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Abstract

Access to vast datasets of visual and textual materials has become significantly easier. How to
take advantage of the conveniently available data to support creative design activities remains
a challenge. In the phase of idea generation, the visual analogy is considered an effective strat-
egy to stimulate designers to create innovative ideas. Designers can read useful information off
vague and incomplete conceptual visual representations, or stimuli, to reach potential visual
analogies. In this paper, a computational framework is proposed to search and retrieve visual
stimulation cues, which is expected to have the potential to help designers generate more crea-
tive ideas by avoiding visual fixation. The research problems include identifying and detecting
visual similarities between visual representations from various categories and quantitatifying
the visual similarity measures serving as a distance metric for visual stimuli search and
retrieval. A deep neural network model is developed to learn a latent space that can discover
visual relationships between multiple categories of sketches. In addition, a top cluster detec-
tion-based method is proposed to quantify visual similarity based on the overlapped magni-
tude in the latent space and then effectively rank categories. The QuickDraw sketch dataset is
applied as a backend for evaluating the functionality of our proposed framework. Beyond
visual stimuli retrieval, this research opens up new opportunities for utilizing extensively avail-
able visual data as creative materials to benefit design-by-analogy.

Introduction

Data-enabled design is recently proposed to use big data as design materials to probe for user
behaviors and integrate them into design processes (Bogers et al., 2016). The early-stage design
process is regarded as an explorative activity in which visual thinking plays an important role
(Goldschmidt, 1994). The visual analogy is a visual reasoning method that has been used by
designers to generate creative ideas (Goldschmidt, 2001; Casakin, 2010). Many analogy search
and retrieval computational tools have been developed to discover inspirations based on the
idea that designers need large datasets containing design precedents to support the evocation
process (Setchi and Bouchard, 2010; Chakrabarti et al., 2017; Han et al., 2018). While current
search engines allow designers to utilize keywords to initiate searching based on semantic simi-
larity, few computational tools exist for exploring sketches and images to find similar or dras-
tically different visual stimulation cues to support visual analogy. How to identify and present
valuable analogies from vast sets of visual materials to a designer remains a problem for the
research community.

Sketches, CAD, photographs, and line drawings are central visual representations to pro-
mote analogical thinking (Goldschmidt, 2001; Gonçalves et al., 2014). Designers can take
advantage of visual imagery to manipulate shapes and generate meaningful and even creative
concepts. Sketches are abstract and ambiguous drawings widely used by designers to materi-
alize their mental imagery while discarding unnecessary details. The advantage of displaying
self-generated sketches is that it provides valuable cues for visual analogy (Goldschmidt and
Smolkov, 2006). Following this line of thinking, we propose a novel approach to help enhance
designers’ visual analogy making by providing meaningful visual cues to the designers in
response to their visual and textual queries based on the vast imagery datasets available.
The key idea behind this approach is: if rich networks of shape-connections and semantic-
connections among the imagery items, for example, images and sketches, in a massive dataset
can be established, then the meaningful recommendations can be retrieved from the dataset to
assist the designers’ analogy making process.

There can be different types of shape connections, including shape patterns, stroke num-
bers (for sketches), and levels of image complexity. The semantic connections can be function-
based, product category-based, or any assigned meaning-based. The challenge for realizing the
visual analogy support is to allow designers to perform visual or shape-based (instead of
keyword-based) searches that return relevant but non-obvious visual cues (instead of words
or sentences) for designers’ analogy making. As the first step to address the challenge, we take
sketches as imagery items and seek to develop a deep learning-based framework that maps
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sketches into a shape feature-based space (as shape connections) and
bridges multiple sketch categories (as semantic connections).

The Quickdraw dataset is a collection of 50 million sketches
across 345 categories, which is contributed by players of the
game Quick, Draw! (Jongejan, 2016). It can serve as a massive
dataset of potential creative materials for searching for inspiration
to motivate idea generation. Recently, machine learning models
have been proposed to pull out visual patterns in the
Quickdraw dataset and provide new ways to navigate the data
(Chen et al., 2017). Taking a dimension reduction approach sim-
ilar to the previous work, in this paper, we map the very high-
dimensional sketch data to a significantly low-dimensional
space, called a latent space. In the latent space, the shape features
from the multiple sketch categories can be learned, and relevant
visual patterns can be identified and presented to designers.

After distilling the shape features, visual similarities between
low-dimensional sketch representations in the latent space need
to be measured when searching for visual analogies. Based on
the visual similarity measures, the visual analogies can be
retrieved, which are often not obviously identifiable by designers
even when they are from heterogeneous categories. Analogy dis-
tance is the way to measure the similarity between the source
domain and the target domain. It has been shown that long-
distance analogies result in more creative ideas than short-
distance analogies (Christensen and Schunn, 2007; Jin and
Benami, 2010; Fu et al., 2013b). It has been indicated that long-
and short-distance analogies are qualitatively and subjectively
determined by designers (Herring et al., 2009; Casakin, 2010;
Kwon et al., 2019). Few researchers pay attention to quantifying
the distance of visual analogies and rank potential stimuli based
on the distance. Hence, the research problem in this paper is
how to identify and quantitatively measure visual similarity
between sketches in the latent space, which can support detecting
their visual relationships of the underlying structures, despite the
differences in superficial features.

In this paper, our goal is to develop a visual stimuli generation
framework by utilizing deep learning techniques and quantitative
methods to learn insights from human-generated sketches stored
in accessible big data sources. Firstly, we automatically collect raw
sketch data from QuickDraw and then devise an algorithm to com-
press these high-dimensional data to a latent space, in which shape
patterns of each sketch category can be learned and represented.
After that, a top clustering detection (TCD)-based method is pro-
posed to quantify visual similarity and find visual relationships
between categories in the latent space. Based on the learned visual
similarities, given a sketch as a query, visually similar or dissimilar
sketches within or beyond the same category can be searched,
retrieved, and effectively presented to designers, potentially helping
their visual analogy process.

Related work

Data sources for design by analogy

External stimuli available in various databases can benefit
designers, especially those who have limited domain knowledge.
Data sources for design by analogy can vary across different
types and forms. In terms of representation modalities, stimuli
can be pictorial or verbal/textual. Many computational tools
and methods have been proposed to search and retrieve textual
stimuli to support design-by-analogy. Patent databases and biol-
ogy corpora are two primary data sources for textual stimuli.

IDEA-INSPIRE was presented by Chakrabarti et al. to automati-
cally search analogies from a biological database to solve a given
design problem (Chakrabarti et al., 2005; Sarkar and Chakrabarti,
2008). Shu et al. took advantage of natural language analysis to
correlate functional basis terms with biological keywords
extracted from biological knowledge available in books and jour-
nals (Chiu and Shu, 2007; Cheong et al., 2011; Shu, 2010). Goel
et al. proposed DANE (Design by Analogy to Nature Engine)
to search and retrieve the functioning of biological systems in
the Structure-Behavior-Function library to address engineering
problems (Vattam et al., 2011; Goel et al., 2012). Luo et al. devel-
oped a data-driven tool to search technology knowledge from a
patent database to detect design opportunities and directions
(Luo et al., 2017). Fu et al. presented a computational method
to discover the functional and surface similarity of patents, and
then designers can automatically retrieve analogical stimuli
from these patents (Fu et al., 2013a).

