
Yunjian Qiu
Department of Aerospace and Mechanical

Engineering,
University of Southern California,

3650 McClintock Avenue, OHE 400,
Los Angeles, CA, 90089-1453

e-mail: yunjianq@usc.edu

Yan Jin1
Department of Aerospace and Mechanical

Engineering,
University of Southern California,

3650 McClintock Avenue, OHE 400,
Los Angeles, CA, 90089-1453

e-mail: yjin@usc.edu

Engineering Document
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In this study, the extractive summarization using sentence embeddings generated by the fine-
tuned Bidirectional Encoder Representations from Transformers (BERT) models and the
k-means clustering method has been investigated. To show how the BERT model can
capture the knowledge in specific domains like engineering design and what it can
produce after being finetuned based on domain-specific data sets, several BERT models
are trained, and the sentence embeddings extracted from the finetuned models are used to
generate summaries of a set of papers. Different evaluation methods are then applied to
measure the quality of summarization results. Both the machine evaluation method Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) and a human-based evaluation
method are used for the comparison study. The results indicate that the BERT model fine-
tuned with a larger dataset can generate summaries with more domain terminologies than
the pretrained BERT model. Moreover, the summaries generated by BERT models have
more contents overlapping with original documents than those obtained through other
popular non-BERT-based models. The experimental results indicate that the BERT-based
method can provide better and more informative summaries to engineers. It has also been
demonstrated that the contextualized representations generated by BERT-based models
can capture information in text and have better performance in applications like text summa-
rizations after being trained by domain-specific data sets. [DOI: 10.1115/1.4054203]
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1 Introduction
As the development of technologies accelerates, large quantities

of documents and papers are generated in almost all technical
domains. As a result, it becomes challenging to efficiently capture
the main knowledge and information from a vast amount of text
documents. In recent years, there have been explorations to use
automatic text processing techniques to process technical docu-
ments in the domains like medical, healthcare, and biology [1].
Automatic text summarization is a subfield of automatic text pro-
cessing and natural language processing to deal with the problem
of the overwhelming amount of text data [2]. Text summarization
refers to generating a summary that represents the most significant
part of a document, such as a paper or multiple documents. Depend-
ing on how the summaries are constructed, there are extractive sum-
marization and abstractive summarization [3,4]. Extractive
summarization generates summaries by using existing sentences
in the original texts, whereas abstractive summarization composes
summaries with new words and sentences that are different from
those in the original documents for improved coherence. Due to
its relative simplicity, extractive summarization has often been
applied to help identify the most important ideas in lengthy docu-
ments or papers.
Inspired by the natural language processing (NLP) research and

applications found in the biomedical domain [5–11], in this
research, the contextual embeddings generated by language
models are applied to capture the semantic meaning of the words
and sentences in engineering documents and to generate text sum-
marization of the documents. More specifically, a language model

called Bidirectional Encoder Representations from Transformers
(BERT) is applied. The BERT model uses attention mechanisms
as well as a deep network architecture to capture the surrounding
information of words and generate word representations that can
dynamically change according to their positions [12]. From an engi-
neering design support perspective, one important feature of BERT
is that it can be finetuned to complete downstream tasks like
question-answering or sentence classification, making it possible
to carry out domain-specific tasks. Thanks to its unique and power-
ful architecture and extensive pretraining, one can use a much
smaller data set to finetune it to complete target-specific tasks,
which can avoid manually generating extremely large labeled
data sets needed for composing one’s own NLP model. Contextual
embedding can also be captured from different layers for tasks like
text generation and text summarization [13,14].
The BERT model has been pretrained based on a vast range of

datasets and is ready to be applied to deal with relatively general
natural language processing tasks. On the other hand, the specialties
of different engineering domains call for specific capabilities of
understanding domain concepts and relationships in language pro-
cessing tasks. The following questions arise: How effective can
the finetuning be in making the BERT model work for domain-
specific tasks? What are the minimum finetuning requirements in
terms of both training dataset sizes and the number of needed epi-
sodes? What are the effective measures that can help evaluate the
performance of the domain-specific NLP tasks? The objective
here is to achieve the desired task performance with minimum fine-
tuning efforts.
In this study, contextual embeddings for words and sentences are

captured by the BERT models finetuned from given engineering
design documents. Those representations are then applied to gener-
ate summarizations. In order to extract domain knowledge from
unstructured texts, three sentence-level datasets generated from
papers in the additive manufacturing domain with different sizes
are created and labeled to finetune the BERT model. The outputs
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of the contextualized language models are investigated by compar-
ing them to the context-free methods. The comparison results
demonstrate that contextual representations are able to capture
domain knowledge after being finetuned with labeled data and
can acquire important information from the original texts. The con-
tributions of this research are as follows:

• Investigated and assessed the effectiveness of the domain
knowledge capture function of the BERT language model by
collecting and creating domain-specific datasets to finetune
the model and performing comparative studies for different
sizes of training datasets as well as against other exiting
approaches.

• Introduced a language model-based approach, composed of
contextual representations and clustering methods, to under-
stand the text and select the most informative sentences for
document summarization.

• Introduced a summary evaluation methodology by combining
machine-based and human-based evaluation methods and pro-
posing evaluation metrics from different perspectives to
uncover the information behind the summarization results.

For simplicity, this study focuses on extractive summarization
and investigates the applicabilities of different BERT models. In
the rest of this paper, the related work is reviewed in Sec. 2, and
a systematic approach to capturing domain knowledge for a pre-
trained language model is described in Sec. 3. Section 4 presents
a comparative study, and its results together with a comprehensive
machine-and-human-based evaluation scheme. The insights
obtained are discussed in Sec. 5, followed by the conclusions and
future work in Sec. 6.

2 Related Work
2.1 The Development of Language Models. Manually pro-

cessing massive unstructured texts and uncovering their underlying
information can be time-consuming and exhausting. The evolution
of natural language processing (NLP) makes it possible to reveal
insights from texts. Language models, which can be considered
the core of NLP techniques, are the development of probabilistic
models that can learn the probability of word occurrence from doc-
uments [15].
The pioneering work in the NLP area, Word2vec, which was

published in 2013, first converted text to word embedding and
can be applied to many distinct downstream NLP tasks like captur-
ing words with similar meanings [16]. However, the biggest
problem of this technique is that it is not able to distinguish poly-
semy and cannot catch surrounding information of words [17]. To
address this shortcoming, researchers have tried to use the pretrain-
ing method and directional language models to generate word rep-
resentations that can dynamically change based on context [18–21].
In 2017, the transformer, a new neural network architecture, was
proposed [22]. This kind of architecture can handle long-term
dependencies even better than long short-term memorys
(LSTMs). In order to apply the architecture to pretrain a language
model and be able to be finetuned for downstream NLP tasks, a fine-
tuning method called the Generative Pre-trained Transformer
(OpenAI GPT) was introduced [20]. Later in 2019 and 2020,
GPT-2 and GPT-3 were published as further developed versions
of GPT [23,24]. In 2018, a Bidirectional Encoder Representations
from Transformer (BERT) was proposed [12]. This language
model has been pretrained using masked language model and next-
sentence prediction method for assisting the model in enhancing the
ability to predict the next word and handling the relationships
between multiple sentences. In addition, the model was pretrained
with the BooksCorpus (800M words) [25,26] and English Wikipe-
dia (2,500M words). Moreover, it applied a bidirectional trans-
former architecture which can help capture both left and right
contexts surrounding a word. Therefore, the BERT model can be
finetuned for several downstream NLP tasks (such as text

classification, question-answering, and name entity recognition)
and has outperformed among NLP models [12]. In these cases,
the context can be mapped to high-dimensional vector spaces and
be represented by contextualized representations. Although the
text generation models like GPT-2 and GPT-3 can also generate
text by unsupervised finetuning process, like Zhu and Luo [25] gen-
erated design solution using GPT-2 finetuned by design problem
statement, it would be difficult to collect high-quality summariza-
tion to train the generative models under this specific circumstance.
Moreover, the summarizations generated by GPT-2 or GPT-3 are
abstractive summarizations that can be hard to evaluate automati-
cally and efficiently. Therefore, in this article, the BERT model is
chosen as the base bidirectional language model and finetuned for
extractive summarization text.

