
Hao Ji
Department of Aerospace and Mechanical

Engineering,
University of Southern California,

3650 McClintock Avenue, OHE 400,
Los Angeles, CA 90089-1453

e-mail: haoji@usc.edu

Yan Jin1
Department of Aerospace and Mechanical

Engineering,
University of Southern California,

3650 McClintock Avenue, OHE 400,
Los Angeles, CA 90089-1453

e-mail: yjin@usc.edu

Knowledge Acquisition of Self-
Organizing Systems With Deep
Multiagent Reinforcement
Learning
Self-organizing systems (SOS) can perform complex tasks in unforeseen situations with
adaptability. Previous work has introduced field-based approaches and rule-based social
structuring for individual agents to not only comprehend the task situations but also take
advantage of the social rule-based agent relations to accomplish their tasks without a
centralized controller. Although the task fields and social rules can be predefined for rela-
tively simple task situations, when the task complexity increases and the task environment
changes, having a priori knowledge about these fields and the rules may not be feasible.
In this paper, a multiagent reinforcement learning (RL) based model is proposed as a
design approach to solving the rule generation problem with complex SOS tasks. A deep
multiagent reinforcement learning algorithm was devised as a mechanism to train SOS
agents for knowledge acquisition of the task field and social rules. Learning stability, func-
tional differentiation, and robustness properties of this learning approach were investigated
with respect to the changing team sizes and task variations. Through computer simulation
studies of a box-pushing problem, the results have shown that there is an optimal range of
the number of agents that achieves good learning stability; agents in a team learn to differ-
entiate from other agents with changing team sizes and box dimensions; the robustness of
the learned knowledge shows to be stronger to the external noises than with changing task
constraints. [DOI: 10.1115/1.4052800]

Keywords: deep Q-learning, complex system, self-organizing system, scalability,
robustness, artificial intelligence, computational synthesis, machine learning for
engineering applications, model-based systems engineering

1 Introduction
Self-organizing systems can consist of simple agents that work

cooperatively to achieve complex system-level behaviors without
requiring global guidance. The design of SOS takes a bottom-up
approach, and the top-level system complexity can be achieved
through local agent interactions [1,2]. Complex system design by
applying a self-organizing systems approach has many advantages,
such as scalability, adaptability, and reliability [3,4]. Moreover,
compared with traditional engineering systems with centralized
controllers, self-organizing systems can be more robust to external
changes and more resilient to system damages or component mal-
functions [5–7].
Various approaches have been proposed to support the design of

SOS. The field-based behavior regulation (FBR) approach [8]
models the task environment with a field function, and the behavior
of the agents is regulated based on the positions of these agents in
the field by applying a field transformation function. Generally, an
agent is striving to maximize its own interests by moving toward
higher (or lower, depending on definition) positions. The advantage
of this approach is that the agents’ behaviors are simple hence
require little knowledge to perform tasks since moving toward a
higher or lower position in a given field is the sole behavior. This
behavioral simplicity has its limits in solving more complex
domain problems because the field representation has its limits in

capturing all features of the task domains, and the inter-agent rela-
tions are ignored in this approach.
In order to overcome the limitations of the FBR approach, an

evolutionary design method [4] and the social structuring approach
[5] have been proposed to make the design of SOS parametric and
optimizable and to allow an SOS to deal with more complex domain
tasks by considering both task fields and social fields modeled by
social rules [5]. It has been demonstrated that applying social
rules can promote the level of coherence among agents’ behaviors
by avoiding potential conflicts and utilizing cooperation opportuni-
ties. A fundamental issue with this social rule-based approach is that
a designer must know a priori what the rules are and how they
should be applied, which may not be the case, especially when
the tasks are complex and changeable.
Therefore, in this research, a reinforcement learning (RL)

approach is taken to capture the self-organizing knowledge for
agent behavior regulation in SOS design. More specifically, a mul-
tiagent Q-learning algorithm is explored to address three research
questions: Q1: What are the factors that impact the stability of
learning dynamics in self-organizing systems?Q2:How does a self-
organized agent differentiate from others and become specialized in
certain tasks, and what affects such differentiation? Q3: Will the
knowledge captured from RL be robust enough to be applied in a
wide range of task situations and team sizes?
In the RL literature, multiple agents can be trained using either a

universal neural network or independent neural networks. Individ-
ual agents gather the state information and can be trained either col-
laboratively as a team or individually based on the reward they
receive from the interactions with the environment [9]. Designing
self-organizing systems, in this case, faces a choice of training the
system either as a team using a single centralized agent RL
approach or as separate individuals going through multiagent RL.

1Corresponding author.
Contributed by the Computers and Information Division of ASME for publication

in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received November 25, 2020; final manuscript received October 12, 2021; published
online December 9, 2021. Assoc. Editor: Yusheng Liu.

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021010-1
Copyright © 2021 by ASME

mailto:haoji@usc.edu
mailto:yjin@usc.edu

Although the centralized learning of joint actions of agents as a
team can solve coordination problems and avoid learning nonstatio-
narity, it does not scale well as the joint action space grows
exponentially with the number of agents [10]. Second, learning to
differentiate joint actions can be highly difficult. Further, the
neural networks obtained from centralized learning are only appli-
cable to situations with the same number of agents for the trained
cases because the action space is fixed by the trained cases.
In contrast to the centralized single-agent RL, during the multia-

gent RL, each agent can be trained using its own independent neural
network. Such an approach solves the problem of the curse of
dimensionality of action space when applying single-agent RL to
multiagent settings. Although theoretical proof of convergence of
multiagent independent Q-learning is not mathematically given,
there are numerous successful practices in real-world applications
[10]. Thus, applying the state-of-the-art independent multiagent
RL is a promising approach in tackling the existing problems
faced by SOS design.
In the rest of this paper, Sec. 2 provides a review of the relevant

work in self-organizing systems and RL. After that, a multiagent
independent Q-learning framework is presented as a complex
system design approach in Sec. 3, together with the system design
implications. In Sec. 4, a box-pushing case study is introduced that
applies the proposedQ-learningmodel. Section 5 provides a detailed
analysis and discussion of the simulation results. Finally, in Sec. 6,
the conclusions are drawn from the case study, and futurework direc-
tions are pointed out.

2 Related Work
2.1 Design of Complex Systems. A complex system is a

system that consists of many interacting components and whose
collective behavior is difficult to model due to interdependencies
or interactions between its parts [11]. Much research has been
carried out thus far to study how to design complex systems. For
example, Arroyo et al. introduced a binary-tree based bio-inspired
tool for fault adaptive design in complex engineering systems
[12]. Königseder and Shea compared different strategies for
rule applications in two computational design synthesis case
studies: gearbox synthesis and bicycle frame synthesis and found
that the effect of the strategy is task-dependent [13]. Meluso and
Austin-Breneman developed an agent-based simulation that
models the parameter estimation strategy in large-scale complex
engineering systems [14]. McComb et al. developed a computation
model to analyze how the characteristics of configuration design
problems can be used to choose the best values for team character-
istics such as team size and frequency of interaction [15]. Min et al.
analyzed the structural complexity of complex engineering systems
at various levels of decomposition [16]. Ferguson and Lewis pro-
posed a method for the design of effective reconfigurable systems
such as vehicles. They focused on identifying how system design
variables change and analyzed the stability of the reconfigurable
system using a state-feedback controller [17]. Martin and Ishii
developed a design-for-variety approach that can help companies
quickly reconfigure their products and address generational
product variation to reduce the time from products to market [18].
Previous research on the design of complex systems requires exten-
sive domain knowledge from designers to build models or draw
inspiration from nature, which is time-consuming and hardly
extendable to different scenarios. Also, generating design rules
from global requirements to local interactions remains a challenging
task.