As designers are considered visualizers who are skillful in mak-
ing and manipulating visual representations, they prefer visual
stimuli. The use of visual stimuli through analogy is seen as a
powerful strategy for designers to generate creative concepts. Jin
and Benami indicated that the shapes and structures of a design
artifact might be more stimulating than the functions (Jin and
Benami, 2010). Goldschmidt et al. showed that designers sur-
rounded by visual stimuli could produce more ideas with a high
level of creativity (Goldschmidt and Smolkov, 2006). Linsey
et al. showed that designers often prefer visual representations
to textual descriptions for idea generation, and photographs are
growing in popularity due to easy retrieval from the Internet
(Linsey et al., 2011; Atilola et al., 2016). Du and MacDonald indi-
cated that designers should be presented experimental product
information as visual features that can be more easily recognized
and recalled than text (Du and MacDonald, 2015). Goucher-
Lambert et al. expanded upon why visual analogies can supple-
ment or replace other modes of analogical transfer in design on
the cognitive side (Goucher-Lambert et al., 2019; Goucher-
Lambert et al., 2020).

Sketch as one of the visual inspiration sources significantly
contributes to provoking idea generation. The display of sketches
can help designers discover potentially visual hints that could help
define a specific space in which a search for a creative concept is
productive (Shah et al., 2001). McKoy et al. showed that novice
designers could generate higher quality and more novel design
concepts when presented with sketches (McKoy et al., 2001).
Goel indicated that a sketch could be transformed into another
visually related sketch but distinct from its previous sketch
(Goel, 1995). Yang et al. suggested that the designer should create
a drawing to elicit information from the user that will be useful in
driving the design forward (Yang, 2009; Macomber and Yang,
2011). The power of sketches to promote visual analogy has
been recognized by many researchers. The sketch is an ideal
source to serve as a visual stimulus. However, few computational
tools have been proposed to search and retrieve visual analogies
from sketches effectively.

Sketch-based image retrieval

Researchers in the human–computer interaction and graphics
communities have developed many sketch-based interactive
tools to enable intuitive and rich user experiences, such as sketch-
based image retrieval (SBIR). The goal of SBIR is to allow users to
draw visual content and then find the most relevant examples in
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large image databases. As keyword-based queries can become
cumbersome when representing complex visual appearances,
Sketch-based queries can be a complement to depicting the
shape of an object (Chen et al., 2009; Eitz et al., 2010; Hu et al.,
2010; Cao et al., 2013; Yu et al., 2016).

Recent neuroscience work suggests that shape ambiguity can
cause the human brain to recognize and reinterpret different
objects from the same sketch (Walther et al., 2011). Shape ambi-
guity can be regarded as shape similarity in this case, as separate
objects can be abstracted into a common representation. An effec-
tive SBIR system should accurately retrieve relevant images in the
same category as the query sketch. However, in this paper, we
argue that SBIR needs to go beyond category recognition in engi-
neering design. If designers want to search for images from a par-
ticular category, then keyword-based image search already gives
them an efficient way to find vast amounts of relevant images.
Designers often explore ideas in fields different from their original
domain area, for example, designers of concept cars consider the
trends in boat design. This process is highly subjective and per-
sonal. Hence, how to retrieve images from multiple categories
based on visual similarity becomes a critical problem in our
research.

There have been significant advancements in deep neural net-
work models to learn a common and general feature space for
sketches. QuickDraw is a massive dataset of human-drawn
sketches obtained from an online game called Quick, Draw!.
Sketch-rnn is an unsupervised learning model based on the
Variational AutoEncoder (VAE) framework for extracting shape
patterns from the sketches in QuickDraw database and generating
similar sketches conditioned on learned shape features (Kingma
and Welling, 2013; Ha and Eck, 2017). As a modification of
sketch-rnn, Sketch-pix2seq is proposed to present shape features
of multi-category objects in a latent space (Chen et al., 2017).
Recently, the authors have introduced dc-sketch-pix2seq which
can reveal shape features for multiple categories of sketches and
cluster sketches simultaneously (Zhang and Jin, 2020). This
model has better performance for discovering visual similarities
between sketch categories. In this paper, our dc-sketch-pix2seq
is applied to learn a latent space that can represent the shape fea-
tures of sketches. In the latent space, the visual similarity between
different sketch categories can be quantified for measuring the
analogical distance.

In summary, a rich body of research on computational
methods has yet to be integrated into the extensive work on visual
analogy. In this paper, we aim to fill the gap by developing a com-
putational framework to search and retrieve visual stimuli from a
comprehensive sketch database to support visual analogy.

Visual stimuli search and retrieval framework

A visual stimuli search and retrieval framework is proposed.
Figure 1 shows the entire process, which consists of two main
flows. The grey box includes the functions of the visual stimuli
search and retrieval tool. The data-enabled visual analogy discov-
ery flow along the white hollow arrows represents the processes of
converting the design materials from visual stimuli sources to
visual analogy knowledge. The visual stimuli search and retrieval
flow along the solid blue arrows represents the processes of
searching and retrieving visual analogies based on the visual anal-
ogy database when a designer needs to explore more opportu-
nities and inspirations to avoid design fixation. There are three
stages in the framework; each stage is explained as follows.

In stage 1, the previous design materials such as sketches, CAD
drawings, photographs, and line drawings in the open-source
datasets are collected and converted into images. The primary
purpose of the proposed computational framework is to learn
visual similarities between these images and apply the learned
visual knowledge to discover visual analogies by proving a
query image. Before learning visual similarities, the shape feature
representations of the input images need to be extracted. This
process can be done by compressing high-dimensional images
to a latent space with much smaller dimensions but can represent
the feature information of the inputs. In the latent space, all
images from the data sources are represented by their shape fea-
tures. All input images have no shape labels. Clustering is applied
to group images in the latent space based on their shape features
to detect the visual similarity of the images. After stage 1, the
coordinates of all images in the latent space are determined,
and the group of each image can be assigned. The detail of this
step is explained in the section “Deep clustering encoder for
extracting shape representations”.

In stage 2, given the coordinates of all the source images in
the latent space, we can measure the distance between the two
groups to decide the visual similarity magnitude. Long-distance
means a lower level of visual similarity between the two groups.
Besides, some special images can also be applied to measure the
visual similarity between the two groups. For example, in
Figure 1, we can see group 1 and group 2 share some visually
similar images. These special images are classified under different
conditions, which is illustrated in the section “Sketch classifica-
tions”. If two groups share more special images, it means that
two groups have larger overlaps. Therefore, the visual similarity
between the two groups can also be decided by measuring their
overlapping magnitude. A quantification method is proposed to
calculate visual similarity based on overlap magnitude, explained
in the section “Top clustering detection based visual similarity
measurement”.

In stage 3, a designer wants to find visual stimuli with similar
shapes as the object to be designed. The visual search and retrieval
tool can convert the designer’s initial sketches to low dimension
representations. These representations are queries to the visual
analogy database to search for visually similar images and the cor-
responding category names. The clusters of all images in the
visual analogy dataset are also displayed for the designer to visua-
lize their visual relationship. Designers can take the retrieved
images and category information as visual cues to promote
their visual thinking and then connect them to relevant but unre-
vealed design knowledge in their minds. They can take advantage
of the retrieved category names to search for more interesting
images in their mind, Google Image, or other databases. The
visual relationship graph can provide designers with a map to
explore the visual similarity between different groups.