2.2 Application of Natural Language Processing
Techniques in Text Summarization. Recently, researchers in
the healthcare area, primarily the biomedical domain, have made
great efforts on automatic text summarization in order to quickly
grasp the main findings and conclusions in paperwork like clinical
reports without reading the whole text [5]. Initially, the research
focused on sentence features like term frequency and position of
sentences in the original text, and a number of techniques have
been developed [4,27]. However, these techniques may not be suf-
ficient to capture the most significant sentences in the text and gen-
erate a high-quality summary [5,6]. Therefore, attempts have been
made to extract domain knowledge from the original document,
generate word presentations, and measure similar information
between the words [3,6,7]. As machine learning prospered in
recent years, neural network-based learning techniques have been
applied to extract domain knowledge through training based on
large datasets [8–11]. This approach allows the model to learn dif-
ferent features and map each word into vector representations in
order to capture the semantic and syntactic meaning of the words
[3,9]. As an example, contextualized word embeddings have been
widely applied to multiple downstream NLP tasks with desired per-
formance [12,19,28]. Contextual word embeddings from the deep
neural network language model have also been applied in text sum-
marization, and the results are promising [29–32].

2.3 Application of Natural Language Processing
Techniques in the Engineering Design Domain. In the engineer-
ing design area, the domain knowledge behind context is highly sig-
nificant. It can be applied for design support as well as design
ideation. In order to capture and reuse the domain knowledge,
researchers often focus on information retrieval. Traditional
keyword-based retrieval models can be used for literal matching
but cannot meet the requirements of capturing the semantic infor-
mation within the text [33,34]. To address the challenge, researchers
began to focus on knowledge retrieval like ontology-based retrieval
to capture the ontological concepts and their relationships [35–37].
Although the ontology-based information retrieval approach can
capture the semantic information to a certain extent, the “flat
search”-based approach is limited by its inability to “understand”
the text in a high-dimensional space where the words and sentences
are cast together with “meaningful” relations. As the evolution of
NLP techniques enabled the capture of semantic-level knowledge
from unstructured design documents, many researchers in engineer-
ing design tended to use NLP techniques to retrieve design entities
and their relations to support designers. Shi et al. [38] integrated text
mining approaches and unsupervised learning methods to construct
a design and engineering associations ontology network. Martinez-
Rodriguez et al. [39] proposed a knowledge graph construction
approach to capture name entities and their binary relations from
unstructured text. Sarica et al. [40,41] utilized the Word2vec
method to map concepts to word embeddings and constructed a
technology semantic network (TechNet) that includes scientific
concepts and their semantic associations. Siddharth et al. [42] pro-
duced a large engineering knowledge graph comprising engineering
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facts as <entity, relationship, entity> triples. Other than information
retrieval, NLP techniques are also applied for word-level knowl-
edge discovery in the design process. Hou et al. [43] developed
an automatic way to identify and structure product affordance
from a user’s review using the rule-based NLP method for discover-
ing customer needs. Han et al. [44] created a crowd-generated
knowledge database to retrieve and reuse information by gathering
ideas from social networking platforms to help design ideation. Han
et al. [45] proposed a methodology for eliciting attribute-level user
needs from online review text using the BERT model. Although
word-based domain knowledge extraction can be applied to either
building knowledge graphs or networks to extract the information
in documents, high-dimensional sentence-level information captur-
ing can contain more useful knowledge underlying the unstructured
text. However, partly due to the lack of language models and
labeled domain-specific datasets in engineering design, little work
has been done on sentence-level knowledge capturing and its appli-
cations, such as text summarizations. Akay and Kim [46] intro-
duced a sentence-level method to extract functional requirements
from design documentation using the BERT model, and Ni et al.
[47] presented a similarity-based approach for helping discover
design solutions by utilizing a bidirectional LSTM neural
network. However, only a general dataset was applied in these
studies to prove the power of the language model and its potential
to enhance designers’ abilities. Whether sentence-level knowledge
can be extracted and reused in specific tasks like text summarization
remains unknown. Despite the fact that Siddharth et al. [42] pro-
vided a word-level summarizing method by selecting (entity, rela-
tionship, and entity) triples underlying unstructured text and
generating knowledge graph for more condensing design-specific
information, sentence-level summarization containing domain-
specific information is unfinished.

2.4 Evaluation Methods for Automatic Text
Summarization. Automatic text summarization has become a
new trend nowadays due to the explosion of information. Research-
ers aim at developing various methods to condense the most signif-
icant context in the form of a summary [48]. Meanwhile, how to
evaluate the performance of those summarization methods
remains an urgent issue to be resolved.
The evaluation methods for text summarization can be classified

into two major types [49]. One is human-based evaluation, meaning
human annotators need to assess the quality of automatic summar-
ization based on different aspects like coherence, conciseness,
grammaticality, and readability [50]. Although human-based evalu-
ation is extensive and able to provide strong support to the quality
assessment, it is expensive and hard to guarantee objective results
[51,52]. Therefore, researchers keep trying to propose the second
type of evaluation method, machine-based evaluation methods,
which can automatically evaluate the performance of different sum-
marization methods based on a unified standard. Usually, the
machine evaluation methods need to compare generated summaries
with a standard summary from the original documents or experts
[49]. The evaluation is often conducted based on performance
metrics using recall, precision, and f-score. For example,
Recall-Oriented Understudy for Gisting Evaluation (ROUGE),
which is the most popular automatic evaluation method of the last
10 years [49], uses the performance metrics to find out the overlap-
ping content between the generated summary and the standard
summary [52]. Other machine evaluation methods like bilingual
evaluation understudy (BLEU) [51] and METEOR [53] are also
used frequently to automatically assess the quality of summarizers.
Language models like BERT are trained with a vast amount of

data and are generally useful; however, they lack specific domain
understanding capabilities. Although NLP applications such as
summarization have been explored in many domains, including bio-
medical fields, extracting and reusing sentence-level knowledge
remains to be a challenge. While the NLP techniques have been
applied in the engineering design area for design support and

design ideation, it can be seen that the work for sentence-level
text understanding is yet to be extended. Moreover, the human-
based evaluation method for examining whether NLP techniques
can assist experts in specific domains still needs to be explored.
In this study, the domain-specific datasets were created to finetune
a language model for it to acquire domain-specific knowledge and
complete downstream NLP tasks. The additive manufacturing
(AM) domain was chosen for this study, and the sentence-level
information was captured from the relevant research papers and
included in the AM datasets. Combinations of a machine evaluation
method and a human evaluation method were applied to evaluate
how the application of the finetuned language model can enhance
the quality of text summarization in the specific domain.