2.2 Artificial Self-Organizing Systems. An artificial self-
organizing system is a system that is designed by humans and has
emergent behavior and adaptability like nature [1]. Much research
has been done regarding the design of artificial self-organizing
systems. Werfel developed a system of homogenous robots to
build a predetermined shape using square bricks [19]. Beckers

et al. introduced a robotic gathering task where robots have to
patrol around a given area to collect pucks [20]. Khani et al. [5]
and Khani and Jin [6] developed a social rule-based regulation
approach in enforcing the agents to self-organize and push a box
toward the target area [5,6]. Swarms of UAVs can self-organize
based on a set of cooperation rules and accomplish tasks such as
target detection, collaborative patrolling, and shape formation
[21–24]. Chen and Jin used a FBR approach and guides self-
organizing agents to perform complex tasks such as approaching
long-distance targets while avoiding obstacles [8]. Price and
Lamont investigated the use of genetic algorithm in optimizing self-
organizing multi-unmanned aerial vehicle (UAV) swarm behavior
[25]. The robotic implementations mentioned above have demon-
strated the potentials of building self-organizing systems, and the
design methods of self-organizing systems [5,6,8] have had their
drawbacks, as indicated in Sec. 1.

2.3 Multiagent Reinforcement Learning. Multiagent RL
applies to multiagent settings and is based largely on the concept
of single-agent RL such as Q-learning, policy gradient, and actor-
critic [9,26]. Compared with single-agent RL, multiagent learning
is faced with the nonstationary learning environment due to the
simultaneous learning of the multiple agents. In the past several
years, there has been a move from tabular-based methods to the
deep RL approach, resulting from the need to deal with the high-
dimensionality of state and action spaces in multiagent environ-
ments and to approximate state-action values [27–29]. Multiagent
systems can be classified into cooperative, competitive, and
mixed cooperative and competitive categories [27]. In the SOS
design, we focus on the cooperative agents since they share the
same task goals.
One natural approach for multiagent RL is to optimize the policy

or value functions of each individual. The most commonly used
value function-based multiagent learning is independent Q-learning
[30]. It trains each individual’s state-action values using Q-learning
[30,31] and is served as a common benchmark in the literature.
Tampuu et al. [27] extended previous Q-learning to deep neural net-
works and applied DQN [32] to train two independent agents
playing the game Pong [27]. Foerster et al. applied the COMA
framework to train multiple agents to play StarCraft games with
centralized critics evaluating decentralized actors [28]. In another
work by Foerster et al., they analyzed their replay stabilization
methods for independent Q-learning based on StarCraft combat
scenarios [33].
As a multiagent environment is usually partially observable,

Hauskneche and Stone [34] used deep recurrent networks such as
LSTM [35] or GRU [36] to speed up learning when agents are
learning over long time periods. Lowe et al. developed Multiagent
Deep Deterministic Policy Gradient, which uses centralized training
with decentralized execution and tested their algorithm in predator-
prey, cooperative navigation, and other environments [37]. Brown
and Sandholm developed a superhuman AI model called “Pluribus”
using a self-play-with-search algorithm and showed that their model
was able to defeat top human professionals in six-player-no-limit
Texas hold”em poker [38]. Baker et al. demonstrated that through
multiagent competition, simple game rules, and standard reinforce-
ment learning algorithms at scale, multiple agents can create a self-
supervised autocurriculum, which can generate various rounds of
emergent strategy in hide-and-seek games [39]. Wu et al. developed
Bayesian delegation, a decentralized algorithm that makes infer-
ences like human observers about the intent of others and success-
fully tested their algorithm in a cooking video game called
“Overcooked” [40].
Most approaches to multiagent RL attempts to achieve optimal

system reward or desirable convergence properties. Many training
algorithms are based on fully observable states. Training of multia-
gent reinforcement model is usually conducted on prespecified
environments, and the generalizability of the training network to
various multiagent team sizes and robustness of training network

021010-2 / Vol. 22, APRIL 2022 Transactions of the ASME

to change of situations are not analyzed or considered, which are
important factors of consideration in SOS design. It is crucial to
develop a multiagent learning framework that is scalable to
various team sizes, robust to situation change and also to provide
guidelines on how design should be implemented and analyzed.
Such areas are often omitted in the literature and are the focus of
this paper.

3 A Deep Multiagent Reinforcement Learning Model
3.1 Single-Agent Reinforcement Learning. It is important to

discuss the single-agent RL before moving into multiagent RL since
many concepts and algorithms of multiagent RL are based on the
single-agent RL.
Single-agent RL is used to optimize system performance based

on training so that the system can automatically learn to solve
complex tasks from the raw sensory input and the reward signal.
In single-agent RL, learning is based on an important concept
called Markov Decision Process (MDP). An MDP can be
defined by a tuple of <S, A, P, R, γ>. S is the state space,
which consists of all the agent’s possible sense of environment
information. A is the action space, including all the actions that
can be taken by the agent. P is the transition matrix, which is
usually unknown in a model-free learning environment. R is the
reward function, and γ is the discount factor, which means
the future value of the reward is discounted and worth less than
the present value. At any given time t, the agent’s goal is to max-
imize its expected future discounted return, Rt =

∑T
t′ γ

t′−trt , where
T is the time when the game ends. Also, agents estimate the action
value function Q(s, a) at each time-step using Bellman Eq. (1)
below as an update. Eventually, such a value iteration algorithm
will converge to the optimal value function [9]

Qi+1(s, a) = E[r + γmax
a′

Qi(s
′, a′)|s, a] (1)

Researchers in the past uses Q-learning as a common training
algorithm in single-agent RL [41,42]. Q-learning is based on
Q-tables, each state-action value pair is stored in a single
Q-table and such training algorithm has been applied in simple
tasks with small discrete state and action spaces [41,42].
However, in real-life engineering applications, state space can
often be continuous and action space vast, making it difficult or
impossible to build a look-up Q-table to store every state-action
value pair. In order to overcome such problems in Q-learning,
deep neural networks are introduced as functional approximators
to replace the Q-table for estimating Q values. Such learning
methods are called deep Q-learning [32]. A Q-network with
weights θi can be trained by minimizing the loss function at
each iteration i, illustrated in Eq. (2)

Li(θi) = E[(yi − Q(s, a; θi))2] (2)

where

yi = E r + γmax
a′

Q(s′, a′; θi−1)
[]

(3)

is the target value for iteration i. The gradient can be calculated
with Eq. (4):

∇θi Li(θi) = Es,a,r,s′ [{r + γmax
a′

Q(s′, a′; θi−1)

− Q(s, a, θi)} ∇θiQ(s, a, θi)] (4)

Various approaches have been introduced to stabilize training
and increase sample efficiency for training deep Q-networks. In
our multiagent training algorithm, the neural network of every
single-agent is built based on the following two approaches.

3.1.1 Experience Replay. During each training episode, the
agents’ experiences et= (st, at, rt, st+1), which represents state,

action, reward, and next state, are stored and appended to an expe-
rience replay memory D= (e1, e2,…, eN). N represents the capacity
of the experience replay memory. At every training interval, mini-
batches are randomly sampled from experience replay memory D
and fed into Q-learning updates. At the same time, an agent
selects its action based on the ϵ-greedy policy, which means the
agent selects its action based on the exploration of random
actions and exploitation of the best decision given current informa-
tion. Experience replay, as Minh described in his paper [43],
increases data sample efficiency and can break down the correla-
tions between subsequent experiences and is used to stabilize train-
ing performance.

3.1.2 Dueling DQN. The Dueling DQN architecture can iden-
tify the right action during policy evaluation faster than other algo-
rithms as it separates the Q value into the representation of state
value V and action advantages A, which are state-dependent [44].
In every Q value update, the dueling architecture’s state value V
is updated, which contrasts with the single-stream architecture,
where only value for one of the actions is updated, leaving other
actions not updated. This more frequent updating allows for a
better approximation of the state values and leads to faster training
and better training performance.