Methodology

Technical abstraction of visual stimuli search and retrieval
framework

The main idea of our computational framework is to search and
retrieve sketches generated by humans as creative source materials
and stimulate designers to create potentially more innovative con-
cepts driven by visual analogy. To realize this, we propose steps
for building the computational framework, which is shown in
Figure 2. It consists of three major steps, including: (1) pretrain
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Fig. 1. Visual stimuli search and retrieval framework.

Fig. 2. Steps for building the visual stimuli search and retrieval framework.
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the dc-sketch-pix2seq model, (2) quantify visual similarities, and
(3) search and retrieve relevant sketches.

In the first step, the training dataset of the dc-sketch-pix2seq
model contains sketches with different categories from
Quickdraw. The model can learn the weights of the encoder
and decoder and a latent space in which the shape features of
the training sketches can be captured and represented. After
acquiring the low-dimensional representations (latent vectors)
for the training sketches, the deep clustering layer can learn a clus-
tering space in which each latent vector is clustered using a soft
clustering method to generate probability distribution. The distri-
bution can be used to determine which one or more clusters each
latent vector belongs to.

In the second step, the TCD method is proposed to measure
how many clusters one sketch may belong to quantitatively.
Based on the results of TCD, sketches in each category can be
classified into four different types: Native (N ); Departed (D);
Native-Overlap (NO); and Departed-Overlap (DO). The classified
sketches can be saved in four databases with indexes. A N-sketch
is useful to represent the shape of its category. A D-sketch,
NO-sketch, or DO-sketch can be used to measure the visual simi-
larity between the given category and other categories. Given the
classification result in a given category, different weights are
assigned to different types of sketches. By accumulating the
weights, we can quantify the similarity magnitude and rank
other categories in descending order. The rank can tell the most
similar or least similar categories to the given category. Finally,
calculate the visual similarity rank for each category and save
the ranks in a database named vs.

In the third step, a designer draws a sketch that reflects the
rough idea without details. The sketch is the input for the encoder
of dc-sketch-pix2seq, which copies the weights from the learned
encoder in step 1. The input can be mapped to the learned latent
space to produce a latent vector that catches the shape features. In
the latent space, the k-nearest neighbor algorithm is applied to
find the nearest k latent vectors of the input sketch. The k latent
vectors are from the training sketches, and their category labels
are known. The input sketch will be labeled according to the
most frequent label of these k latent vectors. Given the category
label of the input sketch, we can retrieve the same category
sketches from N, D, NO, and DO database; or retrieve vs data-
base to find out categories with high and low similarity, and
then retrieve sketches from N, D, NO, and DO database of
other categories.

Deep clustering encoder for extracting shape representations

A shape representation extraction approach is taken to learn
about the low-dimensional latent feature space of the given sketch
datasets. More specifically, it is desired that a generative model can
be trained that can discover embedded shape patterns of different
sketch categories in the latent feature space without supervised
information (e.g., category labels). Among various deep generative
models, the variational autoencoder (VAE) is a widely used tech-
nique due to its good performance in learning a smooth latent
representation of the input images.

Ha and Eck (2017) proposed a sequence-to-sequence VAE for
generating sketch drawings for completing a user’s stroke-based
drawing sequence of common objects. In this model, the stroke-
based sketch drawings are captured as a recurrent neural network
(RNN) that can carry out conditional and unconditional sketch
generation. Due to its stroke-based modeling approach, however,

it has a key limitation, which is the insufficient quality of learning
latent representations of sketches from multiple categories. The
limitation made it inadequate to learn visual relationships between
multiple categories.

To overcome the limitation of learning from single category
sketches, Chen et al. (2017) replaced the RNN layers with CNN
layers to deal with pixel-based sketches (i.e., images). This change
also removed the limitation of single-category sketch drawings
and made it possible for the CNN to learn from sketches of multi-
ple categories and generate a wide variety of sketches based on the
user’s input. Since this paper considers visual analogies from mul-
tiple categories, it is important that our generative model learns
from sketches of multiple categories. The deep learning-based
sketch generative model, called the dc-sketch-pix2seq model, is
defined as follows.

Figure 3 shows the model structure of dc-sketch-pix2seq.
Before inputting into the convolutional neural network, a sketch
is filtered by a 3 × 3 matrix on the bottom left to extract salient
shape features. The configurations of convolutional layers are
expressed as h × w@d/s, where h, w, d, and s represent height,
width, depth, and stride, respectively. The type of activate func-
tion is above each convolutional layer. The last convolutional
layer outputs a one-dimensional vector, which is subsequently
fed into two separate, fully connected layers. μ and σ are the
mean and standard deviation of the posterior distribution,
which is learned by the encoder, where z = μ + σ ⋅ ε is the latent
vector and x is the input image. ε is a Gaussian noise. z is an input
of the recurrent neural network defined in the paper (Ha and Eck,
2017), which is the decoder. The goal of the decoder is to recon-
struct the output, which is almost identical to the input. A clus-
tering layer is concatenated to the latent space to cluster
sketches during the training of the model.

The input of dc-sketch-pix2seq is a set of n sketches
x = {xi [ X}ni=1. X is the data space. The encoder compresses x
into n latent vector z = {zi [ Z}ni=1. Z is the latent space. The
dimensionality of Z is typically much smaller than X. The decoder
samples n sketches x′ = {x′i [ X}ni=1 conditional on given latent
vector z. The reconstruction loss of the dc-sketch-pix2seq model is:

Lr = Eqf(z|x)[log pu(x
′|z)], (1)

where q( ⋅ ) denotes the encoder and p( ⋅ ) denotes the decoder.
ϕ and θ are the parameters to be trained in the encoder and deco-
der, respectively. The parameters are typically the weights and
biases of the neural networks. Eqf(z|x)(·) ensures the similarity
between the generated strokes and the strokes within the sketches
in the training set.

The clustering layer clusters all latent vectors in the latent
space Z by simultaneously learning a set of K cluster centers
{mj [ Z}Kj=1 and mapping each latent vector zi into a soft label
qi by student’s t-distribution (Maaten and Hinton, 2008). qi =
[qi1, …, qij, …qik] is a soft label which quantifies the similarity
between zi and cluster center μj.

qij =
(1+ zi − m2

j )
−1

∑
j (1+ zi − m2

j )
−1 , (2)

where qij is the jth entry of qi, representing the probability of zi
belonging to cluster j.

The clustering loss Lc is defined as a KL divergence between
the distribution of soft labels Q measured by student’s
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t-distribution and the predefined target distribution P derived
from Q. The clustering loss is defined as

Lc = DKL(PQ) =
∑
i

∑
j

pij log
pij
qij

, (3)

where the target distribution P is defined as

pij =
q2ij/

∑
i qij∑

j q2ij/
∑

i qij
( ) . (4)

Raising qij to the second power and then dividing by the fre-
quency per cluster allows the target distribution P to improve
cluster purity and stress on confident labels while normalizing
the contribution of each centroid on the clustering loss to prevent
large clusters from distorting the latent space. Therefore, data
points with high confidence are used as supervision, and points
in each cluster distribute more densely, where DKL measures the
nonsymmetric difference between two probability distributions,
P, and Q are defined by (4) and (2), and match Q to P.