3 Domain Knowledge Capture: Finetuning the
Language Model
In the engineering design area, it is valuable to identify and apply

the useful information or rules that underlie past documents like
design reports or papers. To acquire design knowledge from
unstructured texts, researchers have focused more on word embed-
dings, or keyword search, for design creativity inspiration or rule
generation. However, text understanding at the sentence level has
rarely been used for knowledge acquisition due to the lack of bench-
mark datasets and adequate language models, poor training perfor-
mance of models, and high computational burden. In addition, it is
worth mentioning that text understanding is the principal step for
researchers to extract domain knowledge and utilize the knowledge
to process a large number of corpora. Therefore, there is a strong
need for devising ways to train the language models to read and
understand the unstructured texts and generate their “understand-
ing” in a format that can quickly and effectively help human design-
ers grasp the essential knowledge without having to read whole
lengthy documents.
In this study, a systematic approach is proposed to investigate the

language models learning and capturing specific domain knowledge
from different datasets and generating corresponding summariza-
tions. The results produced by the pretrained language model and
finetuned language models are then analyzed and evaluated. Specifi-
cally, manually labeled datasets are created and used to finetune a
BERT-based language model. During this process, the BERT
model can learn to select significant sentences in the papers and
capture the main ideas underlying the sentences. In addition, using
the k-means method, the sentence embeddings extracted from the
BERTmodel are clustered, and the sentenceswith the closest distance
from the centroid of each cluster are selected and included in the final
summarization. Since the BERTmodel can only deal with classifica-
tion problems, the extractive summarization is considered as a binary
classification problemwhere the labels, i.e., 1 and 0, are used to indi-
cate whether a sentence should be included in the summary or not.
Moreover, to generate text, sentence embeddings are extracted
from the layers of neural networks in the BERT model, and then,
the k-means method is used to create different clustering, which is
formed by those sentence embeddings. Here, the number of clusters
represents the number of sentences included in the summary.
In this way, the BERTmodels can capture the domain knowledge

during the finetuning process, and sentence embeddings extracted
from BERT models will contain those informative contents. After
applying the clustering method, corresponding summarization can
finally be generated. In order to compare the performance of the lan-
guage models with and without being finetuned, the same proce-
dures after finetuning are applied to the pretrained BERT model
as well. The flow of the information about this systematic approach
is shown in Fig. 1.
In the following, the related details about data collection and pre-

processing are illustrated in Sec. 3.1, and the structure of the lan-
guage model used in this study is described in Sec. 3.2. Section
3.3 introduces the experiment method and process, followed by
the evaluation methods in Sec. 3.4.
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3.1 Data Collection and Preprocessing. A desired finetuned
BERT model should be able to select critical sentences in one
paper and generate corresponding sentence embeddings used for
summarization. For attaining such a model, the first step is to
create a dataset that can be used to train and test the BERT model
to capture the main idea in the text. Due to the lack of benchmark
datasets in the engineering design area, in this research, a sample
dataset is created manually to investigate how the BERT model
learns the engineering-specific knowledge and how altering param-
eters impact summarization results.
The sentences in the raw dataset are collected from papers about

additive manufacturing. In order to assess the influence of the size
of datasets, three datasets with distinct sizes are created. Corre-
spondingly, 38, 60, and 172 most recent papers in the additive man-
ufacturing domain are selected from ScienceDirect and are
considered original data. To train the BERT model to learn different
features from the sentences that can represent the informative
content in the papers, only the main parts of the selected papers
are captured from original documents, including abstract, introduc-
tion, and conclusion sections, which is under the assumption that
these sections including the most significant content also contain
rich domain-specific knowledge. Due to the requirements of fine-
tuning the BERT model, the paragraphs need to be tokenized up
into individual sentences using the NLTK toolkit [54] (e.g., “Finish-
ing of components originating from additive manufacturing (AM) is
critically important for providing them with adequate tolerances and
fatigue life. Based on these insights, a finite element-based numer-
ical framework of surface deformation of additively manufactured
IN718 is created. An attempt is made to delineate effects arising
from surface roughness, microstructure gradients, and porosity
defects.” to “Finishing of components originating from additive
manufacturing (AM) is critically important for providing them
with adequate tolerances and fatigue life.”, “Using these insights,
a finite element based numerical framework of surface deformation
of additively manufactured IN718 is created.”, “An attempt is made
to delineate effects arising from surface roughness, microstructure
gradients, and porosity defects.”). Finally, there are 505, 2020,

and 6167 sentences correspondingly tokenized from 38, 60, and
172 most recent papers in the three raw datasets, respectively.
In order to reduce the noise in the datasets, the reference symbols,

the caption of figures and tables as well as mathematical equations
are removed. Moreover, since the NLTK toolkit tokenizes the sen-
tences out of paragraphs by period, it may result in incorrect split-
ting work when it comes to situations like “Fig.” or “etc..”
Therefore, efforts are also made to combine separated sentences
due to incorrect splitting. Besides, some authors summarized their
main ideas or findings in the table format, which cannot be directly
captured by the NLTK toolkit. Under those circumstances, the sen-
tences inside the tables are extracted by manual work. In addition,
some irrelevant sentences like figure captions are removed.
For training the BERT model to capture the domain knowledge

and automatically generate extractive summarization, the sentences
tokenized from original content need to be labeled. In this study,
extractive summarization is defined as a classification case. For
each sentence, it is labeled as {1,0} to indicate whether the sentence
should be included in the summarization. Sentences containing the
most important information are labeled as 1. For instance, sentences
in the abstract and conclusion parts which display the main ideas and
findings of the paper are all labeled as 1, while sentences in the intro-
duction part which convey information about related background
would be considered as less important sentences and are all labeled
as 0. Under an ideal circumstance, multiple operators ought to
label all the sentences in the datasets so that the accuracy and reliabil-
ity of labeling results can be measured. However, due to resource
limitations, the labeling results were cross-checked by two operators.
For each paper, the labeling results generated from the first operator
would be examined by the second operator; and no significant differ-
ences were found. Additionally, to meet the requirements of the
BERT model, for each sentence, the tokens [CLS] and [SEP] are
inserted at the start and end of the sentences correspondingly.
Finally, in order to maintain the BERT model learning the most
important information, the standards for selecting important sen-
tences are rigid. The proportion of binary labels {1, 0} is around 1:2.

3.2 The BERT Language Model. BERT [12] is a language
representation model developed by Google. This new model is dif-
ferent from past language models like recurrent neural networks
(RNNs) and outperforms other language models in over 11 NLP
tasks. Since it can be finetuned to complete specific tasks with a rel-
atively small dataset and can map words and sentences to contextu-
alized representations, it is chosen as the language model in this
study to process the unstructured text.
The reason why BERT can have the best performance in NLP

tasks is because of its model structure and input/output representa-
tions. First, the model structure of BERT is distinct from other
models in respect of its robustness. The main part which guarantees
contextual learning is the transformer, which is an attention mech-
anism. The transformer contains two mechanisms: an encoder reads
the text input, and a decoder output the prediction of the tasks [22].
Since the attention mechanism contains multiple attention heads, it
can significantly enhance the computational performance and
increase training accuracy even with small datasets.
In addition, the input representation of the BERT model can be

constructed in three parts to better capture the position as well as
the contextual meaning of the input sequence. Token embeddings,
segment embeddings, and position embeddings will be summed and
considered as the final input representations. Then, they can be uti-
lized to complete downstream language tasks. In this study, the
BERT model is used for converting words and sentences into con-
textualized vectors and completing the summarization tasks. Differ-
ent downstream language tasks (Question answering, Sequence
classification, Name entity recognition, etc.) can be achieved with
great performance based on the same architecture as Fig. 2 [12]
below shows.
In this research, in order to complete the finetuning process

for the sentence classification task, different factors and

Fig. 1 The process of text summarization generation using
BERT language models
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hyperparameters need to be set to help the BERT model achieve the
best performance:

(1) Preprocessing of long sentences. The maximum sequence
length of the BERT model was set to 256 and then padded
with zeros.

(2) Selection of layers. There are many different pretrained
BERT models provided by the Google AI (artificial intellli-
gence) platform. In this study, an uncased BERT-base
model consisting of an embedding layer, 12 encoding
layers, and a pooling layer with 768 hidden sizes is selected
as the pretrained model. Two additional fully connected
layers for flattening the output and adding dropouts and a
SoftMax activation function layer were added for performing
the text classification task to predict the labels out of {0, 1}.
Figure 3 below displays the network architecture for the sen-
tence selection/sequence classification task.

(3) Selection of optimizer. Adam optimizer was used with a 2 ×
10−5 learning rate in the finetuning process since this opti-
mizer is an optimization algorithm for stochastic gradient
descent during deep learning model training and can be
applied to deal with sparse gradients on the noisy problem
[55].