3.2 Multiagent Reinforcement Learning. As mentioned
above, there are generally two approaches in multiagent training.
One is to train the agents as a team, treating the entire multiagent
system as “one agent.” It has good convergence property similar
to single-agent RL but can hardly scale up. In order to increase
learning efficiency and maintain scalability, a multiagent indepen-
dent deep Q-learning (IQL) approach is adopted. In this approach,
Ai, i= 1, …, n (n: number of agents) are the discrete sets of
actions available to the agents, yielding the joint action set A=A1

× · · · ×An. All agents share the same state space and the same
reward function.
During training, each agent has its own dueling neural network

and is trained by applying deep Q-learning with experience
replay. Agents perceive the state space through their local
sensors. Each agent learns its own policy and value function indi-
vidually to choose its actions based on its own neural network
given the reward from the environment through the shared reward
function. As each agent’s action space size is the same, each
agent’s trained neural network can be reused and applied in
various team sizes, and such multiagent systems can scale to
agent teams of different sizes. Because the advantage of the self-
organizing system is that system requires little or no communication
between agents, using independent deep Q-learning is most suitable
for the training of self-organized agents. Other variants of deep mul-
tiagent reinforcement learning algorithms, such as deep distributed
recurrent Q-learning [45] require adding extra recurrent layers to
learn the communication structure between agents, which greatly
increases the training time and is not needed for the training of self-
organizing agents.
In our multiagent RL mechanism described above, each agent

i(i = 1, 2, …, n) engages in learning as if it is in the single-agent
RL situation. The only difference is that the next state of the envi-
ronment, St+1, is updated in response to the joint action at= {a1, a2,
…, an}, instead of its own action ai, in addition to the current state
St. Although the multiagent RL research has focused on general
machine learning issues such as applying deep learning techniques
and computing effectiveness [26], little work has been done to
address the contextual stability or convergence issue of the learning
process—i.e., whether the knowledge can be acquired in the form of
neural networks through RL; the differentiation issue—i.e., how
agents learn to differentiate themselves during learning and what
affects such process, and the adaptability issue—i.e., whether the
learned neural networks can be effectively applied to changing
situations or different team sizes. These issues are the focus of
this research.

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021010-3

4 Case Study
In order to test the concepts and explore the multiagent RL algo-

rithm discussed above, a box-pushing case study has been carried
out. In choosing this case example, several requirements were con-
sidered based on our long-term goal of developing robotic self-
organizing assembly systems. First, the task environment requires
relatively intense agent interactions, instead of sparse interactions,
for efficient learning. For example, the ant foraging task may be
less desirable as the interaction between agents during training is
only passive, causing it slow and ineffective. Second, the tasks
require cooperative work among agents. Although each agent
might have different short-term rewards, in the long run, they
work for the same maximum reward. Lastly, only homogeneous
cases are considered for simplicity at this stage of research, and
the action space should be the same for all the agents. This will
allow us to add more agents to the system using the same learned
neural networks. After considering several options, the box-pushing
problem was finally chosen for the case study.

4.1 The Box-Pushing Problem. The box-pushing problem is
often categorized as a trajectory planning or piano mover’s
problem [46]. Many topological and numerical solutions have
been developed in the past [46]. In our paper, a self-organizing mul-
tiagent deep Q-learning approach is taken to solve the box-pushing
problem. During the self-organizing process, each agent acts based
on its trained neural network, and collectively all agents can push
the box toward a goal without any system-level global control.
In this research, the box-pushing case study was implemented in

pygame, a multiagent game package in the PYTHON environment. In
the box-pushing case study, each individual agent is trained with its
independent deep Q-learning (IQL) neural network as a member of
a team. After the training, the resulting neural networks are applied
to the testing situations with various team sizes between 1 and 10.
Both training and testing results are analyzed to elicit the learning
properties and the quality, scalability, and robustness of the
learned neural networks.
A graphical illustration of the box-pushing case study is shown in

Fig. 1. The game screen has a width x of 600 pixels and a height y of
480 pixels. Numerous agents (the green squares) with limited
pushing and sensing capabilities need to self-organize to push and
rotate the box (the brown rectangle or the black dotted rectangle,
depending on simulation setup) toward the goal (the black dot
with a “+” mark). As there is an obstacle (the red dot) on the
path and walls (the solid black lines) along the side, the agents
cannot just simply push the box but must rotate the box when nec-
essary [5,6]. This adds complexity to the task. The box has sensors
deployed at its outside boundary. When the outside perimeter of the

box reaches the horizontal x-coordinate of the goal, represented as a
white vertical line, the simulation is considered a success.
There are four major tasks of box-pushing, as summarized below.

Agents need to move, rotate the box, and keep the box away from
potential collisions with walls and obstacles.

T1= <Move><Box> to <Goal>
T2= <Move><Box> to <Goal>
T3= <Move><Box> away from <Walls>
T4= <Move><Box> away from <Obstacle>

In pygame, the distance is measured by pixels. Each pixel is a
single square area in the simulation environment. In this case
study, two different boxes are used, namely, Smal-Box which is
60 pixels wide and 150 pixels long, shown as a solid brown box
in Fig. 1, and LargeBox, which is 90 pixels wide and 225 pixels
long, shown as the black dotted hollow box in Fig. 1.
In box-pushing, agents have limited sensing and communication

capabilities. They can receive information from the sensor on the
box, which measures the orientation of the box and senses the obsta-
cles at a range of distance. They have limited storage of observation
information: their experiences such as state, action, reward, and
next state. They possess a neural network that can transform the per-
ceived state information into action. These assumptions are in line
with the definition of the “minimalist” robot [47] and are reasonable
with the current applications of physical robot hardware [48].

4.2 State Space and Action Space

4.2.1 Task State Space. Based on the task decomposition and
constraint analysis mentioned above, the state space of the box-
pushing task is defined as shown in Fig. 2. In order to gather rele-
vant environment information, a sensor is deployed in the center of
the box, which can sense nearby obstacles. The radius of the sensor
range is 150 pixels, and the entire circular sensor coverage is split
into eight sectors of equal size, as shown in Fig. 2. In this case
study, part of the state space captures the state of each sector at
any given time: whether the sector is occupied by an obstacle, repre-
sented as 1, or not, represented as 0. Furthermore, we assume the
sensor can also detect the orientation of the box’s x-axis with
respect to the location of the goal [41,42]. Denoting the sectors
with s1, s2, s3, s4, s5, s6, s7, s8, and the box orientation with s9,
respectively, the state space can be defined as

S = {s1, s2, s3, s4, s5, s6, s7, s8, s9} (5)

Fig. 1 A graphical illustration of the box-pushing task Fig. 2 Box-pushing task state representation

021010-4 / Vol. 22, APRIL 2022 Transactions of the ASME

For the example of Fig. 2, sectors 3, 5, and 7 are occupied by
obstacles. Therefore, the corresponding state attributes s3, s5, s7
are having the value 1, and s1, s2, s4, s6, s8 the value 0. In
Fig. 2, the box angle θ is about 30 deg. And such degree informa-
tion can be shaped into the range of [−1,1] by applying
s9 = θ − 180/180 = 0.83. This shaped angle method can facilitate
deep Q-network training and is used commonly in practice [41,42].
Given the above, the state representation of Fig. 2 can be

expressed as a nine-item tuple <0,0,1,0,1,0,1,0, −0.83>.
During training, each agent is close to the vicinity of the box

center, so it can receive the sensor information broadcasted
locally among agents. It is assumed that the sensor can also sense
the distance from the center of the box to the location of the goal,
analogous to real-world radar sensor, and is also like the gradient-
based approach in literature where the task field is assumed [5,6].
Agents can also receive such distance information from the sensor.

4.2.2 Box Neighborhood. The box neighborhood is defined as
six regions [6,49], as shown in Fig. 3. During each simulation, an
individual agent can move to one of the six regions of the box neigh-
borhood and that specific neighborhood is the position of the agent.
As the individual agent is relatively small, we assume there can be
multiple agents in the same region at the same time. This is in line
with the definition of the “minimalist” robot [47].

4.2.3 Box Dynamics. The box dynamics are based on a simpli-
fied physical model. The box movement depends on the simulated
force and torque. Forces equal to the sum of vector forces of each
pushing agent. Every push carries the same amount of force,
which acts from an agent toward the box in the normal direction.
The sum of two pushes will move the box 10 pixels in a given
direction. Torque is assumed to be exerted on the centroid of the
box, and two pushes on the diagonal neighborhood of the box
(such as positions 2 and 5 each) will rotate the box 10 deg. We
assume the box carries a large moment of inertia, and when it hits
the obstacle, which is considered rather small, it will continue its
movement until its expected end position is reached.

4.2.4 Agent Action Space. The agent action space is defined
based on the box neighborhood and simulated box dynamics. At
each time-step, an agent can choose a place in one of the six
regions of the box neighborhoods to push the box. Therefore, the
agents share the same actions space of A= {a1, a2, a3, a4, a5, a6},
as shown in Fig. 3. For instance, if an agent chooses action a1, it
will move to box region “1” and push the box from there, the box
will move downward along the box’s y-axis based on the simulated
box dynamics and the same logic applies to other agent actions. It is
worth mentioning that it takes multiple moving steps, hence unit
times, for an agent to move from one region to another depending
on the distance between the starting and ending regions.