In dc-sketch-pix2seq, the encoder and decoder are used to
learn representations in an unsupervised manner and the learned
latent space can preserve shape features in sketches. The cluster-
ing loss is responsible for manipulating the latent space in
order to cluster sketches based on visual similarity. The objective
of dc-sketch-pix2seq is

Lrc = Lr + tLc, (5)

where Lr is a reconstruction loss from (2) and Lc is a clustering
loss from (3). The coefficient τ is better to be less than 1 and
more than 0.

The training process of dc-sketch-pix2seq and the perfor-
mance comparison of dc-sketch-pix2seq with other two deep

learning models (Chen et al., 2017; Ha and Eck, 2017) are illus-
trated in our previous work (Zhang and Jin, 2020).

Sketch classifications

The output of the clustering layer is the probability distribution of
each latent vector zi into each soft clustering label j. By clustering
space, we mean any K-dimensional vector ρ∈ℝK that represents
a probability distribution of clustering, ρ = [ p(c1|ρ), …, p(ck|ρ),
…, p(cK|ρ)], ck(1≤ k≤ K) represents the jth cluster. p(ck|ρ)
means the probability of data ρ belonging to kth cluster.

In dc-sketch-pix2seq, the inputs are sketches belonging to dif-
ferent categories, x = [x11, …, xij, …, xst], xij means the jth sketch
belonging to ith category, s is the number of categories, t is the
number of sketches in sth category. In the latent space, latent vec-
tors are z = [z11, …, zij, …, zst]. In the clustering space, the prob-
ability distributions of latent vectors can be represented by a super
matrix ℚ, ℚ = [Q1, Q2, …, Qs]. For matrix Qi (1≤ i≤ s), it
includes n sketches. Qi = [qi1, …, qij, …, qin], qij(1≤ j≤ n) repre-
sents the probability distribution of a latent vector zij, that is qij =
[ p(c1|zij), …, p(ck|zij), …, p(cK|zij)], where P(ck|zij) means the
probability of zij belonging to cluster ck,

∑K
1 P(ck|zij) = 1. Soft

clustering produces multi-cluster predictions for xij, while the
ground truth category of xij is single labeled. For example, in a
three-dimensional clustering space, assuming that all sketches
also come from three categories, ω1, ω2, ω3. When the ground
truth category of xij is ωi, the probability distribution of the cor-
responding latent vector zij might be qij = [0.8, 0.1, 0.1]. The clus-
ter prediction of zij is c1 which has the maximum probability.
However, if qij = [0.46, 0.45, 0.09], could we still say zij should
be clustered to c1 rather than both c1 and c2? Therefore, sketch
xij might belong to more than one cluster. One sketch can belong
to multiple clusters because it includes some shape features shared
by various categories. It means these special sketches in the latent
space can be helpful to calculate the visual similarity between dif-
ferent categories.

Fig. 3. Structure of deep clustering sketch-pix2seq.
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In Figure 4, circles “o” indicate input sketches and crosses “×”
represent cluster centroids in the latent space. Different categories
are rendered with different colors. Solid lines indicate decision
boundaries that are perpendicular bisectors of adjacent cluster
centers. There are some sketches from the categories ω1, ω2, ω3.
The cluster label of each category is determined by which cluster
prediction most sketches belong. We call it the ground truth clus-
ter. Supposed most sketches from the category ω1 are predicted to
belong to cluster c1. Then, the ground truth cluster for category ω1

is c1. We assume sketches in the same category should have sim-
ilar shapes and can be distinguished from other categories.
Therefore, most sketches from the same category can be grouped
in the same cluster based on shape similarity. The ground truth
cluster is not assigned a priori but based on the location of
most sketches from a category in the latent space. Each input
sketch xij can be classified into four possible types, including:

• Native – only one clustering prediction that is the same as the
ground truth cluster.

• Departed – only one clustering prediction that is not the same
as the ground truth cluster.

• Native-Overlap (n) – multi-clustering predications that include
the ground truth cluster; the overlap number n should be no
more than the number of clusters.

• Departed-Overlap (n) – multi-clustering predictions that do not
include the ground truth cluster; the overlap number n should
be no more than the number of clusters.

In Figure 4, for category ω1, all orange points belonging to
cluster c1 are native points; the orange points belonging to cluster
c2 or c3 are departed points; the orange point located in the line
between cluster c1 and c2 areas is a native-overlap point with
two overlaps; the orange point located in the line between cluster
c1, c2, and c3 areas is a native-overlap point with three overlaps;
the orange point located in the line between cluster c2 and c3
areas is a departed-overlap point with two overlaps.

Based on shape similarity, Native (N) points are representa-
tives of a category. Native-Overlap (NO) points share similar
shape features with other categories. Departed (D) points are
“accidentally” clustered into another single category. It means
the shapes of these sketches are more similar to another category.

Departed-Overlap (DO) points are “accidentally” clustered into
multiple other categories. It means the shapes of these sketches
are more similar to other multiple categories. Possible reasons
for why D and DO points appear as users of QuickDraw applica-
tion are given a keyword to draw a sketch; they draw salient shape
features of an object to represent the category. Some participants’
visual understanding of the keyword may be different from most
participants,’ or they did not draw the sketch in the same shape
pattern as most participants did.

Top clustering detection-based visual similarity measurement

In Figure 4, we can see points from the same category can be
distributed in different clusters. It is not appropriate to use dis-
tances between cluster centroids to measure the similarity
between different categories. For example, the centroid (orange)
of the category ω1 has almost the same distance to the centroid
(blue) of the category ω2 and the centroid (green) of category
ω3. Therefore, category ω2 and category ω3 have the same similar-
ity with category ω1 based on Euclidean distance. However, we
can tell category ω1 is more similar to category ω3 than category
ω2 based on the overlap magnitude, as more sharing points exist
in the overlap regions between category ω1 and category ω2. In
this paper, we propose a novel method called top clustering detec-
tion (TCD) which can determine the most suitable number of top
clustering for a sketch by finding the minimum Euclidean dis-
tance between the sketch with K ideal centers. K is the number
of clusters. Generally, the ideal centers from 1-clustering to
K-clustering are defined as follows.

l1
l2

..

.

lK

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ =

1 0 0 · · · 0
1 1 0 · · · 0

..

. ..
. ..

. · · · ..
.

1 1 1 · · · 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

KK

. (6)

Based on the TCD method, each sketch will be assigned to one
or more than one clusters. Based on the assumption that sketches
coming from the same category share more shape features. There
is a high possibility that sketches in the same category will be
assigned to the same cluster. The ground truth cluster of a

Fig. 4. Different types of sketches in a latent space
including three clusters.
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category is determined by which cluster label has the largest num-
ber of the top 1-clustering sketches. According to the previous
section, we can classify sketches of each category into four types
of points. Based on the type of points, we define the corresponding
weights. According to the weights, we can calculate the similarity
magnitude between different categories. The procedure to classify
sketches into the category ωi and calculate the visual similarity
between category ωi with other categories is shown as follows:

Step 1: In a K-dimensional clustering space, the probability distri-
bution of a latent vector zij is

qij = [p(c1|zij), . . . , p(ck|zij), . . . , p(cK |zij)]. (7)

Step 2: Find the maximum probability in qij, then normalize qij.

