t-distribution [66]. qi= [qi1, …, qij,
… qik] is a soft label, which quantifies the similarity between zi and
cluster center μj.

qij =
(1 + ‖zi − μj‖2)−1∑
j (1 + ‖zi − μj‖2)−1

(2)

where qij is the jth entry of qi, representing the probability of zi
belonging to cluster j.
The clustering loss Lc is defined as a KL divergence (often used

to measure how one probability distribution is different from a ref-
erence distribution) between the distribution of soft labels Q mea-
sured by Student’s t-distribution and the predefined target
distribution P derived from Q. The clustering loss is defined as
follows:

Lc = DKL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(3)

where the target distribution P is defined as follows:

pij =
q2ij/fj∑
j (q

2
ij/fj)

(4)

Raising qij to the second power and then dividing by the fre-
quency per cluster, fj =

∑
i qij, allows the target distribution P to

improve cluster purity and put emphasis on confident labels. At
the same time, this target distribution normalizes the contribution
of each centroid to the clustering loss to prevent large clusters
from distorting the latent space. This iterative strategy to minimize
Lc works like self-training that labels the dataset to train on its high
confidence predictions [67].
The total loss function of CAVAS-DL, Lrc, is composed of two

components: the reconstruction loss Lr in Eq. (1) and clustering
loss Lc in Eq. (3). Lr is used to learn abstracted representations of
the latent space in an unsupervised manner that can preserve

shape features in sketch datasets. Lc is responsible for manipulating
the latent space to cluster sketches based on shape similarity. The
purpose of the loss function Lrc is to minimize reconstruction loss
Lr and clustering loss Lr. A weighted sum method is used to opti-
mize Lr and Lc:

Lrc = Lr + τLc (5)

where Lr is from Eq. (1) and Lc is from Eq. (3), and coefficient τ is
set to be 0≤ τ≤ 1.
Jiang and Luo [57] introduced an RNN-based stroke-based mod-

eling approach. However, it has a key limitation, which is the insuf-
ficient quality of learning latent representations of sketches from
multiple categories. Goldschmidt [63] replaced the RNN layers
with CNN layers so that they can deal with images and learn
from sketches of multiple categories. Our method takes CNN as
the encoder layer and applies an embedded approach to carry out
feature learning and clustering simultaneously. Its advantage over
these previous methods has been demonstrated in Ref. [23].

4.1.3 Training. The shape feature mapping parameters ϕ and θ
of CAVAS-DL are pretrained by setting τ= 0 to establish an initial
latent space. After pretraining, the cluster centers are initialized by
performing k-means on latent features of all sketches to obtain
initial cluster centers {μjϵZ}

K
j=1. Based on Eqs. (2) and (4), the ini-

tial distribution of soft labels Q and initial target distribution P can
be obtained. Then, the deep clustering weights, cluster centroids,
and target distribution P are updated as follows:

(1) Update weights and cluster centroids. The gradients of Lc for
each latent vector zi and each cluster center uj can be com-
puted as follows:

∂Lc
∂zi

= 2
∑k
j=1

(1 + ‖zi − μj‖2)−1( pij − qij)(zi − μj) (6)

∂Lc
∂uj

= 2
∑n
i=1

(1 + ‖zi − μj‖2)−1(qij − pij)(zi − μj) (7)

Encoder and decoder parameter gradient ∂Lr/∂ϕ and ∂Lr/
∂θ can be calculated by backpropagation when passing ∂Lc/
∂zi to the structure of the CAVAS-DL model. Then, the
parameters of encoder and decoder, ϕ and θ, and the
cluster center, μj, can be simultaneously updated by mini-
batch stochastic gradient descent.

(2) Update target distribution. In every epoch of training, the
target distribution P serves as ground truth soft labels. The
clustering layer is trained by predicting the soft assignment
Q and then matching it to the target distribution P. At the
end of the epoch, based on Eq. (4), the target distribution P
is updated depending on the predicted soft label Q and
used for the next epoch. After each epoch, the cluster label
ci assigned to zi is obtained by

ci = argmax
j

qij (8)

where qij can be obtained from Eq. (2). The training will stop
when the cluster label assignment change (in percentage)
between two consecutive epochs is less than a threshold δ.

4.2 Analyze Visual Similarity to Identify Visual Analogies.
The output of the clustering layer is a probability distribution of
each latent vector zi into each soft clustering label j. A clustering
space can be introduced by any one-dimensional vector ρ∈ℝl

that represents a probability distribution of clustering. Therefore,
ρ= [p(c1|ρ), …, p(ck|ρ), …, p(cl|ρ)], ck(1≤ k≤ l ) represents the
kth cluster with p(ck|ρ), indicating the probability of data ρ that
belong to the kth cluster.
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In CAVAS-DL, the inputs are sketches belonging to different cat-
egories, x= [x11, …, xij, …, xst], where xij means the jth sketch
belonging to the ith category, s is the number of categories and t
is the total number of sketches. In the latent space, latent vectors
are z= [z11, …, zij, …, zst]. In the clustering space, the probability
distributions of latent vectors can be represented by a super
matrix ℚ, ℚ= [Q1, Q2, …, Qs]. For matrix Qi(1≤ i≤ s), it includes
n sketches. Qi= [qi1, …, qij, …, qin], where qij(1≤ j≤ n, n * s= t)
represents a latent vector zij in the clustering space, i.e., qij= [p(c1|
zij), …, p(ck|zij), …, p(cl|zij)], where P(ck|zij) means the probability
of zij belonging to the cluster ck,