4.3 Reward Schema and Training Model. To train multiple
agents to self-organize and push the box to the final goal area, which

is the group level function, we need to design a proper reward
schema to facilitate agent training. Adapted from previous
Q-table based box-pushing reward schema [41,42], we designed a
new reward schema for agents’ box-pushing training. The total
reward is composed of four parts: distance, rotation, collision,
and goal.

4.3.1 Distance Reward. The reward for pushing the box closer
to the goal position is represented as Rdis and is shown in Eq. (6).
The previous distance Dold represents the distance, measured in
pixels, between the center of the box and the goal position in the
previous time-step. Dnew represents such distance at the current
time-step. Cd is a constant, called distance coefficient in our simula-
tion, and is set to 2.5. At each simulation time-step, agents calculate
the change of distance between the current distance and previous
distance based on Eq. (6) and draw its distance reward

Rdis = (Dold − Dnew)
∗Cd (6)

4.3.2 Rotation Reward. The reward for rotation Rrot is repre-
sented in Eq. (7). where α1 is the previous time-step angle of the
box’s x-axis with respect to goal position and α2, the current
angle. The rotation reward is given to discourage the rotation of
more than 11 deg, this way, the box can be rotated constantly
with small degrees and avoid large rotation momentum, which
can result in a collision with obstacles. The rotation reward is rela-
tively small as it is used only for rotation of the box rather than
pushing the box toward the goal, which is the task’s goal

Rrot = Cos(α2 − α1) − 0.98 (7)

4.3.3 Collision Reward. The collision reward is analogous to
the reward schema in common collision avoidance tasks [50] and
is represented in Eq. (8) with Rcol. During each simulation step, if
there is no collision for the box with either the obstacle or the
wall, Rcol = 0. If a collision occurs, a −900 reward will be given
to all the agents as a penalty

Rcol =
−900 if collision occurs
0 if no collision occurs

{
(8)

4.3.4 Goal Reward. The reward for reaching the goal Rgoal is
represented in Eq. (9). At each simulation step, if the box reaches
the goal position, each agent will receive a positive 900 reward; if
the goal is not reached, the agents do not receive any reward

Rgoal =
900 if reaching goal
0 if not reaching goal

{
(9)

The total reward is a weighted sum of all these rewards, as shown
in Eq. (10)

Rtot = w∗
1Rdis + w∗

2Rrot + w∗
3Rcol + w∗

4Rgoal (10)

In our simulations, after repeated testing, the weights were set as
w1= 0.6, w2= 0.1, w3= 0.1, w4= 0.2, with the sum of these weights
equal to 1, shown in Eq. (11). The weights are chosen so that during
each step in training: w1= 0.6, which means agents can have a more
immediate reward in terms of whether or not they are closer to
the goal; w2= 0.1, which gives a little incentive for agents to
rotate the box a small angle; w3= 0.1, to offer some penalty
reward if box collides with an obstacle; w4= 0.2, as agents’ final
goal is to reach the target zone, agents should be given more
reward if its goal is achieved, than when box collides with an obsta-
cle. The weight for four different rewards is adapted and based on
previous research on multiagent box-pushing [41,42]

w1 + w2 + w3 + w4 = 1 (11)

During training, as the agents are homogenous and are cooperat-
ing to push the box, they should receive the same rewards. This is

Fig. 3 The six regions of the box neighborhood

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021010-5

the reason why the reward Eqs. (8) through (10) are defined based
only on the box’s position and orientation. In this way, each agent’s
neural network will consider other agents’ actions as part of its
environment and learn to explore its action space and also its best
policy based on an ϵ-greedy action selection strategy. Gradually
the agent grasps how to differentiate its actions from other agents
to collaboratively push the box toward the goal position, which is
the characteristic of multiagent independent deep Q-leaning
neural networks.
As shown in Fig. 4, the training network consists of an input

layer, which gets input information from the raw sensor of the
box, a subsequent fully connected layer with 16 hidden neurons,
a dueling layer and outputs final state-action values.

4.4 Experiment Design. As aforementioned, the three issues
of this research are (1) the stability of the learning dynamics for
agents to acquire knowledge for self-organizing behavior regula-
tion, (2) the differentiation of individual behavior during the self-
organizing process, and (3) the use of neural network knowledge
captured from the RL in the extended situations such as varying
team sizes, noisy environment, and change of box dimension. In
order to address these issues, a set of multiagent training and
testing experiments have been conducted, as described below.

4.4.1 Multiagent Reinforcement Learning-Based Agent
Training. As illustrated in Fig. 5, for the multiagent RL based train-
ing process, the Deep Q-learning algorithm described above was
applied. The two independent variables of the training are the
Number of Agents involved in the box-pushing task, denoted by
#Tr, varying between 1 and 10, and the Box Type that the agents
are trained for, either Small Box (60 × 150) or Large Box (90 ×
225). In this paper, only Small Box is used for training, and the
Large Box situation is for future investigation. The dependent vari-
ables of the training process are the Cumulative Reward signifying
the learning behavior of the agents, Agent Travel Distance capturing
how each agent behaves differently during the process, and a set of
#Tr neural networks trained for the given Small Box type denoted as
NN# Tr

Small, representing the learning knowledge.
During training, each episode is defined by a complete simulation

run, from the starting point to the ending point. The starting point is

arranged as shown in Fig. 1, where the agent positions are randomly
assigned while the box’s initial position and the goal position are
both fixed. For the ending point, there are three different situations:
(1) the box is pushed into the target position, (2) the box collides
with the obstacle or any sidewall, and (3) the simulation reaches
the maximum number of 500 training steps (each time an agent
chooses its action, it is considered one training step). When any
one of the three situations happens, a simulation run is completed
and the episode finishes.
One training process in the experiment goes through 8000 epi-

sodes for Small Box cases and 16,000 for LargeBox cases. The
numbers are chosen because they are the thresholds for achieving
training stabilization at the minimum training cost. In order to main-
tain statistical stability, each training was run 100 times with differ-
ent random seeds. The mean value of the 100 cumulative rewards of
a corresponding episode is used as the reward value of that episode
and plotted as the patterned lines in the cumulative reward plots in
Sec. 5. At the same time, the standard errors are plotted as green
spreads around the mean values.
As shown in Fig. 5, the three dependent variables of the training

process are: cumulative rewards, agent travel distances, and the
resulting neural networks, representing the team learning behavior,
agent functional differentiation, and the agents’ learned knowledge,
respectively. Details of these variables are discussed in Sec. 5.
Table 1 summarizes the training parameters used in the simula-

tions. Replay memory size is 1000, and 32 mini-batches are ran-
domly sampled from the replay memory during each training
step. The discount factor is 0.99, and the learning rate is 0.001.
Total training episodes are 8000 and 16,000 for the Small Box
and Large Box, respectively. The ϵ-greedy action selection algo-
rithm was followed where ϵ is annealed from 1.0 to 0.005 over
100,000 training steps during training. Agents choose actions
from entirely random (i.e., ɛ= 1.0) to nearly greedy (ɛ= 0.005).
The target neural networks are updated at every 200 training steps
to stabilize the training.

4.4.2 Testing and Performance Evaluation. The neural net-
works that are acquired from the MARL based training are evalu-
ated through testing simulations. Figure 6 illustrates the design of
the testing experiment, in which #Tr indicates the number of
agents trained and #Ts is the number of agents being tested.
There are four independent variables in the testing experiment.