�qij =
qij

max
k

qij
. (8)

Step 3: Sort �qij in descending order to obtain �qsij.
Step 4: Argsort �qij in descending order to obtain

�q′ij = [c′1, c′2, . . . , c′K ], where the topmost labels are more
likely to be the multiple clustering labels of the input data xij.

Step 5: Calculate the Euclidean distance between �qsij and lk (k = 1,
2, …, K), and the most possible number of clustering k′ij is
given by:

k′ij = argmin
k

�qsij − lk, (9)

where lk is the ideal cluster center of the topmost k clustering,
which is defined in (6).

Step 6: The clustering labels cij of xij is the first k′ elements of �q′ij,
namely cij = [c′1, c′2, . . . , c′k′ ]. If k′ = 1, xij is a top 1-cluster
point. If k′ > 1, xij is a multiple cluster point.

Step 7: Determine the ground truth cluster label of the category
ωi (i = 1, 2, …, s) based on the most assigned cluster label of
top 1-cluster points, assume it is ci.

Step 8: Classify all input points into four types and determine
weights. From step 6, assume all sketches in category ωi are
assigned by cluster label ci. if xij is a native point cij = [c′k]
(c′k = ci), then add xij to a native point set Ni; if xij is a departed
point cij = [c′k] (c′k = ci), define the weight w

ij
c′k as 1, then add

xij to a departed point set Di; If xij is a native-overlap (k′) point
cij = [c′1, c′2, . . . , c′k′ ]︸︷︷︸

k′

(ci is included), define the weight

wij
c′k (c

′
k = ci) as 1/n, then add xij to a native-overlap point set

NOi; If xij is a departed-overlap (k′) point
cij = [c′1, c′2, . . . , c′k′ ]︸︷︷︸

k′

(ci is not included), define the weight

wij

c
′
k

as 1/n, then add xij to a departed-overlap point set DOi.

Step 9: For all sketches in the category ωi, accumulate all weight
values of other clusters [c′1, c′2, . . . , c′K ]︸︷︷︸

K−1

(ci is not included).

The cluster with the largest weight summation has the highest
underlying shape similarity with cluster ci, whose correspond-
ing category is ωi.

Step 10: Determine visual similarity. The similarity is computed
by normalizing the weight summation by the largest number
among all weights.

Step 11: Rank other clusters based on the weights in descending
order to obtain visual similarity rank vsi.

The TCD-based visual similarity quantification algorithm is
shown as follows.

Algorithm 1 TCD-based visual similarity quantification

Input: Number of categories s; Number of sketches in each category t;
Soft cluster assignments
{qij = [p(c1|zij), . . . , p(ck |zij), . . . , p(cK |zij )]}s,ti=1,j=1

Output: Sketch classification {Ni}
s
i=1, {Di}

s
i=1, {NOi}

s
i=1, and {DOi}

s
i=1;

Visual similarity rank {vsi}
s
i=1

1 for i ∈ {1, 2, …, s} do

2 for j ∈ {1, 2, …, t} do

3 normalize qij to obtain �qij using (8)

4 sort �qij in a descending order to obtain �qsij

5 argsort �qij in a descending order to obtain Åq
′
ij

6 find most possible number of clustering k′ij of �qsij using (9)

7 determine soft clustering labels cij of xij

8 end for

9 determine the cluster label ci of category ωi

10 classify xij into Ni, Di, NOi, or DOi and determine weights wij
c′k

11 for c′k [ {c′1, c′2, . . . , c′K } do

12 if c′k = ci then

13 wsum
c′k = ∑

j
wij

c′k

14 end if

15 end for

16 nomalize and rank wsum
c′k in descending order to obtain vsi

17 end for

For example, in a latent space including three clusters, firstly,
assuming the latent vector zij of the sketch xij from category ω1

has a probability distribution qij = [0.5, 0.4, 0.1]. After normalizing
qij by the maximum probability of 0.5, we can have
�qij = [1, 0.8, 0.2]. Secondly, �qij is sorted in a descending order
to generate �qsij = [1, 0.8, 0.2]. The cluster rank is
�q′ij = [1, 2, 3]. Thirdly, the ideal centers for top 1-clustering,
2-clustering, and 3-clustering are l1 = [1, 0, 0], l2 = [1, 1, 0], and
l3 = [1, 1, 1]. The sketch xij will be assigned to the top k-clustering
if lk (k = 1, 2, or 3) is the nearest ideal center for the sketch. After
calculation, the Euclidean distance between �qsij with l1, l2, and l3
are 0.82, 0.28, and 0.82, respectively. The possible number of clus-
tering k′ij is 2. It means the sketch xij will be assigned to the top
2-clustering of �q′ij. The clustering labels cij = [1, 2]. xij is a multiple
cluster point as it belongs to two clusters. Assume most top
1-clustering sketches in the category ω1 are assigned to cluster
c1 and one category can be assigned to a unique cluster.
Therefore, the ground truth cluster label of the category ωi is 1.
As cij includes cluster label 1, the type of xij is native-overlap (2).
xij could be a point between category ω1 and ω2 in Figure 4. xij
can be added to native-overlap point set NOi and the weight
wij
c2 = 0.5, which means the simialrity between cluster c1 and clus-

ter c2 will be accumulated by 0.5 because of xij. For all skecthes in
category ω1, we can accumulate all weight values and find the
similarity between category ω1 with other categories. Take another
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example, there are only seven points in the category ω1. In a latent
space including three clusters, the weights for these seven classi-
fied sketches in category ω1 are shown in Table 1.

From the weight column, we can sum the weights of clusters c2
and c3, which are wsum

c2 = 7/3, wsum
c3 = 7/3. The higher weight

summation means higher shape similarity with cluster c1 which
represents category ω1. In this case, clusters c2 and c3 have same
similarity with cluster c1.

Experimental evaluation of sketch retrieval

In order to study the performance of visual stimuli search and
retrieval based on the visual similarity of the proposed computa-
tional methods, we conduct several experiments on one dataset,
which includes 10 categories from the Quickdraw dataset. The
goals are to evaluate the following properties of the method for
visual analogy support: (1) visualization effectiveness – how effec-
tive the potential stimuli can be visually presented to designers,
(2) similarity measure quality – how the top clustering detection
method yields better similarity measures comparing with tradi-
tional Euclidean distance methods, and (3) retrieval performance
– the quality and efficiency of the sketch retrieval process.