4 Hyperparameter setting. The authors of the BERT model rec-
ommend using 2–4 epochs to train the BERT model [12]. In this
study, four epochs are chosen to finetune the BERT model. More-
over, the learning rate is 2 × 10−5, and the batch size is set to 16.

3.3 Experimental Method. In this study, the BERT model
and a k-means method are combined to realize generating summar-
ization automatically. Since the BERT model cannot be used for
text generation directly, it is used to generate sentence embeddings.
The sentence embeddings, represented as vectors, are considered as
input of a k-means method. Using the k-means method with sen-
tence embeddings can generate several clusters (as circles shown
in Fig. 4 below), and the sentences that are nearest to the centroids

of clusters will be selected and be included in the final summariza-
tion. The specific process of captured sentence embeddings and
k-means clustering are shown in Fig. 4 below.
After obtaining the finetuned BERT model, sentence embeddings

can be captured from the network architecture. Although Sentence-
BERT, or SBERT, has been applied to directly generate sentence
embeddings [56], from a finetuning point of view, the requirements
for designing domain-specific training datasets are rather compli-
cated, making it difficult to finetune SBERT. Therefore, in this
study, a sentence embedding generation method with a simple
dataset design is applied. In the method, word representations are
extracted in the last two layers of the neural network, and sentence
embeddings are generated by averaging the word representations to
convert the different lengths of sentences into fixed-length vectors.
In the BERT model, sentence embeddings are N×E vectors where
N represents the number of sentences and E is the dimension of
embeddings. Usually, the default embedding dimension is 768.
For dealing with different sentence embeddings and capturing the

sentences which can represent the main idea, the k-means method
[57] is applied to generate clusters. Sentences with similar informa-
tion will be collected into one cluster based on their sentence
embeddings. After the clustering of sentences is generated, the cen-
troid of clustering will be calculated, and the sentence with the
closest Euclidean distance from the centroid will be chosen as the
main sentence embeddings. Finally, all the sentence embeddings
are combined, and their corresponding sentences will be included
in the final summarization. In this study, in order to avoid poor clus-
tering results, k-means++ is chosen to set up initialization. More-
over, the influence of dimensions of sentence embeddings on
clustering results is investigated.

3.4 Evaluation Methods. After the summarizations are gener-
ated by BERT-based methods, the results are compared with sum-
marizations created from non-BERT-based methods. Different
evaluation methods are applied to measure the quality of the
summaries.

Fig. 2 The architecture of (a) pretrained BERT model and (b) finetuned BERT model

Fig. 3 The network architecture of the BERT model for sentence classification tasks
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In this paper, the performance of the BERT-based approach is
compared with the three most popular non-BERT-based summariz-
ers, i.e., KL-Sum algorithm, TextRank, and Latent Semantic Anal-
ysis (LSA). KL-Sum algorithm [58] stands for Kullback–Lieber
Sum algorithm and is a content-based approach that selects a
sequence of sentences from text based on unigram distribution.
The concept of KL divergence is applied to measure the difference
of probability distribution of distinct contexts in order to discover
their similarity. TextRank [59] is a graph-based algorithm and is
an unsupervised approach. It ranks sentences on the basis of their
cosine similarity scores and extracts top sentences for summariza-
tion. LSA [60] is a topic-based approach that evaluates the signifi-
cance of sentences by their singular value decomposition (SVD)
values. Random baseline, which selects sentences in the original
text randomly, is also applied and compared as a benchmark.
The evaluation of the generated summaries is an unsolved task

for the research community and is still being discussed. While
there are still many problems concerning the methods and types
of evaluations, both machine evaluation methods and a human eval-
uation method are chosen for evaluating the performance of sum-
marization systems in this paper. ROUGE [52] is a widely used
intrinsic evaluation due to its efficacy. In ROUGE, precision,
recall, and F-score are applied as evaluation metrics to evaluate
the quality of the summary. It generates this evaluation metric by
comparing the standard summary, or reference summary, and the
automatically generated summary. Based on different criteria, it
measures the overlapping information between the reference
summary and the generated summary. Higher scores mean that
more overlapping content is captured. Specifically, the recall
score refers to the proportion of overlapping content presented in
the reference summary; and the precision score refers to the propor-
tion of overlapping content presented in the generated summary. In
this experiment, ROUGE-1, ROUGE-2, and ROUGE-L scores are
utilized to assess the summary quality since these scores can
work well in single-document summary cases [61].
One disadvantage of using ROUGE, however, is that the standard

summary is always required to compare with the generated
summary. It would be difficult to find an ideal summary since
there are no formal rules to establish one [62]. Commonly, research-
ers may use a human-made summary or abstract of papers as a stan-
dard. Despite that, it may be biased to merely measure the
overlapping content between the standard summary and the gener-
ated summary since the authors may avoid using the same expres-
sions in the main content, which can decrease the possibility of
overlapping. Therefore, another evaluation method for statistical-
based evaluation, which only focuses on generated summary, can
be applied in this experiment as a supportive approach. According
to [63], keywords in a document can represent the most significant
idea of its content, meaning that a summarization would contain
more high-frequent words. Consequently, in addition to ROUGE,

the word-frequency measurement, which is a statistical-based
method, is also considered an evaluation method to measure the
quality of the generated summaries based on the assumption that
the more frequent terms in a document are more important and
more indicative of the topic [63]. Specifically, after removing
stop words, sentences with more most frequent words will be
assigned higher scores, and the average of those sentence scores
will be the final score of the generated summary. In order to
avoid the potential issue brought by long-length sentences, the
score of each sentence will be divided by the number of words in
the sentence.
The automatic evaluation using the ROUGE method and word-

frequency algorithm presented previously has its limitation since
it is difficult to discover whether the summary can help AM
researchers in the real world and whether useful domain information
has been captured. Researchers doubted that ROUGE could be mis-
leading when it is the only method used for evaluation [64]. Also, a
study about the correlation between ROUGE and human evaluation
shows, in general, the correlation is low [65]. Therefore, eliciting
human judgment becomes indispensable to investigate the influence
of summarizers on the summaries and the usefulness of these sum-
maries to AM researchers. Hence, a human evaluation-based user
study is performed to measure the performance of three different
summarizers, namely, the pretrained BERT model, the finetuned
BERT model with the largest dataset, and the Text Rank.

4 Results and Comparison Study
During the experiment described earlier, the BERT model is fine-

tuned using different sizes of domain-specific datasets. The test and
validation of the performance of the finetuned BERT models are
evaluated using both machine evaluation methods and human eval-
uation methods. Currently, researchers have studied the capability
of different language models and their finetuning performance.
For example, Ethayarajh [66] compared the word embedding gen-
erated by BERT, ELMo, and GPT-2 and found that the contextual-
ized embedding can contain more information compared to static
embedding; Nguyen et al. [67] compared the finetuning results
from different combinations of classification layer with BERT
model. The main purpose of this paper is to investigate the proper-
ties of finetuning on a well-trained language model with the objec-
tive of achieving the desired performance with minimum training
efforts. Therefore, only text summarizations generated by the
BERT-based model are compared. In the following subsections,
the details of the summarization results and the comparison study
are presented.