They are learned neural networks NN# Tr
Small, agent team size (1, …,

10), box type (Small, Large), and noise level (10%, 30%, 50%).
The noise level is defined by the percentage in which the agents
choose random actions instead of greedy ones during testing
runs. This variable is introduced to model system malfunctions,
such as sensor errors and agent disabilities. By correlating the
system response to the noise levels, the robustness of the trained
neural networks can be evaluated.
When the number of trained agents #Tr is not the same as the

number of testing agents #Ts (i.e., #Tr≠ #Ts), there exists a mis-
match for deploying the neural networks. To resolve this mismatch,
for cases of #Tr ˂ #Ts, one or more randomly selected networks are
repeatedly deployed in the test case. When #Tr ˃ #Ts, then #Ts net-
works are randomly selected for the testing team agents.
There is one dependent variable success rate in the testing exper-

iment design, as shown in Fig. 6, which indicates the quality of the

Fig. 4 An illustration of the training neural network

Fig. 5 Agent training experiment design

Table 1 Simulation parameters

Replay memory size 1000
Mini-batch size 32
Discount factor 0.99
Learning rate α 0.001
Total training episodes 8000/16,000
ɛ 1.0→ 0.005
Annealing steps 100,000
Target network update frequency 200

021010-6 / Vol. 22, APRIL 2022 Transactions of the ASME

learned knowledge and scalability as it is trained (#Tr= #Ts) and
when it is applied in knowledge transfer testing situations
(#Tr ≠ #Ts and/or BoxTypeTr≠BoxTypeTs), respectively. Further-
more, correlating the success rate with the noise level and the box
type helps assess the robustness to noise and robustness to task
complexity, respectively.
As mentioned above, for each training situation, i.e., given #Tr

and BoxType, there are 100 training runs. At the end of each training
run, a greedy testing simulation is carried out to evaluate whether
the box-pushing is successful. The training success rate, in this
case, is defined by the percentage of the number of successful
runs. Usually, the training success rate is greater than 60% except
for the team of one agent, which is about 30%, as will be discussed
below.
From the more than 60 successful runs of each training situation

(#Tr, BoxType), 50 sets of neural networks are randomly selected
for testing cases. Again, for statistical stability, each selected set
of neural networks is simulated 100 times, and the success rate is
the percentage of the successful ones among the 100 simulations.

This way, after 50 × 100 testing runs, the average success rate of
the 50 sets of neural networks is used as the success rate of the
testing situation (#Tr, BoxType, NoiseLevel).

5 Results and Discussion
5.1 Typical Failure Patterns. Not all training simulation runs

are successful. Figure 7 illustrates some typical failure patterns with
motion traces during training. Figures 7(a)–7(d) are the results of
running the simulation cases of six agents pushing a Small Box.
During training, the box sometimes experiences excessive momen-
tum, leading to moving toward the red obstacle, as shown in (a).
Sometimes agents have insufficient or excessive rotation torque,
resulting in the edge of the box hitting the red obstacle, as shown
in (b). Agents try many actions but still could not get to the goal;
they collide with obstacles or reach a maximum training step size
of 500 (each time an agent chooses its action, it is considered one
training step size. When maximum training step size is reached,

Fig. 6 Testing experiment design and performance evaluation

Fig. 7 Typical failure patterns of the box-pushing task: (a) failure with excessive pushing
momentum, (b) failure with insufficient/excessive rotation torque, (c) failure with reaching
maximum training episode length, and (d) failure with pushing box backward

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021010-7

the episode terminates), as shown in (c). The boxes are occasionally
pushed backward, forming a round circle around the obstacle, as
shown in (d). Need to mention that these failure modes are the repre-
sentation of how agents are exploring and learning from the environ-
ment during training. As agents initially adopt complete random
actions and gradually move to more greedy actions, these failure
modes are not due to inappropriate reward functions as there are
always failing cases happening during learning due to random
actions. Rather, these failure modes indicate the effectiveness of
the training algorithm by showing agents are gradually learning
from the feedback they received from exploring the environment.

5.2 Basic Learning Behavior

5.2.1 Box-Pushing Trajectory. Figure 8 shows one successful
testing run with six agents pushing a Small Box (60 × 150) by fol-
lowing max state-action values with motion trace examples.
Although the final optimized trajectory is not strictly perfect,
through applying the multiagent deep Q-networks, agents can
approximate its actions and push the box toward the goal area.

5.2.2 Training Stability. Figure 9 shows the convergence
results of our simulations with different numbers of agents
pushing a small box. The figures show the average cumulative
reward of 100 random training seeds with respect to the training epi-
sodes. The standard error of the mean is plotted with the green
shaded region.

As shown in Fig. 9, when the number of agents is small, e.g.,
between 1 and 3, it is hard for the system to reach a stable and
high reward level compared with the other team sizes. The stan-
dard deviation of these training cases is large. When the agent
number is 4, it reaches a reasonable level of reward and the
reward becomes relatively stable after 5000 episodes, but its
level is around 600, smaller than the 650 achieved by the teams
of larger size. This implies that the box-pushing task itself requires
the cooperative effort of agents and the size of agents need to be at
least five agents to reach a reasonable performance level. This
“magic” number 5 appears to be correspondent to the complexity
level of the box-pushing task [51], which will be mentioned again
below.
When the team size is between 5 and 10, simulations converge to,

and stabilize at, the similar maximum reward after a certain number
of episodes. It can also be seen that it takes ∼500 more episodes
incrementally for agents between 5 and 10 to reach maximum
reward: 4500 episodes for five agents, 5000 episodes for six
agents, 5500 episodes for seven agents, and eventually 7000 epi-
sodes for ten agents. This result is reasonable as more agents add
more complex behaviors during training and the system needs
more time to adapt. Although the complexity of the task does not
change (pushing the box to goal position), the complexity of the
system itself increases when team size expands: agents need to
learn not only the physical environment but also other agents’
actions. Thus, a larger number of agents require more training
time to reach stable convergence. Increasing the number of agents
given that the task complexity corresponds to a system complexity
of five agents, having more agents involved only makes the learning
less effective and takes longer to converge.
In the training phase of multiagent reinforcement learning, the

knowledge learned by the agents is highly dependent on the com-
plexity of the box movements generated by the various agents
during box-pushing. For example, in terms of the rotation behavior
of the box, when the number of agents is small, the diversity of rota-
tion movements is limited. If there is one agent, the individual agent
can only rotate the box a maximum of 5 deg based on the box
dynamics. However, when team size increases, the addition of
various agents can greatly increase the diversity of box rotation
movements. It can be imagined that when there are five agents,
there can be various rotation movements ranging from 0 to
25 deg of rotation when various agents are exploring how to push
the box. The addition of agents increases the diversity of box move-
ments, thus the complexity of the system during learning. When
team size reaches “magic” number 5, the complexity of the
system matches well with the task complexity, and thus
the system has the best training performance. Further increasing the
number of agents does not improve the training anymore as the
system complexity already reaches the threshold of task complexity

Fig. 8 A successful box-pushing trajectory with motion traces
of a six-agent team pushing a small box

Fig. 9 Cumulative reward versus training episode plots with varying size of teams pushing a small box

021010-8 / Vol. 22, APRIL 2022 Transactions of the ASME

around “magic” team size, and maximum learning capability of
agents is already achieved.

5.3 Behavioral Differentiation. The total distance traveled by
each agent in different team size settings is used as a measure of the
functional differentiation among individual agents, as shown in
Fig. 5, because if two agents hold different total travel distances
and stay that way, they must have performed different roles in the
box-pushing task. Figure 10 illustrates the simulation results. The
vertical axis measures the average distance traveled by the agent
during each episode based on 100 random seeds. As there are a
total of 8000 episodes, we plotted 8000 distance values during train-
ing based on the trained neural networks. Here, the distance is based
on a hierarchical measurement [52], meaning the top-level distance
is measured. For instance, when agents move from box region 1 to
box region 2, as shown in Fig. 3, it is considered as one stepwise
distance. When an agent moves from box region 1 to region 3, its
distance is two-step distances. If an agent chooses the same
action in the subsequent run, its moving distance is 0.
When team size is 1, it is very difficult for 1 agent to figure out

how to efficiently push the box. Also, it is hard for teams of sizes
between 2 and 4 to reach stable travel distance among agents, indi-
cating that the agents can hardly differentiate among themselves. A
little environmental noise will cause the agents to change them-
selves, and thus their distance traveled is not stable. Beginning
from team size 5, the distance traveled by agents tends to reach
more stable differentiation. When team size becomes 7 or more,
the agents reach a very stable traveled distance. This is similar to
human organizations; larger organizations tend to have more
stable differentiation among their members to maintain the
normal operation of the system, while the small organization
members tend to do everything they encounter.
Staring from team size 2, during the initial phase of training, the

distance traveled by all agents tends to increase. After some training
episodes, it starts to decrease and eventually converges to a stable
low value. This is reasonable as initially all agents are learning
how to push the box and more randomly exploring the search
space. After some episodes, when agents gather enough positive
and negative experiences, and as the epsilon value decreases,
agents choose more greedy actions; their travel distance tends to
decrease. After 8000 episodes of training, the distance traveled by
all agents tends to converge to low distance values. The final dis-
tance traveled by each individual agent is different as they finally
specialize in their own individual behavior to collaboratively push
the box to the goal position.
The results in Fig. 10 also show that initially the distance traveled

by agents is approximately the same, and the total distance traveled
by each agent tends to diverge when it reaches a certain threshold,
around 1200 episodes. The results indicate that the real starting in

learning differentiation occurs after agents have gathered enough
training outcomes and experiences from the environment (reaching
goal or collision) and do not depend much on team sizes.