Dataset and settings

The sketch data categories used for evaluation are television,
canoe, drill, umbrella, car, floor lamp, guitar, windmill, wine bot-
tle, and flower. The 75 K sketches for each category are divided

into training, validation, and testing sets with 70, 2.5, and 2.5 K,
respectively. The raw sketches from the Quickdraw dataset are
converted to monochrome png files of size 48 × 48, which are
used as the input data for the deep neural network model. The
batch size is 100 for all datasets. The maximum number of epochs
is set to 50. In each iteration, we train the encoder for one epoch
using an Adam optimizer with a learning rate λ = 0.001, β1 = 0.9,
β2 = 0.999. We implement the model end-to-end based on Python
and Keras. The dimension of the latent space in the models is 128,
which is the same as those used in Chen et al. (2017) and Ha and
Eck (2017). For training the dc-sketch-pix2seq model, the coeffi-
cient τ of clustering loss in (5) is chosen as 0.05, which is deter-
mined by a grid search in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0} to
evaluate different τ settings with unsupervised clustering accuracy
(ACC). The ACC is defined as the best match between ground
truth y and predicted cluster labels c:

ACC(y, c) = max
m[M

∑n
i=1 1{yi = m(ci)}

n
, (10)

where n is the total number of samples, yi is the ground truth
label, ci is the predicted cluster label of the example xi obtained
by the model, and M is the set of all possible one-to-one map-
pings between predicted cluster labels to ground truth cluster.
The best cluster assignment can be efficiently computed by the
Hungarian algorithm (Kuhn, 1955). In Figure 5, when τ = 0.05,
the dc-sketch-pix2seq model has the best clustering performance
under the given value settings.

Table 1. Example of weights for four types points of category ω1 in a latent space including three clusters

Data No. Category Ground truth cluster Top k-clustering Type Weight

1 ω1 c1 c1 Native w11
c1 = 1

2 ω1 c1 c2 Departed w12
c2 = 1

3 ω1 c1 c3 Departed w13
c3 = 1

4 ω1 c1 c2, c3 Departed-Overlap (2) w14
c2 = 1

2 , w
14
c3 = 1

2

5 ω1 c1 c1, c3 Native-Overlap (2) w15
c1 = 1

2 , w15
c3 = 1

2

6 ω1 c1 c1, c2 Native-Overlap (2) w16
c1 = 1

2 , w16
c2 = 1

2

7 ω1 c1 c1, c2, c3 Native-Overlap (3) w17
c1 = 1

3 , w17
c2 = 1

3 , w
17
c3 = 1

3

Fig. 5. ACC values under different τ value settings.
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A visualization of the learned features

The dimensionality reduction technique t-SNE (t-Distributed
Stochastic Neighbor Embedding) (Maaten and Hinton, 2008) is
applied to present a visualization of the learned latent space of
10 categories by projecting 128 dimensions to 2 dimensions. As
shown in Figure 6, different color dots denote the sketches
from different categories. Sketches in the same category are clus-
tered in close proximity. The illustration in Figure 6 affirms our
assumption that sketches in the same group have similar shape
features and they are more likely clustered in the same group.

The overlap regions between different categories make it pos-
sible to find out the sharing shape features. In Figure 7, each cat-
egory has 2,500 sketches. Most sketches of each category are
native sketches with 0 overlaps with other categories, except for
the windmill in the center of the latent space in Figure 6. This
means windmill can have more “interactions” with other cate-
gories. For most categories, the numbers of sketches having over-
laps with more than three categories are all below 250%, 10% of
the total sketches in each category. In the section “Visual similar-
ity quantification and rank”, we consider the overlap within at

Fig. 7. Sketch number distributions on different over-
lap numbers for 10 categories.

Fig. 6. Visualization of the latent space of 10 categories and different types of sketches.
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most n (1≤ n≤9) categories to calculate the weights in the top
clustering detection-based method. However, in Figure 6, we
only consider the overlap within at most three categories to
show that sketches in different regions from the same category
can have slightly different shapes. Take the “television” category
as an example. As shown in Figure 6, t1 is a native point. It
means t1 can represent the most frequently drawn television
sketch by users. It includes two rectangles to present the monitor
and two intersected lines to present an antenna. t2, t3, and t4 are
native-overlap (2) points. t2 is in the overlap region of car and tel-
evision. It has a long thin rectangle which is like the body of a car.
t3 is in the overlap region of windmill and television. It has an
antenna that can be regarded as blades and a base stand which
can be regarded as the body of a windmill. t4 is in the overlap
region of wine bottle and television. It has a long tall shape
which is like the appearance of a wine bottle. t5 is a native-overlap
(3) point. It is in the overlap region of car, television, and wind-
mill. It has a base stand and a long thin rectangle. t6 is a departed
point. It is “mistakenly” clustered in the car category and not
overlapped with other categories. It has two circles which are
like two wheels and a long thin rectangle that is like the body
of a car. t6 has more shape features of a car than t2. t7 is a
departed-overlap (2) point. It is “mistakenly” clustered in the
car category and overlapped with canoe category. For t6 and t7,
it is not so obvious to see they belong to television sketches.

Drill and guitar are separated into several subgroups and
located in different areas in the latent space. After retrieving
sketches, we can find, for drill, one major cluster can represent
handheld drill, another can represent ground drill; For guitar,
one major cluster is acoustic, and another major is electric.
Other clusters from these two categories have multiple orienta-
tions and slight shape modifications. This shows rotation and

shape change can affect the results of clustering. Since windmills
and flowers share too many shape features, they are merged into
each other. In the clockwise or anti-clockwise direction, we can
see the shape is gradually changing across different categories.
The localization of sketch categories in the latent space suggests
that the learned features are very useful for both within-category
and cross-category sketch retrievals. Categories with higher visual
similarity have shorter distances. The visual similarity should be
quantified before we can effectively retrieve sketches.

Visual similarity quantification and rank

In the latent space, when the categories are densely clustered, such
as canoe and car, it is easy to use Euclidean distance to measure
the similarity between them. However, when categories are mixed
together, such as windmill and flower, or separated as several sub-
groups, such as drill and guitar, Euclidean distance may not be
accurate enough. In this section, we compare the proposed top
clustering detection (TCD) method with the Euclidean distance-
based method to measure the visual similarity between different
categories. Let sij present the similarity between category i and j
based on Euclidean distance, which can be computed as follows
(Karimi et al., 2019):

sij = 1− dij
max

j
dij

, (11)

where dij is the Euclidean distance between category i and j, and
max

j
dij is the longest Euclidean distance from category i to other

categories.
Figure 8 visualizes the similarity matrix for 10 categories; the

size of a square means the value of similarity. A larger square

Fig. 8. Similarity matrix based on Euclidean distance.
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means a higher similarity value. For each row, it represents the
similarity magnitude of other categories to the row category. It
is not easy to find the largest square immediately. It means simi-
larity magnitude is not so differentiable for each category as the
several distances are so close. For categories that are separated
into some subgroups, such as drill and guitar, using Euclidean
distance may not be accurate. Drill is more similar to car than
umbrella as its centroid is closer to that of the cars. After checking
the sketches, umbrella should be more visually similar to drill.
Many points of guitar are merged into the wine bottle cluster.
However, the similarity value of guitar to wine bottle is low as
the centroid distance between them is large.