4.1 Finetuning Results. When the size of the training dataset
is different, the finetuned BERT model can show different results,

Fig. 4 Examples of sentence embedding and k-means clustering
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as one may expect. An interesting question is how the positive
effect of increasing size may diminish. In order to assess the influ-
ence of the size of training datasets on the BERT training results,
different datasets are created with [500, 1000, 1500, 2000, 3000,
4000, 5000, 6000] sentences, respectively. These datasets are
used to train distinct BERT models. In these training datasets, val-
idation data are selected to help monitor the entire training process.
Generally, the proportion of the training dataset and validation
dataset is 9:1. Besides, to explicitly show the accuracy of those
training models, the same testing dataset is applied. The testing
dataset contains 102 sentences applied to measure the testing accu-
racy of models.
In order to investigate the relationship between the size of train-

ing datasets and training accuracy as well as testing accuracy, one
experiment of finetuning the BERT model with different-sized
training datasets was conducted. Since the learning algorithm
behind the BERT model is stochastic, a difference exists in the per-
formance of finetuning process across several runs. For summariz-
ing the performance, the BERT model was finetuned and evaluated
with the same training and testing dataset under the same hyperpara-
meter settings 10 times, and the accuracy of each run was recorded.
The mean of the accuracy of the finetuned model will be calculated
and used to represent the mean performance of the finetuning
models, and the standard deviation of it will be used to represent
the variance.
Table 1 shows the mean value and standard deviation of the

training accuracy and testing accuracy for different BERT
models. For the BERT model finetuned by 505 sentences, as
Table 1 shows, the testing accuracy of it is about 57.5%. As
the size of the dataset increases, the testing accuracy of BERT
models is also improving from 57.5% to 77.5%. The comparison
results indicate that the size of the training dataset is one vital

factor that influences the performance of BERT models. As the
size of the dataset increases, the speed of accuracy improvement
becomes slower.
Figure 5 depicts the trend of training accuracy and testing accu-

racy changing with the size of the training dataset. It can be seen that
there is a sharp performance increase as the size changes from 500
sentences to 1000 sentences. After that, the performance increase
slows down. In addition, as the size of datasets expands, the differ-
ence between training accuracy and testing accuracy becomes
smaller.
Figure 5 shows that under the circumstance where the size of the

dataset keeps expanding by 500 sentences, the accuracy of the fine-
tuned model gains significant improvement. However, when the
size of the dataset reaches 1000 sentences and beyond, the accuracy
of the finetuned model did not increase as significantly as before.
This result indicates that when the size of the dataset has reached
a large enough level, i.e., around 2000 in this study, further increas-
ing the size even with a 1000-sentences increment can only result in
moderate accuracy gains. From a perspective of minimizing training
effort for finetuning, Fig. 5 provides a clear indication of the impor-
tance of the size of the 1000-sentence dataset. Further increasing the
dataset size may not contribute to the task performance of the BERT
model. There exists a “minimum finetuning size (MFS)” for effec-
tive BERT performance.
Moreover, as the size of the dataset increased to 6000 sentences

and beyond, the accuracy improvement almost stalled. Neverthe-
less, as Table 1 shows, the finetuned BERT model with 6000 sen-
tences achieved the best performance in the testing dataset,
demonstrating that when the dataset is large, the model can
extract and learn more knowledge from the sentences, although
the knowledge learned after the “minimum finetuning size” is rela-
tively limited depending on the application tasks.

Table 1 Training and testing accuracy of different BERT models

Finetuned with various # of sentences

500 1000 1500 2000 3000 4000 5000 6000

Training 0.694± 0.003 0.786± 0.013 0.809± 0.014 0.821± 0.017 0.828± 0.019 0.835± 0.021 0.856± 0.022 0.890± 0.021
Testing 0.575± 0.013 0.743± 0.026 0.762± 0.017 0.776± 0.032 0.806± 0.023 0.823± 0.020 0.842± 0.016 0.854± 0.013

Fig. 5 Training and testing accuracy changing with different sizes of datasets
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Before sentence embeddings are extracted from BERT models,
visualizations of sentence embeddings under 2D are generated to
show the differences between the pretrained BERT model and the
finetuned BERT models. Figure 6 illustrates the visualization of
sentence embeddings in a two-dimensional (2D) coordinate.
Based on the plot, it can be seen that the sentence embedding has
significantly changed after the model is finetuned.
An illustrative example is provided below to demonstrate the

results generated by BERT-based summarizers from the same
paper. From the example, it shows that the summary by the fine-
tuned BERT model has denser information and better structure
than the summary generated by the pretrained BERT model.
Example 1: Pretrained BERT-based summarizer
“However, with advances in materials, process controls, and

robotics, the field of additive manufacturing continues to progress
towards becoming a viable option for large-scale, high-volume
industries. Metal AM processes can be classified as powder bed
or wire/ blown powder feed processes. An electric arc forms
between the wire and the substrate, which melts the wire and depos-
its a bead of molten metal along the predetermined path. Greer et al.
discussed the design rules for MBAAM and demonstrated the fab-
rication of a large-scale excavator arm to highlight the potential use
of the system in the service and repair industry, owing to its high
deposition rates in conjunction with its near-net shaping capability.
They reported scattering in elongation that they attributed to micro-
structural heterogeneity and discontinuities such as local soft spots.
The use of AM techniques can drastically increase productivity and
reduce the lead time and cost of manufacturing molds and dies. In a
survey of 96% of mold manufacturers, it was found that they have
plans to utilize AM for overcoming these obstacles, especially since
customer demands are continuing to put pressure on mold builders.
ORNL, Wolf Robotics and Lincoln Electric have developed an
MBAAM system that uses high deposition rates and low-cost
wire feedstock material that can be used to manufacture molds
and dies for the composite industry.”
Example 2: Finetuned with the largest dataset BERT-based

summarizer
“Historically, AM has not been suitable for high-volume produc-

tion or large-scale projects. These systems are used with a wide
array of materials/alloys. The MBAAM system was developed by
Oak Ridge National Laboratory (ORNL) in a collaboration with
Wolf Robotics and Lincoln Electric. Greer et al. discussed the
design rules for MBAAM and demonstrated the fabrication of a
large-scale excavator arm to highlight the potential use of the
system in the service and repair industry, owing to its high deposi-
tion rates in conjunction with its near-net shaping capability. This
paper also discusses the properties and the related microstructure
of AM parts manufactured by the MBAAM system using mild

steel wire ER70S-6. ORNL, Wolf Robotics and Lincoln Electric
have developed an MBAAM system that uses high deposition
rates and low-cost wire feedstock material that can be used to man-
ufacture molds and dies for the composite industry. The system can
be effectively used to create a part with an overhang angle of 90
degrees. The mechanical properties of the printed AM structure
were found to be planar isotropic in nature, which is crucial for
mold and die applications.”
Therefore, a hypothesis can be made that the summarizations

generated by the finetuned models with higher accuracy possess
more important information and terminologies in the additive man-
ufacturing domain compared to the pretrained model. More detailed
experiments and evaluations are discussed below.

4.2 Testing Data Preparation in Summarization
Evaluation. According to what Lin [61] demonstrated, the critical
number of documents for single-document summarization evalua-
tion is 86. Therefore, for our testing dataset, 101 papers that were
published in recent years are randomly selected from ScienceDirect.
These papers have the same focus on additive manufacturing as the
papers in the training datasets. Only abstract, introduction, and con-
clusions are selected from the original papers for capturing the most
important contents. Among them, the sentences in the introduction
and conclusion sections are extracted for generating summarization,
while the abstracts of papers are used as the standard summariza-
tion, which is then compared with the generated summary in
ROUGE evaluation. In the statistical analysis evaluation, only the
generated summaries are evaluated by measuring their word occur-
rence. Moreover, during the evaluation process, the number of sen-
tences in the generated summaries is maintained the same as that in
the reference summary for meaningful comparison.
In order to compare the performance of different models, the

same testing dataset is applied to the BERT-based model and
other non-BERT-based approaches; 101 scores for corresponding
papers are averaged as the final scores for the summarizing
approaches. The scores of those summaries from distinct evaluation
methods are listed below in Table 4, which can represent the differ-
ences in the performance of these summarization methods.

4.3 Machine Evaluation

4.3.1 Automatic Evaluation. The ROUGE evaluation is used
for two purposes in this paper. First, it is used to assess the influence
of the size of dimensions used for sentence embeddings, and
second, it is applied to compare ROUGE scores of summaries gen-
erated by the pretrained BERT model and finetuned BERT models.