∑l
1 P(ck|zij) = 1. Soft clustering

produces multiclustering predictions for xij, while the ground
truth category of xij is single labeled.
Figure 4 illustrates a clustered five-dimensional space. Circle “o”

indicates an input sketch, and cross “×” represents a centroid. The
sketches of different categories are rendered with different colors.
Solid lines indicate decision boundaries that are perpendicular
bisectors of adjacent cluster centers, and the clusters are also ren-
dered with different colors. As an example, in this five-dimensional
clustering space, it is assumed that all sketches come from five cat-
egories, ω1, ω2, ω3, ω4, and ω5. Given the ground truth category of
x2j is ω2, the probability distribution of corresponding latent vector
zij may be q2j= [0.32, 0.21, 0.12, 0.19, 0.16]. The cluster prediction
of zij is c1, which has a maximum probability of 0.32. However,
sketches are clustered based on shape similarity. Sketches from dif-
ferent categories can be clustered in the same group. Hence, the
concept of the sketch category, which often indicates what a
sketch is in the real world, is different from that of the sketch
group (or shape cluster), which clusters sketches based on their
shape similarities.

4.2.1 Sketch Category and Sketch Group. We assume that the
number of clusters equals the number of sketch categories, and each
cluster can represent one shape pattern that is composed of several
shape features. As shown in Fig. 4, there are sketches from the cat-
egories ω1, ω2, ω3, ω4, and ω5, and there are five clusters c1, c2, c3,
c4, and c5. Each cluster can include sketches from several catego-
ries. For example, cluster c2 contains sketches from the categories
ω2, ω3, ω4, and ω5. It means that each cluster presents a shape
pattern that is obtained from learning shape features from multiple
categories. In other words, different categories can share one
common shape pattern.
Sketches from the same category can be clustered into different

groups. For example, some sketches in the category ω5 are clustered
into the clusters c2, c4, and c5. It means that this category contains
various shape features, which are learned by the CAVAS-DL to
form different clusters, i.e., shape patterns. For a given category,
the cluster label of each sketch is determined by Eq. (8), and the

number of sketches in each cluster can be counted. The probability
of category i belonging to cluster k is oik, which indicates the ratio of
howmany sketches in category i belong to cluster k and can be com-
puted in Eq. (9). The cluster probability distribution of each cate-
gory is represented by Oi= [oi1, …, oik, …, oil].

oik =
nik
Ni

(9)

where nik is the number of sketches from category i, which are
located in cluster k, Ni is the total number of sketches in category
i, and l is the total number of clusters.

4.2.2 Similarity Metrics. In this article, the first visual similar-
ity metric is a distance-based similarity that measures visual simi-
larity based on the Euclidean distance between the category
centroids in the latent space. The centroid of a category can be
obtained by averaging all the latent vectors from the same category.
A category centroid is different from a cluster centroid, which is the
centroid of all sketches (maybe from different categories) clustered
in the same group. The distance-based similarity between category i
and other categories can be computed as follows:

Seij = 1 −
Eij

max
j

Eij
(10)

where Eij is the Euclidean distance between the centroids of cate-
gory i and j, and max

j
Eij is the longest Euclidean distance from

the centroid of category i to centroids of other categories.
The second metric is an overlap-based similarity that measures

visual similarity based on the amount of shape feature overlap
between sketch categories. Shape feature overlap is defined as the
amount of overlap between two cluster probability distributions.
If two categories share more shape features, their sketches are
more likely clustered into the same groups. In other words, their
probability distributions are closer and have more overlapping
regions. Hellinger distance is applied to measure the similarity of
two cluster probability distributions, which is defined as follows:

H(Oi, Oj) =

�����������������
1 −

∑l

k=1

�������
oiko jk

√
√√√√ (11)

where
∑l

k=1
������
oikojk

√
is a measure of the area intersected by two

cluster probability distributions.

Fig. 4 Sketches from five categories in a clustered five-dimensional space

Journal of Mechanical Design DECEMBER 2022, Vol. 144 / 121402-7



The overlap-based similarity of other categories to category i can
be defined as follows:

Soij = 1 −
H(Oi, Oj)

max
j

H(Oi, Oj)
(12)

where max
j

H(Oi, Oj) is the longest Hellinger distance from cate-

gory i to other categories.