5.4 Quality of Learned Knowledge. In addition to analyzing
the learning behavior described above, the quality of the learned
knowledge is evaluated based on the success rate. The “success
rate” (see Fig. 6) of the learned knowledge of a specific team is
defined by the percentage of the successful simulation runs based
on the learned knowledge, as discussed in Sec. 4.4. Because the
multiagent RL is only partially observable, not all training cases
can be successfully trained. By “being successfully trained,” it is
meant that after training, the trained agents can successfully push
the box toward the target by taking actions greedily suggested by
their own neural networks. Figure 11 illustrates the results of the
success rate of the trained teams of different sizes. When the
number of agents is small, the success rate of training is low as it
is hard to train a small number of agents to push the box. When
the number of agents reaches the “magic” number 5, the success
rate of training becomes 97%. When the number of agents further
increases, the success rate remains almost the same. This means
that the quality of the learned knowledge depends on the team
size: higher-quality knowledge can be acquired for the team sizes
equal to or greater than the “magic” number 5; for smaller teams,
the learned knowledge is much less reliable. Identifying the
“magic” number—i.e., the matching point between the task com-
plexity and team complexity—is the key to acquiring high-quality
knowledge through multiagent RL.

5.5 Scalability and Robustness. The neural networks learned
from a given team size are tested in teams of different sizes for scal-
ability evaluation. In addition, random agent actions ranging from
10%, 30%, and 50%, are introduced to evaluate the robustness of
the trained networks to environmental changes. The results of the
small box are shown in Figs. 12–14. The different patterns of the
curves in the figures represent the different sets of neural networks
obtained from the training of different numbers of agents. For
example, “Tr:3” means the neural networks used by the agents
are obtained from the training of 3 agents. The horizontal axis indi-
cates the number of agents that engaged in the testing of the box-
pushing task, i.e., #Ts. The vertical axis shows the success rate of
simulation runs.

5.5.1 Scalability for Knowledge Transfer. As shown in
Fig. 12, except for the 1 agent case where the learning dynamic is
very different from multiagent settings, when the trained network
is applied to the same team size, agents can successfully push the
box toward the goal over 90% of testing runs.

Fig. 10 Total distance traveled by each agent with varying team size for the small box

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021010-9

Scaling downward:When the learned neural networks NN# Tr
BoxType

are acquired from the trained teams of 6–10 agents, transferring
NN# Tr

BoxType downward to the teams of a smaller size #Ts results in
relatively high success rates which remain stable, within 10%, for
the neighboring 3–4 testing teams. When the trained team size
#Tr is smaller than the “magic” number 5, transferring knowledge
downward leads to inferior performance, which can be considered
as due to the mismatch between the task complexity and the team
complexity [51].
Scaling upward: When the trained agent team size #Tr is small

and the learned networks are applied to a larger team, i.e., #Tr <
#Ts, the success rates appear to be rather high and stable for
trained teams of size #Tr≥ 4. This shows that the learned knowl-
edge from a trained team size of around the “magic” number, 4–5
in this case, has good scalability in the upward direction. For the
trained team size #Tr of 2 and 3, scaling upward has led to reason-
ably good performances. It seems to be the case that the “low
quality” of the learned knowledge can be compensated by the
increased level of system complexity when more team members
are added.

5.5.2 Robustness to Noise. Figures 13 and 14 are the results
based on 30% and 50% noise levels. The success rates generally
drop with the increase of noise, as expected. It is interesting to see
the cases where when the networks of smaller #Tr are applied to

larger #Ts teams (#Tr< #Ts), the success rate is higher than the orig-
inal teams trained at larger #Ts. For example, for the trained team size
#Tr= 6, and testing team size #Ts= 10 with 50% noise level shown
in Fig. 15, the success rate 60.04% is actually higher than that of
directly trained ten agents (#Tr= #Ts= 10), which is 57.92%.
Overall, the learned neural networks are moderately robust when

the system or environment noises lead to less than 30% agent mis-
actions. Beyond that noise level, the networks can be highly
unreliable.

5.5.3 Robustness to Task Change. As stated above, the dimen-
sions of the box-pushing environment are fixed, but the box size can
vary from Small Box (60 × 150) to Large Box (90 × 225). Given the
dimension constraints of the environment, pushing the Large Box is
a more complex task than pushing the Small Box since it is easier
for the Large Box to hit the obstacle or the walls. The robustness
to task change of the learned knowledge can be evaluated by apply-
ing the networks trained from the Small Box situations to the Large
Box testing experiments. As shown in Fig. 15, for all trained agent
team sizes, the success rates of the transferred testing runs are low,
about or fewer than 50%, indicating that the knowledge learned
from multiagent RL is rather specific to the tasks it is trained for.
When the tasks change, even only in dimensions, the applicability
of the learned knowledge reduces significantly. Proper transfer
learning strategies need to be devised so that the learned knowledge
can be used as a basis for swift training in the new task environment.

Fig. 11 Success rate of trainingwith respect to different number
of agents with small box (60×150)

Fig. 12 Success rate of running with 10% individual random
actions of varying number of trained agents with a small box

Fig. 13 Success rate of running with 30% individual random
actions with varying number of trained agents with a small box

Fig. 14 Success rate of running with 50% individual random
actions with varying number of trained agents with a small box

021010-10 / Vol. 22, APRIL 2022 Transactions of the ASME

Although the robustness of the learned knowledge to the task
change is low, the scaling pattern does not change from the Small
Box cases, as shown in Fig. 15.

5.6 Findings. The results of the case study have shown that
there are two forces of an SOS team that interact and govern the
behavior of the multiagent teams: the learned knowledge and the
team dynamics manifested as team size in this study. In addition,
the task complexity level is another important factor that determines
the “magic” team size for agent training and hence knowledge
acquisition. The following findings and insights are drawn from
the case study results.

• Multiagent RL is an effective approach to capture self-
organizing knowledge through extensive training. In the box-
pushing case, the agents successfully accomplished the task
with very high success rates based on the learned neural
networks.

• For a given task with specific task complexity, when the
number of agents increases, the system complexity increases.
When the system complexity matches the task complexity,
reaching the “magic” number, the multiagent RL training
yields the learned knowledge that has the best team perfor-
mance and the highest-level of scalability and robustness.
The multiagent RL based self-organizing knowledge capture
should be performed around the “magic” team size.

• The multiagent RL training process has relatively good stabi-
lity with a proper range of agent team sizes. In this research,
the agents from 4 up to 10 have shown stable learning conver-
gence. Failure cases do happen in the early stage of training.
The converged networks have shown highly effective utility.

• Although the agents share the same reward function during
training, they do specialize in their own ways as the learning
converges at the final stage of training. Increasing the
number of agents adds more stability to the differentiation.
This is analogous to human organizations where large firms
have more stable differentiation among individuals, while in
small ones, the members tend to engage in everything in
their workplace. Because the agent travel distance was mea-
sured in this study, the differentiation reveals the ways of
movement of the agents. For more complex tasks, it is possible
to identify relevant measures to understand for what and how
the agents specialize.

• The influence of noise-induced random actions only has a
limited effect until 10%, and a moderate effect until 30%.
After that, the impact becomes destructive. As team size
increases, the robustness improves and then degrades. For a

given task, there appear to be specific “magic” team sizes for
training that yields the most robust knowledge against noises.