Fig. 6 Representation of 2D sentence embeddings captured from (a) pretrainedmodel and (b) finetunedmodel by 500 sentences
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4.3.1.1 Parameterization. In order to identify proper parame-
ter settings for achieving the best performance, the impact of differ-
ent sizes of dimensions for sentence embeddings is investigated. As
shown in Table 2, the summaries generated by sentence embed-
dings with different dimension sizes are distinct, indicating that
dimensionality reduction, which can be applied in summarization
to increase computational efficiency, may influence the final output.
Generally, researchers choose 2D sentence embedding to com-

plete summarizing work for data visualization and computational
efficiency [4]. However, the extent of loss of performance after
reducing dimensions of sentence embeddings still needs to be inves-
tigated. In this experiment, to evaluate the quality of summaries
under different dimension sizes, ROUGE evaluation is applied to
measure the impact of dimensionality reduction. Moreover, only
2D, 4D, and 20D sentence embeddings are selected to compare
with original 768D sentence embeddings, given that the dimension-
ality reduction algorithm requires the component settings to be no
larger than the number of samples. Since the minimum number of
samples in the dataset is 22, the components are set to less than
22 dimensions. Table 3 below shows the mean scores of summaries
with different dimensions as well as the underlying language
models.
According to the results shown in Table 3, the loss of performance

exists with dimensionality reduction. Specifically, sentence embed-
dings with 768D can generate summaries with higher scores,
meaning that the 768-dimension sentence embedding model cap-
tures more information and has a better performance compared to
other dimensional models. In other words, high-dimensional
models can acquire the most representative information from the

Table 2 Summaries generated by sentence embeddings under
different dimensions

Pretrained model

2D Unfortunately, as-printed surfaces originating from AM are rough
and incapable of functioning as mating surfaces in a product
assembly. Herein, AM can naturally produce a high density of
volumetric-porosity defects and unique microstructure
characteristics, e.g., preferred crystallographic textures, and
gradients in grain size. Addressing this knowledge gap requires an
in-depth understanding of the mechanics of finishing in surface
texture/microstructure /defect combinations that originate from AM.
These insights are subsequently used to create a framework whose
utility in optimizing finishing processes is discussed

4D Finishing of components originating from additive manufacturing
(AM) is critically important for providing them with adequate
tolerances and fatigue life. Using these insights, a finite
element-based numerical framework of surface deformation of
additively manufactured IN718 is created. An attempt is made to
delineate effects arising from surface roughness, microstructure
gradients, and porosity defects. These insights are subsequently
used to create a framework whose utility in optimizing finishing
processes is discussed

20D Using these insights, a finite element-based numerical framework of
surface deformation of additively manufactured IN718 is created.
These processes are used to create surfaces with tighter geometric
control, reduced roughness, or residual compressive stresses. An
attempt is made to delineate effects arising from surface roughness,
microstructure gradients, and porosity defects. These insights are
subsequently used to create a framework whose utility in optimizing
finishing processes is discussed

768D Optimization of finishing processes is however challenging for AM
components as their mechanics of deformation are complicated by
microstructure/defect/ roughness combinations present in
as-received surfaces. In this work, the mechanics of surface
deformation in additively manufactured IN718 is studied via
indentation. Hence, the surfaces of AM parts are typically subject to
primary machining processes, peening processes, or secondary
machining processes that use loose abrasives. An attempt is made to
delineate effects arising from surface roughness, microstructure
gradients, and porosity defects.
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papers. Therefore, in this experiment, all the summaries are
generated by 768D sentence embeddings in order to ensure the
best results.

4.3.1.2 Comparisons among different summarizers. Table 4
presents the mean value of ROUGE-1, ROUGE-2, and ROUGE-L
scores acquired from the BERT-based summarizers and other
non-BERT-based approaches. As Table 4 shows, the performance
of the finetuned BERT model trained by 6167 sentences exceeds
other BERT-based summarizers and non-BERT-based summarizers
with regard to ROUGE-1, ROUGE-2, and ROUGE-L scores signifi-
cantly based on the ANOVA test (p< 0.01).
Taking the ROUGE-2 score as an example, the scores of the sum-

maries generated from the finetuned BERT model by 6167 sen-
tences are over 11.6% higher than those generated from other
BERT-based models. Moreover, compared to other non-BERT-
based summarizers, the mean scores obtained from finetuned
BERT model by 6167 sentences are about 37.1% higher than
non-BERT-based approaches.
More specifically, when comparing the finetuned BERT models

with other summarizers in terms of precision score, the result shows
that the finetuned BERT models with different dataset sizes almost
all outperform the other text summarizers, while the recall scores of
finetuned BERT models are relatively low or indifferent. In addi-
tion, considering the comparisons among the three finetuned
BERT models with different dataset sizes, the mean scores
increased as the size of datasets increased, which is also consistent
with the corresponding accuracy of the BERT training models dis-
cussed above. For instance, when the size of the dataset was
enlarged from 500 sentences to 6167 sentences, the mean value
of ROUGE-L scores rose about 4.9%. Also, the finetuned BERT
model with the largest dataset presented the best performance com-
pared to the pretrained BERT model.

4.3.2 Statistical Evaluation. Table 5 presents the evaluation
results obtained from different BERT-based models in terms of
word-frequency measurements. As shown in the data, the mean
scores have improved from the pretrained BERT model to the fine-
tuned BERT models. In comparisons among three different fine-
tuned BERT models, as the size of the dataset increases, the
performance of the finetuned BERT models is enhanced.

Specifically, the mean scores of the summarizers with a larger
dataset can be 14.50% higher than others. A closer observation indi-
cates that most of the 14.50% increase was achieved through fine-
tuning based on the 500-sentence datasets, reflecting the
“minimum finetuning size” discussed in Sec. 4.1.

4.4 Human Evaluation. A human evaluation user study is
performed to evaluate whether AM researchers can have different
impressions on summaries generated by different summarizers
and whether the summaries generated by the finetuned BERT
models can contain more important domain-specific information
and assist AM researchers with a certain background. In this
user study, three summarizers are selected based on the machine-
based automation evaluation results. The pretrained BERT model
and the finetuned BERT model with the largest dataset are chosen
due to their high-performance quality in summary generation.
Meanwhile, Text Rank, which is a summarizer with the best per-
formance among all the non-BERT-based summarizers, was also
selected to be compared. A pairwise comparison among these
three summarizers is then conducted. This human evaluation
user study is carried out in the form of online surveys hosted
using Google Forms. In the end, 11 students and professors
with additive manufacturing backgrounds recruited via university
mailing lists as well as online social networks have participated in
this online survey. Each participant evaluated groups of summa-
ries from 10 randomly selected papers from the additive manufac-
turing area. The participants are anonymous, and only their
responses are collected. The average time of the survey comple-
tion is about 40 min.

4.4.1 Design of Online Survey. The online survey contains 10
groups of summaries generated from the three summarizers men-
tioned previously on the same sets of additive manufacturing
papers. It was designed for measuring the quality of summaries gen-
erated from different systems, i.e., Pretrained BERT model, Fine-
tuned BERT model, and Text Rank. In order to make it
convenient for participants, the online survey was partitioned into
2 parts, and each part contained five groups of data. In each
group, the procedures of human evaluation are as follows.

Step 1: To help participants quickly grasp the main content and
figure out the focus of a paper, the abstract of the paper
will be shown in the survey first. Figure 7 presents an
example of the first step in the survey. Participants need to
read through the abstract at the beginning and then start to
compare the groups of summaries based on their
understanding.