4.2.3 Short-Distance and Long-Distance Visual Analogies.
Based on the aforementioned metrics, it is conceivable that the cat-
egories having high visual or shape similarity are likely to be clus-
tered in the same group as their similarity values are all above a
given threshold. In this research, sketch categories in the same
group are considered visually short distanced. The value of the sim-
ilarity threshold determines how “short” the distance must be for
two categories to be considered short distanced. From a visual
analogy support point of view, given a designer is working on
sketching in category a and categories a and b are short-distanced,
the CAVAS-DL may provide a sketch of category b as a visual cue
to stimulate the designer’s visual analogy thinking. In this case, the
visual analogies made by the designer are likely to be short-distance
ones. On the other hand, if categories a and b belong to different
groups, then the analogies are likely to be long-distanced ones.
Identifying long-distance visual cues requires relating sketch cat-

egories belonging to different groups, which can be time consuming
when the number of sketches and the number of categories are both
large. To deal with this issue, a concept of bridge category is intro-
duced. If there is a bridge category existing between two groups, the
visual relationships between the categories in these groups can be
established.
In Fig. 5, the solid dots are categories that are clustered into two

groups. The similarity of category a to category b can be repre-
sented by the similarity value Soab or S

e
ab. The similarity of category

b to category a can be represented by the similarity value Soba or S
e
ba.

If Soab, S
e
ab, S

o
ba, and S

e
ba are all equal to or greater than a threshold ɛ,

category a and category b can be classified in the same group and
become short-distance analogies.
For category b from group 1, category c is the closest category in

group 2, and for category c, category b is the closest category in
group 1. The similarity of categories b to c can be represented by
the similarity values Sobc and Sebc. Category b is defined as a
bridge category, if and only if Sobc or Sebc is equal to or greater
than a threshold φ. In this case, there exists a visual relationship
between categories b and c. As categories in group 1 are visually
similar to category b and category b is visually similar to category
c, other categories in group 1 can be visually similar to category c
and then potentially visually similar to other categories, say cate-
gory d, in group 2. If a bridge category is identified, it is possible
to transfer the shapes of categories between these groups based
on visual similarities. The process of finding a valid long-distance

visual analogy is expressed as follows:

Given a, b ∈ S & c, d ∈ T; if b ∼ c, then a ≈ d

where S is a source domain of categories and T is a target domain of
categories; b ∼ c means a visual relationship built between catego-
ries b and c; and a≈ d means a possible long-distance visual rela-
tionship between categories a and d.

5 Experiments
5.1 Datasets and Implementation. Currently, there are few

large engineering design image datasets available for us to train
our model. The CAVAS-DL model is evaluated based on the
image datasets from QuickDraw, the largest sketch database built
by Google [64] to date. The proposed methods are for any
generic sketch-based visual analogies, as nothing in the dataset spe-
cifically ties the work to engineering problems. QuickDraw con-
tains 345 categories of everyday objects. To consider the burden
of computing time, sketches from ten categories are chosen to test
our proposed methods. The raw sequences from QuickDraw data-
sets are converted to monochrome png files of size 48 × 48, which
are used as the input data for our deep neural network. These png
files are binary images with pixels covered by strokes having the
value 1 and the rest of the pixels having the value 0. Three datasets
from ten categories are used for the experiments:

Dataset 1: Includes five categories, which are van, bus, truck,
pickup truck, and car. All of them belong to automobiles and
share some obvious shape features such as wheels and windows.

Dataset 2: Includes five categories, which are speedboat, canoe,
drill, pickup truck, and car. Speedboat and canoe belong to
boats and share some obvious shape features such as V-shaped
hulls. Pickup truck and car belong to automobiles. Drill does
not share superficial shape similarities with other categories.

Dataset 3: Includes five categories, which are television, canoe,
drill, umbrella, and car. Each of them does not share any
superficial shape similarities with other categories.

Some examples of each dataset are listed in Table 1. The 15K
sketches for each category are chosen. The sketches are divided
into training, validation, and testing sets with sizes of 10 K,
2.5 K, and 2.5 K, respectively.
To quantitatively verify and demonstrate the improved perfor-

mance of CAVAS-DL, a comparison study between Cava-DL
and the work of sketch-pix2seq proposed by Chen et al. [62] and
its predecessor sketch-rnn by Ha and Eck [58] was conducted.
For the sake of completeness, one of the traditional clustering algo-
rithms, k-means is also included in the comparison.
The experiments on the four methods, namely,CAVAS-DL, sketch-

pix2seq+ k-mean, sketch-rnn+ k-mean, and k-mean, are conducted
using the three datasets described earlier. The parameters used for
training sketch-rnn and sketch-pix2seq models are the same as the
illustration in the papers [58,62]. CAVAS-DL is initialized by pre-
training with τ= 0, i.e., with the deep clustering detached. Then,
the coefficient τ of clustering loss in Eq. (5) is set to 0.05, which is
determined by a grid search in a list [0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
1.0] and batch size to 100 for all datasets. The maximum number
of epochs is set to T = 50. In each iteration, we train the encoder
for one epoch using Adam optimizer with a learning rate λ= 0.001,
β1 = 0.9, β2= 0.999. The convergence threshold δ is set to 0.1%.
The dimension of the latent space in these three models is 128,
which is the same in the papers [58,62]. k-Means is performed to
cluster sketches in the latent space of sketch-pix2seq and sketch-rnn.
Besides, as a baseline for comparison, k-means also runs on the
sketch datasets with the original dimensions of 48×48= 2304,
which is much larger than the latent space. k-Means performs 20
times with different initialization, and the result with the best objec-
tive value is chosen, where k= 5.
We evaluate all four clustering methods with unsupervised clus-

tering accuracy (ACC). The ACC is defined as the best matchFig. 5 Visual relationships between two groups of categories
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between ground truth y and predicted cluster labels c:

ACC(y, c) = max
m∈M

∑
i= 1

n1{yi = m(ci)}
n

(13)

where n is the total number of samples, yi is the ground truth label, ci is
the predicted cluster label of example xi obtained by the model, and
M is the set of all possible one-to-one mappings between predicted
cluster labels to ground truth cluster. The best cluster assignment
can be efficiently computed by the Hungarian algorithm [68].

5.2 Shape Feature Learning and Clustering Performance.
As described in Sec. 3.1, to provide adequate visual cues to stimu-
late the designer’s analogical thinking, the CAVAS system should
be able to learn the shape features from the given datasets and dis-
tinguish the shape patterns that go beyond the sketch categories.
From feature learning and clustering perspectives, the major distinc-
tion of our proposed CAVAS-DL method is combining deep feature
learning with deep clustering. Thanks to the dynamic property of
CAVAS-DL that simultaneously adjusts the processes of feature
learning and clustering, its improved performance in shape
pattern identification is expected, and in fact, it has been reported

that our proposed algorithm outperforms others significantly for
both clustering and category information preservation [23].
For visualizing the latent space of unsupervised modes and one

supervised model on the three datasets, t-SNE [66] is used to
reduce the dimensionality of Z from 128 to 2, and 7500 testing
sketches are plotted from five categories of the three datasets for
each method. The dimensionality reduction from 128 to 2 may
cause significant information loss and generate misleading visuali-
zations. t-SNE has a hyperparameter called perplexity.
The perplexity value balances the attention t-SNE gives to local
and global aspects of the data and can have large effects on the
resulting plot. It is recommended to be between 5 and 50 [69]. If
choosing different values between 5 and 50 significantly changes
the interpretation of the data, then t-SNE is not the best choice to
visualize or validate our hypothesis. To increase the robustness of
our findings and reflect how multiple runs reflect affect the
outcome of t-SNE, we put forward the process to validate the visu-
alization of a trained latent space, which is shown in Fig. 6.
In the first step, we set the initial value of the counter N as 0,

which is used to record the times of sample generation. Then, we
take advantage of t-SNE for visualizing a latent space with a list
of perplexity values. In the second step, we choose a converged
visualization as the candidate. For example, in Fig. 7, the latent

Table 1 Examples of each dataset

Dataset Examples

1

Van Bus Truck Pickup truck Car
2

Speedboat Canoe Drill Pickup truck Car
3

Television Canoe Drill Umbrella Car

Fig. 6 The process to validate the visualization of a trained latent space

Fig. 7 Visualizations of a latent space with different perplexity values
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space is visualized under different perplexity value settings. We can
see the latent space visualizations in a list [30,40,52] are converged.
There are two types of global geometry of converged visualizations.
One type can represent visualizations with perplexity values of 20,
30, and 40. Another type can represent the visualization with a per-
plexity value of 50. We randomly choose one (perplexity value=
30) as the candidate from the first type. If this type cannot be a
valid visualization, we will try the other types. In the third step,
we randomly generate five samples of 7500 sketches from five
sketch categories in the QuickDraw dataset. In the fourth step, the
five sample sketches are encoded and visualized in the latent
space. In the fifth step, we compare the topological information of
five samples in the latent space with the candidate. If over half of the
visualizations of the five samples are similar to the candidate, it
means this round of sample generation can validate that the candi-
date can represent these five sample sketches in the latent space. A
success rate is used to illustrate how many samples are similar to the
candidate. For example, in Fig. 8, only sample_4 is different from
the candidate, and the success rate is 0.8. A threshold is set to
0.6. If the success rate is no less than a threshold, then the next
round of five sample generations will be started. The counter N
will be increased by 1. Otherwise, we will go back to the second
step to choose the other type of converged visualization as the can-
didate. If all the converged visualizations have been tried, then we
go back to the first step. There will be five rounds of sample gener-
ation. If all of them can be successful, then the candidate will be
chosen to visualize the trained latent space.
After validating visualizations of the latent space of each model