Figure 9 visualizes the similarity between different categories
based on our top clustering detection method with different over-
lap values. Overlap value means the largest number of categories
one category can have overlaps with when calculating similarity
based on the TCD method. For example, if the overlap value
equals 1, it means one category is inclined to build a similarity
relationship with the nearest one category in the latent space. In
Figure 9, when the overlap value becomes larger, it is easier to
see that one category has more chance to build similarity relation-
ships with more categories. For example, when the overlap value
is 1, we can only find at most one category that is similar to it for
each category. When the overlap value is 3 or 8, we can easily find
several categories that are similar to it for each category. The rea-
son is when using the TCD method to calculate the similarity val-
ues between one category to other categories, the sketches in the
overlap regions with more categories are counted when the over-
lap value becomes larger. How to choose the optimal overlap
value is a tradeoff. We need to consider how many visually similar
or dissimilar categories should be retrieved and present to the
users. If setting the overlap value to a small number, users may
miss some important visual similarity information. If setting the
overlap value to a large number, the user may be provided too
much visual similarity information to filter some significant ones.

In Figure 9, the categories are arranged in the same order as
shown in Figure 8 to aid comparison. From Figure 9, it is easier
to figure out the visual similarity relationship between different
categories than in Figure 8, as every point in the latent space con-
tributes to computing the similarity rather than measuring the
distance of the centroids. Take Figure 9(b) as an example to com-
pare with Figure 8. For dense clusters with few overlapped regions
with other categories, such as canoe, car, television, floor lamp,
and umbrella, two methods have similar rankings for each cate-
gory. However, for categories that are separated in the latent

space, such as drill and guitar, the top clustering detection-based
method is more reasonable for the similarity ranking. The dis-
tance between drill and windmill is shorter than drill and guitar.
Guitar is ranked higher than windmill, which is more reasonable
as more points of guitar mixed with drill. There is one subgroup
of guitar which is separated away from other subgroups and
merges with wine bottle. The centroid of guitar cannot accurately
reflect the locations of some sketches in the latent space. Drill has
the shortest Euclidean distance category from guitar. However,
wine bottle has the largest overlapped region with it. Based on
our method, wine bottle is the most similar category to guitar.
Canoe has the longest distance from guitar. However, it has the
second-largest overlapped region with guitar. Therefore, it is the
second similar category in our method and last similar category
based on Euclidean distance. Also, the most similar category to
wine bottle is guitar rather than the shortest distance category
floor lamp. Finally, for each category, the visual similarity rank
can be obtained and stores in a database.

Within-category and cross-category retrieval

The retrieval performance of our proposed method is evaluated
by top-k retrieval accuracy with majority hits. The k represents
the number of nearest neighbors of the query in the latent
space. The majority hits mean more than half of k nearest neigh-
bors having exactly the same category label as the query. In the
experiment for evaluating the retrieval performance, the label of
a query is known beforehand. The criteria to evaluate whether a
model has a good retrieval performance is the retrieval accuracy
rate which equals the number of successful major hits over the
total number of the sample data. The retrieval accuracy rate can
reflect the shape feature extraction and clustering performance
of the model. In Figure 10(a), the query label is blue, and the
major label of the 5 nearest neighbors is also blue. Therefore, it
is a successful retrieval with major hits. In Figure 10(b), the
query label is blue, and the major label of the 5 nearest neighbors
is also green. Therefore, it is an unsuccessful retrieval with major
hits, meaning that this query is more visually similar to the green
cluster.

We randomly sampled 10 K sketches from each category as
queries. These sketches are from the Quickdraw dataset and are
not used in training our model. The top-k retrieval accuracy at
different k with different hits is plotted in Figure 11. The retrieval
accuracy rate can reflect the density of each category in the latent
space. For example, as car is the densest category in Figure 6, it

Fig. 9. Similarity matrix based on TCD with different overlap values.
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has the highest top-k retrieval accuracy rate with different k val-
ues. As windmill is the loosest category in Figure 6, it has the low-
est top-k retrieval accuracy rate with different k values. In general,
the top-5 retrieval accuracy rate is nearly the highest for all 10
categories. Therefore, we choose 5 nearest neighbors of the
query and determine which category the query is most visually
similar to.

Our generated visual analogy database quantifies the visual
similarity between different sketch categories and stores these
visual relationships. In the visual stimuli searching and retrieving
scenario, if designers would like to find short-distance and long-
distance visual stimuli in our system, firstly, our systems need to
know which category has the highest visual similarity with the
query. Therefore, the major category label of the top 5 nearest
neighbors of the query is determined. In this category, designers
can most likely find short-distance visual analogies (e.g., images
and category information). We call the major category label the
assigned label. Also, based on the quantified visual relationships,
our system can easily find long-distance visual analogies (e.g.,
images and category information) from several categories having
low similarity with the assigned category. Ten retrieval experi-
ments are done before deciding on the appropriately assigned
label for the query. In Table 2, we show some examples of

assigning labels to queries based on the top-5 retrievals. We
choose five categories and list them in rows based on the top-5
retrieval accuracy in descending order. From Table 2, we can
see categories with high top-5 retrieval accuracies, such as car,
wine bottle, and television, have a higher possibility of being
assigned correct (ground truth) labels than categories with low
top-5 retrieval accuracy. The categories with higher retrieval accu-
racy imply they are more distinguishable from other categories.

Based on the assigned categories, we can retrieve sketches from
within-category and cross-category, as shown in Table 3. For each
category, all the points are classified into four different datasets.
Given the assigned category label from Table 2, we can retrieve
sketches from the four datasets of the assigned category and the
most or least similar category of the assigned category based on
the visual similarity rank. In Table 3, we randomly retrieve one
sketch for each dataset; within-category is the assigned category
of the query, and cross-category is the category that has the high-
est/lowest similarity with the assigned category. In Table 3, we
only show sketches from cross-categories with the highest
similarity.

Finally, we check whether our model can retrieve similar
sketches even if the categories of queries are not in the training
dataset. These categories are called unseen categories. Here, we

Fig. 10. The successful and unsuccessful retrieval with 5 nearest neighbors in the latent space.

Fig. 11. The top-k retrieval accuracy with majority hits of each category.
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randomly select five unseen categories: a fan, screwdriver, para-
chute, radio, and roller skates. For each of them, we visualize
the top-5 retrievals that are most similar to the unseen categories,
as shown in Table 4. We can see that the top-5 retrievals are
visually correlated with the sketches from unseen categories,
and the generalization ability of our model can be very intuitive
and explainable.

Discussion

Visual exploration

In Figure 6, we construct a 2D visual presentation for mapping
2500 sketches of each category in the latent space. Most sketches
from the same category are close to each other. It means
dc-sketch-pix2seq can capture shape features of 10 categories
after training. Sketches can be retrieved based on our proposed
top clustering detection (TCD) based method. By visually brows-
ing the visual relationship graph, designers can explore the
Quickdraw dataset in the latent space that makes explicit how
data points are interconnected based on visual similarity.
Sketches in each category are classified into four types based on
the locations. Most sketches are not merged into other categories.