Step 2: After having some understanding of the main idea of the
paper, participants are asked to perform comparisons among
the summaries generated from three different summarizers
without knowing which summarizer generated which
summary. The summaries for one paper are grouped and
ordered randomly, as shown in Fig. 8. Participants need to

Table 4 Mean value of ROUGE-1, ROUGE-2, and ROUGE-L scores of BERT-based summarizers and non-BERT-based summarizers

Summarizers

ROUGE-1 ROUGE-2 ROUGE-L

Recall Precision F-score Recall Precision F-score Recall Precision F-score

Pretrained-BERT 0.432 0.420 0.421 0.137 0.136 0.134 0.335 0.304 0.317
Finetuned BERT (500) 0.387 0.448 0.411 0.121 0.141 0.129 0.300 0.320 0.308
Finetuned BERT (2012) 0.394 0.457 0.423 0.126 0.146 0.135 0.314 0.332 0.323
Finetuned BERT (6167) 0.405 0.452 0.427 0.135 0.154 0.144 0.316 0.328 0.323
Text rank 0.502 0.359 0.415 0.168 0.118 0.138 0.361 0.278 0.311
KL-Sum 0.370 0.427 0.392 0.114 0.135 0.122 0.289 0.337 0.308
LSA 0.375 0.382 0.378 0.108 0.109 0.108 0.317 0.284 0.298
Random baseline 0.380 0.369 0.374 0.109 0.104 0.105 0.303 0.272 0.284

Note: The number in brackets represents the size of the dataset.
Boldfaced values represent the best performance among all the testing cases.

Table 5 Average word-frequency score of summarizations
generated by different BERT models

Summarizers Mean Min Max

Pretrained BERT 3.432± 0.48 2.475 4.660
Finetuned BERT (500) 3.785± 0.82 2.175 5.572
Finetuned BERT (2012) 3.790± 0.85 2.414 5.817
Finetuned BERT (6167) 3.930± 0.76 2.524 5.579

*Note: The number in brackets represents the size of the dataset.
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answer questions from distinct aspects based on the content
of the summaries.

Step 3: Participants are asked to answer questions based on three
different aspects of the summaries that measure the perfor-
mance of the summarizers. The questions are selected and
used according to [65]. For each group of summaries, partic-
ipants are asked to rank them by selecting options from the
best to worst according to their understanding, as shown in
Fig. 9. For each rank, i.e., best, good, or worst, only one
summary can be selected. The details of the questions are
presented below:

S1: Which one of them is more informative about additive
manufacturing?

S2: Which one of them expresses the meaning closest to the
abstract?

S3: Which one of them has the least redundant information?

These questions are used to evaluate the summaries from differ-
ent perspectives. Specifically, S1 relates to Informative Coverage,
S2 relates to Informative Relevance, and S3 is about Informative
Redundancy. These three aspects can be used to clarify whether
the summaries generated by different summarizers can contain
important information and be applied to help AM researchers.

4.4.2 Results of Human Evaluations and Findings. Tables 6–8
show how often the participants ranked each summarizer from dif-
ferent aspects. In the table, data in each column mean the percentage
of participants voting for the summarizers. A one-way ANOVA test
was carried out for every pair of summarizers in order to assess the
significant difference among the summarizers and to check whether
the results were caused by chance. Finally, the ANOVA test shows
there is a significant difference (p< 0.05) between the pretrained
BERT model, the finetuned BERT model as well as the Text
Rank in terms of information coverage, information relevancy,
and information redundancy, indicating that the results were not
caused by chance.
Table 6 shows the results regarding question 1, which relates to

informative coverage. According to Table 6, most of the evaluation
results about summaries generated by the BERT-based model lay in

the range of good quality to best quality. About 81.82% of the eval-
uators think the summaries generated by the pretrained BERT
model are above good quality in the aspect of informative coverage.
About 61.18% of evaluators think the summaries generated by the
finetuned BERT model are above good quality.
However, the summary generated by Text Rank gained polarized

results. 41.81% of the evaluators think Text Rank can generate the
most informative summary, while 43.64% of them think it is the
worst. It can be speculated that Text Rank tends to select longer-
length sentences in the summary due to its specific algorithm.
Some participants think longer paragraphs can contain more infor-
mation, while others think most of the information in the summary
is redundant.
Table 7 shows the results relating to informative relevance. From

the table, it can be seen that 42.73% of the evaluators think the fine-
tuned BERT model can generate summaries that express the closest
meaning to the abstract. And 45.45% of the evaluators think Text
Rank generates the worst results. Also, the pretrained BERT
model has better performance than Text Rank since the Text
Rank tends to capture longer sentences without considering the
meaning. The results imply that after being finetuned, the BERT
model did learn how to capture the significant sentences and
include the sentences in the final summary. Therefore, it earns the
best results compared to the other two summarizers.
Table 8 shows the results in terms of informative redundancy.

From the table, the results show that the finetuned BERT model
achieved the best performance on informative redundancy; 46.4%
of the participants think finetuned BERT model can generate the
least redundant summaries. Meanwhile, the pretrained BERT
model is ranked second, and Text Rank is ranked as the worst sum-
marizer under this category.
The results about informative redundancy can also support the

results of informative coverage as well as informative relevance.
The evaluators think summaries generated by the finetuned BERT
model contain the least redundant information while the summary
generated by Text Rank is the most redundant.
From the earlier results, the finetuned BERT model can be con-

sidered as the best summarizer among the three summarizers. Com-
paring the finetuned BERT model with the pretrained BERT model,

Fig. 7 The abstract of one paper displayed in the first step
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Fig. 8 An example of comparison among summaries generated by three summarizers:
(a) pretrained BERT model, (b) finetuned BERT model, and (c) text rank

Fig. 9 Example of ranking options of content evaluation
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although the results of the pretrained BERT summarizer about
information coverage are better than that of the finetuned BERT
model, according to the results from information relevance and
redundant, it can be seen that much information contained in the
summaries generated by the pretrained BERT model is related to
additive manufacturing but not the focus of the paper. Meanwhile,
the summaries generated by the finetuned BERT model include
more overlapping information with the abstract and less redundant
information about additive manufacturing, which can be considered
as representing the main idea of the papers. Moreover, the polarized
results of Text Rank in information coverage can be explained. The
summaries generated by Text Rank have a longer length and more
information about additive manufacturing compared to the other
two summarizers, but they do not contain the most significant infor-
mation of the original papers.
The results of the human evaluation indicate that the summaries

generated by the finetuned BERT model can capture the main idea
and express the most significant meaning with the least redundant
sentences. After being finetuned with a domain-specific dataset con-
taining additive manufacturing information, the finetuned BERT
model is able to create the summaries including the closest
content to the abstract compared to the other two summarizers.
Overall, the finetuned BERT summarizer has the best perfor-

mance compared to the pretrained BERT model and Text Rank.
After carrying out the ANOVA test, it is shown that there is a sig-
nificant difference (p< 0.05) between each pair of summarizers.
Therefore, according to human-based evaluation, AM researchers
present their agreement to the summaries generated by the finetuned

BERT model based on their domain knowledge. This implies that
the finetuning process can enhance the possibility of a language
model to capture the domain information and utilize that informa-
tion in various applications like text summarization.

5 Discussion
5.1 Summarization Based on Dimensions of Contextualized

Representation. Different settings of the parameters and the size
of dimensions of sentence embeddings can lead to different
results. In this study, 2D, 4D, 20D, and 768D sentence embeddings
are evaluated. Based on the ROUGE results, it has been shown that
sentence embeddings under 768D can generate summaries with
better performance than others. This result demonstrates that the
sentence embeddings with higher dimensions can capture more
information about the text documents.

5.2 Significant Information Contained in Contextualized
Representations. By comparing BERT-based models and
non-BERT-based models, it can be seen that after the words and
sentences are mapped to contextual representations, the perfor-
mance of BERT-based models can exceed most non-BERT-based
models such as TextRank and latent semantic analysis (LSA), espe-
cially in terms of ROUGE-1 score, which indicates that BERT-
based summarizers are able to capture more significant sentences
in the original texts.