in three datasets, we can compare the shape feature learning and
clustering performance of different models. First, we compare the
learning and performance of unsupervised models. Figure 9
shows that the CAVAS-DL performs the best in clustering since
the sketches from different categories are more separated than
those from the same ones, and the sketches from the same category
are denser together in all cases. For Dataset1, all sketches are from
the same taxonomic category and hence are hard to be separated
into different clusters. The red, black, and green clusters are
denser in CAVAS-DL than the other two as the clustering loss Lc
can force sketches from the same taxonomy to be gathered together
and push away sketches from different taxonomies. It means high
visually similar categories will gather together in the latent space,
and low visually similar categories will separate from each other.
This capability is helpful in identifying short- and long-distance
analogies. For Dataset2, sketches are from three taxonomic catego-
ries. Sketch categories belonging to the same taxonomy should be
close to each other as they share more shape features and are
away from other taxonomies. This assumption can be confirmed
by our proposed model as well as sketch-pix2seq, as they both
use CNN as an encoder that can discover and represent shape struc-
tures in the latent space. Car (red) is close to pickup truck (black)
and speedboat (blue) is close to canoe (green) in the first
CAVAS-DL plot, while this cannot be easily detected in the third
sketch-rnn plot; for Dataset3, all sketches are from different taxo-
nomic categories. All three deep learning models can easily
cluster each category. However, the clusters in the CAVAS-DL
plot are denser and have a larger margin with each other. Besides
the qualitative comparisons based on Fig. 9, we gave the quantita-
tive results of the clustering performance of our model and other

compared models in our previous paper [23]. The main conclusion
is our model has a better performance in clustering with shorted
intracluster distance and longer intercluster distance when using dif-
ferent datasets.
In Fig. 9, we also compare three unsupervised models mentioned

earlier with a supervised model, which is a CNN from the official
guides of QuickDraw.2,3 For every dataset, the supervised model
can more clearly separate each category in the latent space. The
reason is the latent space of the supervised model is trained based
on given category label information. Therefore, the supervised
model can have better performance in categorizing sketches.
From dataset1 to dataset3, the shape feature sharing become less
and less, and the margins between sketch categories in the latent
space become larger and larger. It infers that after training, shape
features extracted by the encoder are related to the given semantic
information (category labels). When all sketches are from the
same taxonomy, this relationship can be hardly built. When all
sketches are from different taxonomies, this relationship can be
easily established. However, in this research, the goal is to learn a
latent space that represents the shape patterns. Ideally, similar
shapes from the same or different categories can be clustered in
the same group, and different groups are distinguishable from
each other. In other words, the purpose of the proposed
CAVAS-DL is to construct a relationship between shape features
and shape patterns in case the shape pattern label of each sketch
is hard or impossible to be collected and created. Therefore, even
though all sketch categories are from different taxonomies in
dataset3, CAVAS-DL tries to keep relatively small margins to pos-
sibly build shape connections between these categories.

5.3 Performance of Visual Similarity Analysis. After
extracting shape features and discovering shape patterns from the
given datasets, the CAVAS system should be able to analyze
visual similarities between different sketch categories and identify
relevant visual cues. To measure visual similarity, both distance-
and overlap-based similarities are introduced.
Euclidean distance. t-SNE always uses the Euclidean distance

function to measure distances because it is the default parameter
set inside the method definition [66]. One limitation of using
Euclidean distance in t-SNE is the quadratic time and space com-
plexity in the number of data points as it computes all pairwise sim-
ilarities between the points. One good practice is to first use
principal component analysis to reduce the number of dimensions
and then use t-SNE [70,71]. However, we do not take this approach
as only ten categories are chosen for the testing. In this article, we
choose the Euclidean distance as the distance-based similarity mea-
surement. In Fig. 10, the clustered latent space is presented to visu-
ally show Euclidean distances between centroids of ten sketch
categories. Speedboat and canoe in the green circle are from the
same taxonomy, and van, pickup truck, truck, car, and bus in the
red circle are also from the same taxonomy. Pickup truck and speed-
boat are close to each other, and hence, it is possible to build a visual
relationship between two taxonomies through these two categories.
Drill, television, and umbrella are from different taxonomies.

Fig. 8 Comparison of visualizations of five sample sketches in the latent space with the
candidate

2https://github.com/googlecreativelab/quickdraw-dataset
3https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/sketcher
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Fig. 9 Clustered latent space of three datasets for each method (top row: Dataset1—van
(blue), bus (green), truck (yellow), pickup truck (black), car (red); middle row: Dataset2—
speedboat (blue), canoe (green), drill (yellow), pickup truck (black), car (red); bottom row:
Dataset3—television (blue), canoe (green), drill (yellow), umbrella (black), car (red)) (Color
version online.)

Fig. 10 Sketches from ten categories in the latent space, cross “×” represents a category centroid (Color version online.)
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Fig. 11 Cluster probability distributions of ten categories

Fig. 12 A distance-based similarity matrix with dendrograms (different groups are marked with solid squares with different
colors; some cells’ values larger than threshold φ are marked with dashed squares to indicate bridge categories) (Color
version online.)
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Categories from the same taxonomy have shorter centroid distances
and higher overlap magnitude; Categories from different taxono-
mies have longer centroid distances and lower overlap magnitude.
After checking the dataset, one could see that there are two different
kinds of drills in the dataset: handheld drill and ground drill. There-
fore, drills are separated into two groups in the latent space. By
exploring this latent space of ten categories, designers can have
an overall view of the visual relationships between them.
Hellinger distance. The cluster probability distributions in

Fig. 11 are provided to visually present the amount of overlap
between categories based on Hellinger distance. The following fea-
tures are shown in Fig. 11.