• The self-organizing knowledge acquired from multiagent RL
appears to be negatively sensitive to task changes. It is reason-
able since the feature of machine learning in general is to map
the specialized skill and knowledge into a nonlinear neural
network transformation. There can be two ways to go
around this issue. One is to reframe the original task such
that the learned knowledge can be applied to the subcategories
of the reframed problem. The other way is to add another layer
of transfer learning so that the learned knowledge can be uti-
lized to speed up the transfer learning process.

5.7 Implications for Future Self-Organizing Systems
Design. While it is worth mentioning that the findings and insights
described above are limited to the types of tasks reported in this
paper, some general guidelines for future SOS design can be
derived as follows.
We have shown that the multiagent RL framework can be an

effective design tool for capturing self-organizing knowledge
through extensive agents’ interactions with the environment
during training. After training, such knowledge can be stored in
neural networks as integrated rules for agents to follow. As the
entire learning process is model-free, it eliminates the need for
trial and error processes of rule design in traditional SOS design
methods [5].
Also, as was discovered in our box-pushing case study, SOS

should be designed around the “magic” team size for best knowl-
edge capture. Though the whole set of experiments were carried
out in our simulation study, future SOS designs only need to test
a few hypothetical “magic” team sizes using multiagent RL to
obtain the system “magic” team size. For example, from the training
stability perspective, starting from “magic” team size, training
becomes more stable and reaches the maximum cumulative
reward. Smaller team sizes have rather unstable training stability.
Also, magic team sizes should have more stable behavior differen-
tiation and better quality of the learned knowledge compared with
smaller team sizes, while larger team sizes can have even more
stable differentiation and similar quality of the learned knowledge.
Finally, SOS with the “magic” team size should be most robust in
response to environmental noises among all team sizes tested.
Designers can choose to evaluate their hypothetical team sizes
based on the above guidelines in order to achieve the desired
system performance.

6 Conclusions and Future Work
In multiagent RL based SOS design, the learning stability, scal-

ability of the learned knowledge to the varying team sizes, and its
robustness to task changes are the three important issues to con-
sider. In addition, the system needs to be robust enough to
perform well in the face of noises, such as failures or malfunctions
of other agents.
In this paper, a multiagent independent Q-leaning algorithm is

devised for the design of SOS, and the issues of learning stability,
scalability, and robustness are investigated through a box-pushing
case study. The results show that multiagent RL can be a useful
tool for designing SOS with needed learning stability. Identifying
the optimal number of agents is important to achieve the best learn-
ing stability and scalability, and robustness of the learned knowl-
edge. The robustness to task changes of the learned knowledge
remains to be a key issue that will be addressed in future research.
In addition to robustness to task changes, future work includes

testing the scalability of a multiagent Q-learning algorithm with a
wider range of complex tasks. Furthermore, adding individual het-
erogeneous rewards, controlling, and measuring the specialization
of the agents for more complex tasks will be the research for the
next step.

Fig. 15 Success rate with 10% individual random actions with
varying team sizes when transferring knowledge from a small
box (60×150) to a large box (90× 225)

Journal of Computing and Information Science in Engineering APRIL 2022, Vol. 22 / 021010-11

Acknowledgment
This paper was based on the work supported in part by MTI Co.

Ltd. and Nippon Yusen Kaisha (NYK). The authors are grateful to
the sponsors and the MTI team for their discussions and insights on
this research.

Conflict of Interest
There are no conflicts of interest.

References
[1] Reynolds, C. W., 1987, “Flocks, Herds and Schools: A Distributed Behavioral

Model,” Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, Anaheim, CA, July 27–31, pp. 25–34.

[2] Ashby, W. R., 1991, “Facets of systems science ,” Facets of Systems Science, G. J.
Klir, ed., Springer, Boston, MA, pp. 405–417.

[3] Chiang, W., and Jin, Y., 2012, “Design of Cellular Self-Organizing Systems,”
ASME International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Chicago, IL, Aug. 12–
15, American Society of Mechanical Engineers, Vol. 45028, pp. 511–521.

[4] Humann, J., Khani, N., and Jin, Y., 2014, “Evolutionary Computational Synthesis
of Self-Organizing Systems,” AI EDAM, 28(3), pp. 259–275.

[5] Khani, N., Humann, J., and Jin, Y., 2016, “Effect of Social Structuring in
Self-Organizing Systems,” ASME J. Mech. Des., 138(4), p. 041101.

[6] Khani, N., and Jin, Y., 2015, “Dynamic Structuring in Cellular Self-Organizing
Systems,” Design Computing and Cognition’14, Springer, Cham, pp. 3–20.

[7] Ji, H., and Jin, Y., 2018, “Modeling Trust in Self-Organizing Systems With
Heterogeneity,” ASME 2018 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conferences,
Quebec City, Canada, Aug. 26–29.

[8] Chen, C., and Jin, Y., 2011, “A Behavior Based Approach to Cellular
Self-Organizing Systems Design,” ASME International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, Washington, DC, Aug. 28–31, Vol. 54860, pp. 95–107.

[9] Sutton, R. S., and Barto, A. G., 2018, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA.

[10] Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., and
Whiteson, S., 2018, “Qmix: Monotonic Value Function Factorisation for Deep
Multiagent Reinforcement Learning,” International Conference on Machine
Learning, Stockholm, Sweden, July 10–15, PMLR, pp. 4295–4304.

[11] Bar-Yam, Y., 2002, General Features of Complex Systems. Encyclopedia of Life
Support Systems (EOLSS), Vol. 1, UNESCO, EOLSS Publishers, Oxford, UK.

[12] Arroyo, M., Huisman, N., and Jensen, D. C., 2018, “Exploring Natural Strategies
for Bio-Inspired Fault Adaptive Systems Design,” ASME J. Mech. Des., 140(9),
p. 091101.

[13] Königseder, C., and Shea, K., 2016, “Comparing Strategies for Topologic and
Parametric Rule Application in Automated Computational Design Synthesis,”
ASME J. Mech. Des., 138(1), p. 011102.

[14] Meluso, J., and Austin-Breneman, J., 2018, “Gaming the System: An
Agent-Based Model of Estimation Strategies and Their Effects on System
Performance,” ASME J. Mech. Des., 140(12), p. 121101.

[15] McComb, C., Cagan, J., and Kotovsky, K., 2017, “Optimizing Design Teams
Based on Problem Properties: Computational Team Simulations and an
Applied Empirical Test,” ASME J. Mech. Des., 139(4), p. 041101.

[16] Min, G., Suh, E. S., and Hölttä-Otto, K., 2016, “System Architecture, Level of
Decomposition, and Structural Complexity: Analysis and Observations,”
ASME J. Mech. Des., 138(2), p. 021102.

[17] Ferguson, S. M., and Lewis, K., 2006, “Effective Development of Reconfigurable
Systems Using Linear State-Feedback Control,” AIAA J., 44(4), pp. 868–878.

[18] Martin, M. V., and Ishii, K., 1997, “Design for Variety: Development of
Complexity Indices and Design Charts,” ASME Design Engineering Technical
Conferences, DFM-4359, Sacramento, CA, Sept. 14–17.

[19] Werfel, J., 2012, “Collective Construction With Robot Swarms,” Morphogenetic
Engineering, Springer, Berlin, Heidelberg, pp. 115–140.

[20] Beckers, R., Holland, O. E., and Deneubourg, J. L., 2000, “Fom Local Actions to
Global Tasks: Stigmergy and Collective Robotics,” Prerational Intelligence:
Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume
1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the
Behavior of Natural and Artificial Systems, Volume 3, Springer, Dordrecht,
pp. 1008–1022.

[21] Dasgupta, P., 2008, “A Multiagent Swarming System for Distributed Automatic
Target Recognition Using Unmanned Aerial Vehicles,” IEEE Trans. Syst. Man
Cybern. Part A Syst. Humans, 38(3), pp. 549–563.

[22] Ruini, F., and Cangelosi, A., 2009, “Extending the Evolutionary Robotics
Approach to Flying Machines: An Application to MAV Teams,” Neural
Networks, 22(5–6), pp. 812–821.

[23] Lamont, G. B., Slear, J. N., and Melendez, K., 2007, “UAV Swarm Mission
Planning and Routing Using Multi-Objective Evolutionary Algorithms,” 2007
IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-
Making, Honolulu, HI, Apr. 1–5, IEEE, pp. 10–20.