5.3 Domain Knowledge Capture Through Model Finetuning.
Comparing the pretrained BERT model and the finetuned BERT
models, the results indicate that the BERT model can increase the
number of keywords in summaries after being finetuned by the
domain-specific datasets. Moreover, based on the results from the
ROUGE evaluation, it can be seen that the summaries generated
by the BERT model finetuned with the largest dataset have a
greater overlapping extent than those generated by other BERT-
based models and non-BERT-based models. This result demon-
strates that the word representations in the finetuned BERT
models can capture the informative context better than other sum-
marizers due to the additional and domain-specific training.
Besides, in comparing recall scores and precision scores of BERT-
based summarizers, the result shows that the recall scores decreased
while the precision scores were highly enhanced after the finetuning
process. The high precision score means the summaries generated
by finetuned BERT models have more overlapping words with
the original abstract compared to other models. Meanwhile, the
low recall score illustrates that much information in the original
text is redundant from the perspective of the finetuned BERT
models. The results of human evaluation also provided strong evi-
dence that the BERT model is capable of capturing useful domain
knowledge through finetuning process. That domain information
can be utilized for further design support.

5.4 Performance of Sentence Representations From
Various Sizes of Data Set. Comparing the finetuned BERT
models trained with domain datasets of distinct sizes, the model
trained by larger datasets outperforms those by smaller ones,
which is not surprising. According to the ROUGE scores and the
statistical scores, the finetuned BERT models with the largest
dataset always achieve the best performance. However, as indicated
by Fig. 5 and through closer observations of the results shown in
Tables 4 and 5, the increase in the performance with respect to
the increase of training dataset size is rather nonlinear. The signifi-
cant increase happens when the size varies from 0 (e.g., no finetun-
ing) to 500 and then to 1000. After that point, the performance gain
is gradually diminishing. This result is significant in that the lan-
guage models like BERT that have been pretrained with a vast
range of datasets have a great potential to be customized for

Table 6 The data analysis results of informative coverage

Summarizers Best Good Worst

Pretrained BERT
model

0.364 (40/110) 0.455 (50/110) 0.182 (20/110)

Finetuned BERT
model

0.218 (24/110) 0.4 (44/110) 0.382 (42/110)

Text Rank 0.418 (46/110) 0.145 (16/110) 0.436 (48/110)

Note: Data in the bracket presents the number of votes. The differences
between each pair are significant (p< 0.05) based on the one-way
ANOVA result.

Table 7 The data analysis results of informative relevance

Summarizers Best Good Worst

Pretrained BERT
model

0.264 (29/110) 0.427 (47/110) 0.309 (34/110)

Finetuned BERT
model

0.427 (47/110) 0.337 (37/100) 0.236 (26/110)

Text rank 0.309 (34/110) 0.236 (26/100) 0.455 (50/110)

Note: Data in the bracket presents the number of votes. The differences
between each pair are significant (p< 0.05) based on the one-way
ANOVA result.

Table 8 The data analysis results of informative redundancy

Summarizers Best Good Worst

Pretrained BERT
model

0.3 (33/110) 0.464 (51/110) 0.236 (26/110)

Finetuned BERT
model

0.464 (51/110) 0.309 (34/110) 0.227 (25/110)

Text rank 0.236 (26/110) 0.227 (25/110) 0.536 (59/110)

Note: Data in the bracket presents the number of votes. The differences
between each pair are significant (p< 0.05) based on the one-way
ANOVA result.
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domain-specific tasks with only a minimum finetuning effort. No
significant datasets or lengthy training time is needed.

6 Conclusions and Future Work
In this study, sentence embeddings that convert the unstructured

texts to multidimensional vectors are extracted by applying BERT
models and then used through a k-means method to capture the
main idea of different papers and generate paper summaries. The
evaluation results of the BERT models, together with other
non-BERT models, demonstrate that the word representations in
finetuned BERT models can capture the informative context of
the papers effectively.
Based on the results and discussions described earlier, it can be

concluded that contextual embeddings can enhance the perfor-
mance in NLP tasks like text summarization. In addition, the fine-
tuning process can increase the ability of BERT models to
capture domain knowledge and apply the knowledge in word and
sentence representations. Those contextual representations contain
semantic and contextual information and have a great potential
for processing other NLP tasks in different domains. From an engi-
neering support point of view, the high effectiveness of the fine-
tuned BERT models has opened ways to developing extensive
NLP tools to support engineering knowledge capture, personal
NLP-based design assistance, and engineering collaboration. An
important advantage of this approach is that the language models
like BERT that are pretrained with vast datasets can be customized
for domain-specific tasks without requiring vast finetuning datasets
and lengthy training times thanks to the existence of the relatively
small minimum finetuning dataset size.
The proposed bidirectional language model-based approach has

several limitations. First, sentence embeddings based on averages
of word embeddings are easy to implement but may lead to loss of
information. Alternative methods, including Universal Sentence
Encoder [68], Sentence-BERT [56], and InferSent [69], need to be
investigated for possible performance enhancement. Second, the

k-means clustering for summarization is an easy to interpret
method but may not handle high-dimensional vectors as well as
other methods such as t-distributed stochastic neighbor embedding
(t-SNE) [70]. Third, the results and insights obtained thus far are
based on the BERT model. Further work is needed to explore other
languagemodels like GPT-2 and GPT-3. Lastly, the manual labeling
process needs to be further elaborated. One potential machine-based
approach is to take all the sentences in the abstract as label 1 and those
in the introduction as 0. Another direction is to devise some unsuper-
vised learning methods as those used with GPT-2.
In this paper, the contextualized embeddings are only used for

general summarization through domain-specific finetuning. Future
work includes exploring the features of the sentence embeddings,
examining the clustering properties, and going beyond summariza-
tion. Besides optimizing the experimental methods and applying
alternative language models to enhance the performance, design-
perspective information capturing (e.g., customer needs, functional
requirement, design solutions, constraints, and problem-solving
process), including intra- and inter-perspective structures, and
design-specific summarizations, will be conducted to assist design-
ers. The long-term goal is to realize highly “intimate” computer-
aided design by using BERT-like language models to augment
design engineers’ working and thinking processes based on vastly
available documents.
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Appendix A

Appendix B

Table 9 The standard deviations under different dimensions

Dimensions

Pretrained BERT Finetuned BERT (500) Finetuned BERT (2021) Finetuned BERT (6067)

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

2D 0.04 0.02 0.03 0.04 0.03 0.04 0.03 0.02 0.03 0.03 0.02 0.03
4D 0.03 0.02 0.03 0.04 0.03 0.04 0.04 0.02 0.04 0.04 0.02 0.04
20D 0.03 0.02 0.05 0.04 0.03 0.05 0.03 0.02 0.03 0.03 0.02 0.03
768D 0.03 0.02 0.03 0.04 0.02 0.05 0.04 0.02 0.05 0.03 0.02 0.03

Note: The number in brackets represents the size of dataset.

Table 10 Standard deviations of ROUGE-1, ROUGE-2, and ROUGE-L scores of BERT-based summarizers and non-BERT-based
summarizers

Summarizers

ROUGE-1 ROUGE-2 ROUGE-L

Recall Precision F-score Recall Precision F-score Recall Precision F-score

Pretrained-BERT 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03
Finetuned BERT (500) 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05
Finetuned BERT (2012) 0.04 0.04 0.04 0.02 0.02 0.02 0.05 0.05 0.05
Finetuned BERT (6167) 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03
Text rank 0.05 0.05 0.04 0.02 0.02 0.02 0.05 0.05 0.05
KL-Sum 0.05 0.05 0.05 0.03 0.03 0.03 0.05 0.05 0.05
LSA 0.05 0.05 0.05 0.03 0.03 0.03 0.05 0.05 0.05
Random Baseline 0.04 0.04 0.04 0.03 0.03 0.03 0.05 0.05 0.05

Note: The number in brackets represents the size of the dataset.
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