(1) A cluster can accurately capture one shape pattern, which
can represent shape features from the same or different tax-
onomies. For example, cluster 1 captures most shape features
from the automobile taxonomy. It can also capture some
shape features from the speedboat; cluster 5 captures most
shape features from the boat taxonomy. It can also capture
some shape features from pickup truck. This also explains
why speedboat and pickup truck can be bridge categories
to link boat and automobile taxonomies. Cluster 7 and
cluster 10 capture shape features from umbrella and televi-
sion, respectively. Umbrella and television are distinguish-
able from other categories.

(2) One category might contain two or more shape patterns as it
has different variations. This case can be captured by differ-
ent clusters. For example, cluster 4 and cluster 9 capture dif-
ferent shape patterns in the drill because there are two
different types of drills in the dataset.

(3) Some categoriesmay be extra or not useful. Cluster 2, 3, 6, and
8 can barely capture some shape features from ten categories.
It was assumed that the clustering layer can learn and differ-
entiate shape features from different categories, and one cate-
gory can only represent one shape pattern. Therefore, the
number of clusters is set equal to the number of categories
during the experiment. However, the results showed that
some clusters are not useful. Therefore, the optimal cluster
number needs to be determined by iterating more experi-
ments. We believe the optimal cluster number may relate to
the number of taxonomies in the given dataset, as categories
that belong to the same taxonomy would have the same
shape pattern.

Visual similarity. The distance- and overlap-based similarity
matrices in Ref. [72] and Fig. 14 can quantify the visual similarity
between each category based on Euclidean distance and Hellinger
distance, respectively. As all distances from other categories to a

given category are normalized by the maximum distance, these
two matrices are asymmetric. The matrices capture the following
useful information:

(1) Hierarchical clustering: The rows in these matrices are rear-
ranged based on hierarchical clustering and accompanied by
dendrograms describing the hierarchical cluster structure.

(2) Similarity magnitude: The values in each cell represent the
similarity magnitude of the row category to each column cat-
egory. A larger value means higher similarity.

(3) Category groups: If similarity values between several cate-
gories are all equal to or greater than the threshold ɛ= 0.5,
then these categories can form a group (i.e., cluster or
shape pattern).

(4) Analogy types: Categories in the same group are short-
distance visual analogies. Categories in the different
groups are long-distance visual analogies. The threshold φ
is set to 0.5. A category can be considered as a bridge cate-
gory if the largest similarity value between this category with
one category in another group is equal to or greater than 0.5.

n Ref. [72], as threshold ɛ is set to 0.5, ten categories can form
four groups based on distance-based similarity, which is shown in
the dendrogram. Van, bus, truck, pickup truck and car are in the
red group. Bus and truck have the highest similarity values. It
implies they are tightly closed to each other in the latent space.
The green group includes speedboat and canoe. The orange
group contains drill and umbrella, which are from different taxon-
omies. The gray group contains television. The red group is
entwined with the green group. It means shape transformation can
happen between automobiles and boats as they share many shape
features. The similarity value of pickup truck to speedboat is 0.6,
and the value of speedboat to pickup truck is 0.67, which are
above the threshold φ. They are bridge categories with a strong
capability to connect two taxonomies. It means for making a
visual analogy, if the target domain is boat, a boat designer can
try to make a visual connection with a source domain which is auto-
mobile through speedboat, vice versa. As shown in Fig. 13, van,
bus, truck, pickup truck, and car are different categories in the auto-
mobile group. It is more effective to build visual connections
between them, but fewer changes to obtain visual inspiration.
More efforts need to be made to construct a visual relationship
between different categories in different groups (e.g., van and
canoe). However, novelty is more likely to happen if a long-
distance visual connection can be built. Bridge categories (pickup
truck and speedboat) are valuable spots to draw a visual analogy
for both effectiveness and novelty at the same time. Canoe is the
only category that can connect one group with the other two

Fig. 13 A possible visual analogy making through bridge categories
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groups as the similarity values of canoe to pickup truck and drill are
0.52 and 0.54, respectively. It means it can lead visual connections
to different directions. The similarity value of television to van in
the red group is 0.54, which is above the threshold φ. It means tele-
vision has a potential to make a visual relationship with automobile.
It is easy to understand as the screen of the television is visually
similar to a window of a van.
In Fig. 14, as threshold ɛ is set to 0.5, ten categories can form five

groups based on overlap-based similarity, which is shown in the
dendrogram. The categories in red and green groups are still the
same. However, drill and umbrella are not classified in the same
group. Basically, the similarity values between categories from
the same taxonomy become larger, and the similarity values
between categories for different taxonomy become smaller. For
example, the lowest similarity value in the red group is increased
by 0.25. Pickup truck and truck have the highest overlap-based sim-
ilarity. It makes more sense compared with distance-based similar-
ity from which truck is more visually similar to bus. No bridge
categories can be detected. Therefore, the visual relationships
between categories in the same group become stronger. However,
each group is distinguishable from other groups. It may be hard
to build visual relationships between these groups based on overlap-
based similarity. In other words, short-distance visual analogies can
be easily identified, but long-distance visual analogies might be
harder to be found.