[24] Wei, Y., Madey, G. R., and Blake, M. B., 2013, “Agent-Based Simulation for
UAV Swarm Mission Planning and Execution,” Proceedings of the
Agent-Directed Simulation Symposium, Apr., pp. 1–8.

[25] Price, I. C., and Lamont, G. B., 2006, “GA Directed Self-Organized Search and
Attack UAV Swarms,” Proceedings of the 2006 Winter Simulation Conference,
Monterey, CA, Dec. 3–6, IEEE, pp. 1307–1315.

[26] Busoniu, L., Babuska, R., and De Schutter, B., 2008, “A Comprehensive Survey
of Multiagent Reinforcement Learning,” IEEE Trans. Syst. Man Cybern. Part C
Appl. Rev., 38(2), pp. 156–172.

[27] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J.,
and Vicente, R., 2017, “Multiagent Cooperation and Competition With Deep
Reinforcement Learning,” PLoS One, 12(4), p. e0172395.

[28] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S., 2018,
“Counterfactual Multiagent Policy Gradients,” Thirty Second AAAI
Conference on Artificial Intelligence, New Orleans, LA, Feb. 2–7, Vol. 32, No. 1.

[29] Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M., 2017, “Deeploco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement
Learning,” ACM Trans. Graph., 36(4), pp. 1–13.

[30] Tan, M., 1993, “Multiagent Reinforcement Learning: Independent vs.
Cooperative Agents,” Tenth International Conference on Machine Learning,
Amherst, MA, July 27–29, pp. 330–337.

[31] Watkins, C. J. C. H., 1989, “Learning From Delayed Rewards,” Ph.D. disserta-
tion, Cambridge University, Cambridge, UK.

[32] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., et al., 2015, “Human-level Control Through Deep Reinforcement
Learning,” Nature, 518(7540), pp. 529–533.

[33] Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H., Kohli, P., and
Whiteson, S., 2017, “Stabilising Experience Replay for Deep Multiagent
Reinforcement Learning,” International Conference on Machine Learning,
Sydney, Australia, Aug. 6–11, PMLR, pp. 1146–1155.

[34] Hausknecht, M., and Stone, P., 2015, “Deep Recurrent Q-Learning for Partially
Observable MDPs,” arXiv preprint arXiv:1507.06527.

[35] Hochreiter, S., and Schmidhuber, J., 1997, “Long Short-Term Memory,” Neural
Comput., 9(8), pp. 1735–1780.

[36] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y., 2014, “Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling,” arXiv preprint
arXiv:1412.3555.

[37] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mordatch, I., 2017,
“Multiagent Actor-Critic for Mixed Cooperative-Competitive Environments,”
arXiv preprint arXiv:1706.02275.

[38] Brown, N., and Sandholm, T., 2019, “Superhuman AI for Multiplayer Poker,”
Science, 365(6456), pp. 885–890.

[39] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., and
Mordatch, I., 2019, “Emergent Tool Use From Multiagent Autocurricula,”
arXiv preprint arXiv:1909.07528.

[40] Wu, S. A., Wang, R. E., Evans, J. A., Tenenbaum, J. B., Parkes, D. C., and
Kleiman-Weiner, M., 2021, “Too Many Cooks: Bayesian Inference for
Coordinating Multi-Agent Collaboration,” Top. Cogn. Sci., 13(2), pp. 414–432.

[41] Wang, Y., and De Silva, C. W., 2006, “Multi-Robot Box-Pushing: Single-Agent
Q-Learning vs. Team Q-Learning,” 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, Oct. 9–15, IEEE, pp. 3694–3699.

[42] Rahimi, M., Gibb, S., Shen, Y., and La, H. M., 2018, “A Comparison of Various
Approaches to Reinforcement Learning Algorithms for Multi-Robot Box
Pushing,” International Conference on Engineering Research and Applications,
Dec., Springer, Cham, pp. 16–30.

[43] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M., 2013, “Playing Atari With Deep Reinforcement Learning,”
arXiv preprint arXiv:1312.5602.

[44] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N., 2016,
“Dueling Network Architectures for Deep Reinforcement Learning,”
International Conference on Machine Learning, June, PMLR, pp. 1995–2003.

[45] Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S., 2016, “Learning to
Communicate to Solve Riddles With Deep Distributed Recurrent Q-Networks,”
arXiv preprint arXiv:1602.02672.

[46] LaValle, S. M., 2006, Planning Algorithms, Cambridge University Press, New
York.

[47] Jones, C., and Mataric, M. J., 2003, “Adaptive Division of Labor in Large-Scale
Minimalist Multi-Robot Systems,” Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453), Las Vegas, NV, Oct. 27–31, IEEE, Vol. 2, pp. 1969–1974.

[48] Groß, R., Bonani, M., Mondada, F., and Dorigo, M., 2006, “Autonomous
Self-Assembly in Swarm-Bots,” IEEE Trans. Rob., 22(6), pp. 1115–1130.

[49] Humann, J., Khani, N., and Jin, Y., 2016, “Adaptability Tradeoffs in the Design
of Self-Organizing Systems,” International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Charlotte, NC, Aug. 21–24, Vol. 50190, p. V007T06A016.

[50] Liu, X., and Jin, Y., 2018, “Design of Transfer Reinforcement Learning
Mechanisms for Autonomous Collision Avoidance,” International Conference
on-Design Computing and Cognition, July, Springer, Cham, pp. 303–319.

[51] Ashby, W. R., 1961, An Introduction to Cybernetics, Chapman & Hall Ltd.,
London, UK.

[52] Makar, R., Mahadevan, S., and Ghavamzadeh, M., 2001, “Hierarchical
Multiagent Reinforcement Learning,” Fifth International Conference on
Autonomous Agents, New York, NY, May 28–June 1, pp. 246–253.

021010-12 / Vol. 22, APRIL 2022 Transactions of the ASME

https://doi.org/10.1017/s0890060414000213
https://dx.doi.org/10.1115/1.4032265
https://dx.doi.org/10.1115/1.4040317
https://dx.doi.org/10.1115/1.4031714
https://dx.doi.org/10.1115/1.4039494
http://dx.doi.org/10.1115/1.4035793
https://dx.doi.org/10.1115/1.4032091
http://dx.doi.org/10.2514/1.17147
http://dx.doi.org/10.1109/TSMCA.2008.918619
http://dx.doi.org/10.1109/TSMCA.2008.918619
http://dx.doi.org/10.1016/j.neunet.2009.06.032
http://dx.doi.org/10.1016/j.neunet.2009.06.032
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://dx.doi.org/10.1371/journal.pone.0172395
http://dx.doi.org/10.1145/3072959.3073602
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1126/science.aay2400
http://dx.doi.org/10.1111/tops.12525
http://dx.doi.org/10.1109/TRO.2006.882919

	1 Introduction
	2 Related Work
	2.1 Design of Complex Systems
	2.2 Artificial Self-Organizing Systems
	2.3 Multiagent Reinforcement Learning

	3 A Deep Multiagent Reinforcement Learning Model
	3.1 Single-Agent Reinforcement Learning
	3.1.1 Experience Replay
	3.1.2 Dueling DQN

	3.2 Multiagent Reinforcement Learning

	4 Case Study
	4.1 The Box-Pushing Problem
	4.2 State Space and Action Space
	4.2.1 Task State Space
	4.2.2 Box Neighborhood
	4.2.3 Box Dynamics
	4.2.4 Agent Action Space

	4.3 Reward Schema and Training Model
	4.3.1 Distance Reward
	4.3.2 Rotation Reward
	4.3.3 Collision Reward
	4.3.4 Goal Reward

	4.4 Experiment Design
	4.4.1 Multiagent Reinforcement Learning-Based Agent Training
	4.4.2 Testing and Performance Evaluation

	5 Results and Discussion
	5.1 Typical Failure Patterns
	5.2 Basic Learning Behavior
	5.2.1 Box-Pushing Trajectory
	5.2.2 Training Stability

	5.3 Behavioral Differentiation
	5.4 Quality of Learned Knowledge
	5.5 Scalability and Robustness
	5.5.1 Scalability for Knowledge Transfer
	5.5.2 Robustness to Noise
	5.5.3 Robustness to Task Change

	5.6 Findings
	5.7 Implications for Future Self-Organizing Systems Design

	6 Conclusions and Future Work
	 Acknowledgment
	 Conflict of Interest
	 References