These sketches can be representatives as they can reflect the
unique and salient shapes of the category. The sketches around
the boundary of two or more categories or sketches located in
the “wrong” categories can be useful to measure similarity
between categories. These special sketches exist for two reasons:
(1) In the Quickdraw application, users draw sketches based on
the keywords of a category which can cause diverse visual under-
standing. For example, when given “guitar” as a keyword, users
may draw an electric or acoustic guitar with different orientations.
These variances make it possible to discover visual analogies from
other categories by our computational methods. (2) The sketches
are usually rough and ambiguous. One sketch can be interpreted
and represented in many ways. For example, if a sketch presents a
stand with some blades on top of it, it can be understood as a
flower or a windmill by our deep learning model. Therefore, visual
relationships between these two categories can be built. This
graph can aid designers in browsing or creating a visually chang-
ing path from one category to other categories, which can be help-
ful for visual imagination. The reason why we choose the
Quickdraw dataset is all images in Quickdraw are simple strokes.
It would be easier for our model to extract the relationships
between different strokes (black and white pixels) than shapes
in colorful images. If we would like to provide more meaningful

Table 2. Examples of assigned labels and top-5 retrievals for queries
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design inspirations, our model needs to consume more domain
(including geometric and semantic) knowledge. By doing this,
the model can be useful to deal with more realistic cases.

Visual similarity quantification

We compare our method with the Euclidean distance-based simi-
larity measurement. The Euclidean distance-based method can-
not differentiate similarity magnitude when the centroids of
categories are so close to each other. In Figure 4, we can see the
distances between the three centroids are very close. However,
the overlap region between orange and green points is larger
than the region between orange and blue points. Besides, as
users have a diverse visual understanding of the same object,
one category can be sketched in variant shapes. For example, “gui-
tar” is separated into several subgroups in Figure 6. The diversity
in shapes is important to build a visual relationship between dif-
ferent categories. However, this diversity can contribute to the
imprecise measurement of similarity when using the Euclidean
distance. Our proposed method measures similarity based on
the overlapping magnitude between categories, which is more
appropriate and accurate to handle the two aforementioned prob-
lems. The distance of analogy can be quantitatively measured
based on the overlap magnitude. More overlapped regions mean
more shape features shared between the categories in the latent
space, leading to shorter analogy distance and vice versa. One
potential flaw of the TCD method is it would mistakenly classify
many sketches into wrong types. For example, many native
sketches are wrongly classified into departed sketches. If this hap-
pens, the similarity matrix of the TCD method would be wrong.
One way to validate the results of the TCD method is to compare

them with the similarity matrix based on Euclidean distance. If
these two methods have similar results for each category, the simi-
larity measure between categories based on the TCD method is
solid. If not, it means the clustering performance of the proposed
dc-sketch-pix2seq model is not strong enough. We need to mod-
ify the structure of the model to make it stronger.

Sketch retrieval performance

The assigned category of the query is based on the top-k retrieval
results. Given the assigned category, our method can retrieve
sketches from the same category; Given the visual similarity mea-
sures, the most and least similar categories can be decided.
Sketches in these categories can be retrieved as cross-category
visual stimuli. Because of this cross-category retrieving capability,
our method can potentially help expand designers’ visual thinking
limits. The sketches from the most and least similar categories can
be regarded as short- and long-distance visual analogies. Besides,
we have found if a category has a low top-k retrieval accuracy,
visually similar sketches from other categories can be easily
retrieved. The reason is that this category has larger overlap
regions with other categories, or it has multiple subgroups con-
nected with other categories. Therefore, we can detect windmill
and car are the most possible and impossible categories to build
visual relationships with other categories, respectively. Fu et al.
have shown that a long-distance is not necessarily desirable for
ideation (Fu et al., 2013b). The long-distance here means the
stimuli are too far, and they then can become harmful to the
design process. “Near” and “far” when talking about the distance
of analogies often mean something different to each researcher
and to each individual study or discussion. In this paper, we do

Table 3. Within-category and cross-category retrieval based on the assigned labels of queries

Note: N means native points, D means departed points, NO (2) means native-overlap points within two categories, DO (2) means departed-overlap points within two categories.
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not explicitly quantify short- and long-distance. The sketches
from the most and least similar categories can be regarded as
short- and long-distance visual analogies. We have another
paper that discusses how to quantify short- and long-distance
analogy (Zhang and Jin, 2021). In that paper, we also have
some experiments to show how short- and long-distance analogy
can be found and related to the “sweet spot”, which was put for-
ward by Fu et al. (Fu et al., 2013b).

Conclusion

In this paper, we developed the dc-sketch-pix2seq model to learn
shape feature presentations and proposed a TCD-based method
to quantify visual similarities of the learned representations of
sketches. They work together and form a visual stimuli search
and retrieval framework, which provides external visual cues for
designers to potentially enhance their visual analogy capabilities.
In summary, the main contributions of this paper are:

1. A computational framework is proposed to automatically
search and retrieve sketches from various categories based on
quantified visual similarity, which has been lacking in the
area of design by visual analogy support. Currently, most
sketch-based image retrieval (SBIR) tools focus on accurately
retrieving relevant sketches which are in the same category

as the query sketch. The proposed dc-sketch-pix2seq model clus-
ters shape features during training the deep learning model,
which ensures retrieving sketches from the same or different cate-
gories following the query and enables visual exploration.

2. The performance of search and retrieval functions of our pro-
posed computational framework has been evaluated on a large
sketch dataset as design source materials, which stands for a
novel and meaningful exploration of visual data-enabled design
support. In the area of design by analogy, little research has been
done to allow exploration into large image datasets from differ-
ent domains, and our computationally evaluated model can be
utilized as a tool to search and retrieve more meaningful visual
analogies in human-based design by analogy studies.

In future work, we will have two main extensions. First, visual
similarity may not always indicate the presence of a visual anal-
ogy. For example, suppose users provide a query image of a
palm tree. In that case, they are probably more interested in
semantically similar images of other trees such as oaks and
maples than in images of spiders. But the images of spiders
may be more likely to cause design creativity. Therefore, if the
retrieved object is too semantically similar to the query image,
it may cause design fixation. If the retrieved object is too visually
similar to each other, it may cause irrelevant retrieval. For the
experiments in this paper, the sketch categories are the only

Table 4. Top-5 most similar sketches to the queries from unseen categories
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semantic connections. So, the semantically irrelevant retrievals
rarely happened. In our future work, we plan to enrich semantic
connections and combine the semantic similarity and the visual
similarity to retrieve more meaningful and inspirational stimuli
for visual analogy making based on large datasets. Second, the
proposed computational framework lacks human validation in
an engineering design scenario. Currently, there are no engineer-
ing design image datasets available for us to train our model and
test how this framework can take in sketches from designers and
search and retrieve visual stimuli (engineering designs) to inspire
designers to create more design concepts. However, the merit of
this research is we know we can follow this framework to search
and retrieve visually similar shapes from various domains given
the query based on a large sketch dataset. And some qualitative
and quantitative evaluations are done to test whether the frame-
work can be workable. If the engineering design image dataset
can be built in the future, we can directly implement this frame-
work. The long-term goal of our research is to develop a compu-
tational tool that allows designers to perform a visual or
shape-based search that can return relevant visual cues to help
designers’ analogy-making. Human validation is the next step.
The validation here refers that we need to recruit some students
and designers to (1) use or not use our tools and (2) use or not
use certain similarity metrics to search for visual stimuli and
track and compare whether they can finally generate some
novel designs through visual analogy. Such human–computer
interaction experiment results will inform us about the adequacies
of both the tool and the similarity metrics.
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