6 Discussion

Human designers are sophisticated in extracting essential visual
features from shapes and discovering visual patterns to aid them
in inferring analogies from different shapes. To learn shape patterns
from sketches, our proposed CAVAS-DL takes advantage of CNN
as the encoder to compress high-dimensional sketch image data
from multicategory to low-dimensional features in the latent
space. By minimizing the reconstruction loss Lr, our model can
reduce shape information lost during compression and capture
shape features in the sketch data. By minimizing the clustering
loss Lc, sketches from the same category are densely clustered
and away from other categories. It means sketches belonging to
the same shape patterns are more likely clustered in the same
group. These properties are proven in the experiments.
By visualizing the latent space of three different datasets with dif-

ferent levels of common shape feature sharing in Fig. 9, we empir-
ically validate two points: (1) If sketches are from the same
taxonomy, they share many shape features. It is difficult for deep
clustering models to separate them. The sketches in Dataset1 are
from the same taxonomy; three unsupervised models are struggling
to cluster sketches. But our proposed model can somehow separate
red and black points from others. The sketches in Dataset3 are from
different taxonomies; it is easier for the three unsupervised models
to cluster sketches. Our proposed model can separate clusters with a

Fig. 14 An overlap-based similarity matrix with dendrograms (different groups are marked with solid squares with different
colors) (Color version online.)
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larger margin. (2) If a deep clustering model uses CNN layers to
encode input sketches and simultaneously considers the clustering
loss, its clustering performance can be improved, indicating the
advantage of embedded clustering. Some of the sketches in
Dataset2 come from the same taxonomy; our model can cluster
points denser than the other two unsupervised models. (3) Among
three unsupervised models, CAVAS-DL is the most similar to
CNN regarding the sketch distributions in the latent space. It also
suggests that CAVAS-DL is better at differentiating sketches
based on shape patterns and also retaining shape relationships
between sketches in the same taxonomy.
The scalability and repeatability are important aspects we need to

explore for our model. We chose ten categories to test the perfor-
mance of shape feature extraction and shape pattern learning of
the proposed model. For shape feature extraction, the assumption
is when the categories come from the same taxonomy, it would
be hard for our model to extract shape features as these categories
are visually similar to each other; when the categories come from
different taxonomies, it would be easy for our model to extract
shape features as these categories are not visually similar to each
other. For shape pattern learning, the assumption is one learned
shape pattern can be represented by one cluster, which can
include several categories sharing similar shape features. Categories
in the same cluster can be potentially regarded as short-distance
analogies, and categories in different clusters can be potentially
regarded as long-distance analogies. Categories from the same tax-
onomy group are more likely located in the same cluster. However,
one shape pattern/cluster is not equal to one taxonomy. The main
reason is some categories from different taxonomies share many
similar shape features. For example, car and boat may be clustered
into the same group. On the basis of these assumptions, we col-
lected images from the same taxonomy group to form dataset1
(van, bus, truck, pickup truck, and car), from three different taxon-
omy groups to form dataset2 (speedboat, canoe, drill, pickup truck,
and car), and from five different taxonomy groups to form dataset3
(television, canoe, drill, umbrella, and car).
Currently, we have tested our model on a relatively small-scale

dataset and our model has good performance in shape feature
extraction and shape pattern learning. For real cases, we need to
train our model on hundreds or thousands of categories to find
more short- and long-distance visual analogies. More modifications
of the model and experiments need to be done when the size of the
dataset is scaled up. However, we can see the potential of our model
to identify and provide visual cues for visual analogy making in
conceptual design.
After effectively encoding the source of analogies, potential

targets need to be identified. During the visual analogy search
process, designers qualitatively assess the similarity between
visual materials. The moment to identify a bridge to connect or
transfer one shape to another is often random and unpredictable.
To quantify visual similarity, distance- and overlap-based similarity
are introduced to analyze the visual relationships between catego-
ries and find useful analogies. Bridge categories are defined to
guide the connection building of different shapes.
From the experiment of visual similarity analysis, one can see

that (1) the distance- and overlap-based similarity metrics can
confirm that categories from the same taxonomy share more
shape features and have higher visual similarity than categories
from different taxonomies; (2) distance-based similarity is less
accurate than overlap-based similarity when finding visual relation-
ships between categories from the same taxonomy as these catego-
ries share too many shape features, and in these cases, the
overlap-based similarity is more effective than distance-based sim-
ilarity; (3) overlap-based similarity can make categories from differ-
ent taxonomies more distinguishable, e.g., the visual similarity
values between categories in the automobile taxonomy become
larger. However, finding bridge categories become more difficult,
e.g., the similarity values between speedboat with other categories
in the automobile taxonomy become smaller, and it is not detected
as a bridge category; (4) bridge categories can be useful to find the

path to visually transform shapes from one taxonomy to another
taxonomy. The path can potentially explain how to find long-
distance visual analogies. For example, pickup truck is classified
as a bridge category. A car designer can apply visual thinking to
transfer the shape of a car to a pickup truck and then to a speedboat
and retrieve some inspiring cues from speedboat design.
Both distance- and overlap-based similarities are useful when

analyzing visual relationships between various categories in differ-
ent scenarios. However, these two should work together to provide
more convincing results. Being visually similar makes analogical
inferences easy, and being categorically different makes the poten-
tial analogy across categories novel. One important finding is the
detection of bridge categories allows both effectiveness and
novelty to be obtained at the same time and may resolve the “ana-
logical distance” dilemma as suggested by prior studies [37,72]:
near-field stimuli are more effective, while far-field stimuli offer
novelty. A bridge category is an analogy located in a “sweet
spot” proposed by Fu et al. [37], which can offer a strategy to
avoid visual fixation and find visual stimuli from long-distance
analogies.
From a designer’s point of view, the visual presentation of the

latent space shown in Figs. 9–14 can be highly effective for the
designer in choosing potential, inspiring visual cues either system-
atically or randomly. Upon viewing the 2D distributions of sketches
like Figs. 9 and 10, a designer may intentionally choose a dataset
with categories clearly from diverse taxonomies or he/she may
select the one that holds closely related sketches. Making a targeted
selection, i.e., clicking a colored dot on the chart or on the sketch
map, allows the designer to knowingly expand her thinking
toward potentially fruitful directions. Besides, visual assistance,
like Fig. 10, provides the designer with a tool to explore the overlap-
similarity space that has the potential to offer multilayer expansions
of thinking for the designer. Furthermore, the grouping matrix dis-
plays like Figs. 12 and 14 allow designers to quickly access closely
related groups of sketches which may impact designers’ analogy
making differently compared to single visual cue-based stimulation.
Future human subject-based studies are needed to verify the effec-
tiveness of these human augmentation strategies.

7 Conclusions
In this article, a CAVAS framework is proposed, and a deep

learning-based computational model CAVAS-DL is introduced as
a potential human design augmentation tool to assist human
visual analogy making. The CAVAS framework extends the GSP
creative stimulation model into the human–computer interaction
context, and the CAVAS-DL model has demonstrated the potential
of sketch-and-image–based visual analogy support.
The CAVAS-DL model is composed of a CNN-based variational

autoencoder coupled with deep clustering embedding. The results
from the computational and experimental studies have demon-
strated CAVAS-DL’s excellent capabilities in learning shape
feature presentations and using distance- and overlap-based similar-
ity to analyze visual relationships of the learned presentations of
sketch categories. The application of our computational tool can
potentially provide strategies to designers for enhancing their
visual analogy-finding capabilities. In summary, the main contribu-
tions of this paper are as follows:

• A CAVAS support framework is introduced that extends our
previous human-thinking GSP creative simulation model [1]
into a human–computer interactive thinking framework. The
key functional components and processes are identified for
augmenting designers’ visual analogical thinking processes.

• An unsupervised deep learning methodology is introduced that
combines a CNN-based shape feature extraction algorithm
with a deep embedded clustering model that achieves the
best feature capturing and clustering simultaneously.

• Distance- and overlap-based similarities are introduced and
applied to analyze visual relationships between categories.
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Short- and long-distance analogies can be identified based on
visual similarity. The detection of bridge categories provides a
way to find long-distance analogies, which can be applied to
explore testable visual cues for human-based studies of the
visual analogy-making process.

In addition, the visualization of the latent space of sketches pro-
vides testable tools for human-based behavioral studies. Extensive
experiments have been conducted that demonstrate the effective-
ness and robustness of our proposed computational tool in explor-
ing desired visual cues based on various given categories, which
has made it possible for us to conduct human-based behavioral
studies on visual analogy making.
A drawback of the CAVAS-DL model is the need to balance the

weight ratio of reconstruction loss and clustering loss. It means one
needs to determine the weight of clustering loss in Eq. (5). Search-
ing for an appropriate value for the weight can take time since the
model needs to be trained many times. Besides, the threshold ɛ to
determine short- and long-distance analogies and the threshold φ
to determine bridge categories are set based on the distance- and
overlap-based similarity matrices and domain knowledge. More
work needs to be done to efficiently find optimal values for them.
Our ongoing work includes the investigation of how to determine
the optimal cluster number for the clustering layer and how to use
the learned sematic or functional meaning behind shapes to
support visual analogy. One outstanding issue to be addressed is
to evaluate how effective the visual cues explored by
CAVAS-DL can be in stimulating designers’ visual analogy
making for generating more and better ideas. The literature
review has led us to the conviction that the shape pattern is the
key to bringing ideas in similar and different categories into the
analogy-making context. The resulting tool Cavas-DL of this
research has made it possible for us to move to the next step of con-
ducting human subject-based design experiments to evaluate the
effectiveness of computational support for visual analogy making
in design.
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