
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Ji H, Jin Y (2021). Evaluating
the learning and performance characteristics
of self-organizing systems with different task
features. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 1–19.
https://doi.org/10.1017/S089006042100024X

Received: 14 May 2021
Revised: 30 August 2021
Accepted: 31 August 2021

Key words:
Complex system; deep q-learning; robustness;
scalability; self-organizing system

Author for correspondence:
Yan Jin, E-mail: yjin@usc.edu

© The Author(s), 2021. Published by
Cambridge University Press

Evaluating the learning and performance
characteristics of self-organizing systems
with different task features

Hao Ji and Yan Jin

Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue,
OHE 400, Los Angeles, CA 90089-1453, USA

Abstract

Self-organizing systems (SOS) are developed to perform complex tasks in unforeseen situa-
tions with adaptability. Predefining rules for self-organizing agents can be challenging, espe-
cially in tasks with high complexity and changing environments. Our previous work has
introduced a multiagent reinforcement learning (RL) model as a design approach to solving
the rule generation problem of SOS. A deep multiagent RL algorithm was devised to train
agents to acquire the task and self-organizing knowledge. However, the simulation was
based on one specific task environment. Sensitivity of SOS to reward functions and systematic
evaluation of SOS designed with multiagent RL remain an issue. In this paper, we introduced
a rotation reward function to regulate agent behaviors during training and tested different
weights of such reward on SOS performance in two case studies: box-pushing and T-shape
assembly. Additionally, we proposed three metrics to evaluate the SOS: learning stability, qual-
ity of learned knowledge, and scalability. Results show that depending on the type of tasks;
designers may choose appropriate weights of rotation reward to obtain the full potential of
agents’ learning capability. Good learning stability and quality of knowledge can be achieved
with an optimal range of team sizes. Scaling up to larger team sizes has better performance
than scaling downwards.

Introduction

Self-organizing systems (SOS) consist of simple agents that work cooperatively to accomplish
complex tasks. Through agents’ local interactions, high-level system complexity can be
achieved by a bottom-up approach (Reynolds, 1987; Ashby, 1991). Designing complex systems
through a self-organizing approach has many advantages, such as adaptability, scalability, and
robustness in comparison to traditional engineering systems with centralized controllers
(Chiang and Jin, 2012; Humann et al., 2014; Khani and Jin, 2015; Khani et al., 2016; Ji and
Jin, 2018). A swarm of robots is often homogeneous, with compact size and limited function-
ality, and is an example of such SOS (Kennedy, 2006). Through simple rules of interaction
between robots, the collective behavior emerges, and such emergent phenomena can be uti-
lized in real-life situations, such as unmanned aerial vehicle patrolling, traffic control, distrib-
uted sensing, search and rescue, and box-pushing (Pippin, 2013; Pippin and Christensen,
2014; Khani et al., 2016).

Numerous approaches have been proposed to aid SOS design. The field-based behavior reg-
ulation (FBR) approach (Chen and Jin, 2011) uses a field function to model the task environ-
ment, and the agents’ behaviors are regulated based on their positions in the field with a field
transformation function. The advantage of this approach is that the behaviors of agents are
simple, and hence little knowledge is required to accomplish tasks as agents only need to
move toward a higher or lower position. However, this behavioral simplicity limits its capabil-
ity of solving more complex domain problems because field representation cannot capture all
features of the task domain, and inter-agent relationships are ignored in this approach.

An evolutionary design method and the social structuring approach have been developed to
overcome the limitations of the FBR approach. The design of SOS can be more parametric and
optimizable by considering both task and social field modeled by social rules (Khani et al.,
2016). It was shown that applying social rules help increase the coherence among agents by
avoiding potential conflicts and promoting cooperation opportunities (Khani et al., 2016).
A critical issue with the rule-based approach is that designers must know the rules a priori
and how they should be applied, which might not be possible with more complex and unpre-
dictable tasks such as autonomous physical structure assembly, space structure construction,
and disaster rescue situations.

To address the issues in the rule-based design approach, our previous work (Ji and Jin,
2019; Ji and Jin, 2020) introduced a multiagent reinforcement learning (RL) approach to

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/aie
https://doi.org/10.1017/S089006042100024X
mailto:yjin@usc.edu
https://orcid.org/0000-0002-6502-5837
https://crossmark.crossref.org/dialog?doi=10.1017/S089006042100024X&domain=pdf
https://www.cambridge.org/core

capture the self-organizing knowledge and regulate agent behav-
ior in SOS design. In our approach, each agent is trained using
its own independent neural network, which solves the problem
of the high dimensionality of action space of using single-agent
RL in multiagent settings. Our work shows that state-of-the-art
independent multiagent RL is a promising approach in tackling
the existing problems faced by SOS design. However, the simula-
tion was conducted on one specific task environment, and it still
remains a question how sensitive SOS designed with multiagent
RL is to the reward function and how to systematically evaluate
the SOS.

In this paper, we specifically introduced a rotation reward
function to regulate agent behaviors during training and tested
different weights of such reward on SOS performance in two dif-
ferent case studies: box-pushing and T-shape assembly. Three
metrics were incorporated to evaluate the SOS: learning stability,
quality of knowledge, and scalability. With the introduction of
reward functions and evaluation metrics in two different case
studies, we are trying to address three research questions: Q1:
How sensitive is SOS to specific reward functions, and how to
decide on the weight of such reward functions? Q2: What factors
impact the stability of learning dynamics in self-organizing systems
with different task scenarios? Q3: How to systematically evaluate
SOS performance with different task features?

In the rest of this paper, “Related work” provides a review of
the relevant work in complex system design, SOS, and RL. After
that, a multiagent independent Q-learning framework is pre-
sented as a complex system design approach in “A Deep multia-
gent reinforcement learning model”. In “Case study box-pushing”
and “Case study self-assembly”, box-pushing and T-shape assem-
bly case studies are introduced that apply the proposed
Q-learning model, followed by a detailed analysis and discussion
of the simulation results. Finally, in “Conclusions and future
work”, the conclusions are drawn from the case study, and future
work directions are pointed out.

Related work

Design of complex systems

A complex system consists of many components, and the collec-
tive behavior of the system can be difficult to model because of the
interactions or interdependencies between its parts (Bar-Yam,
2002). Much research has been done so far to study ways of
designing complex systems. For instance, Arroyo et al. (2018)
came up with a bio-inspired, binary-tree-based method for com-
plex system design with fault adaptiveness. The binary-tree
branches indicate how organisms achieve adaptive behaviors.
Their results show that a strategy-based method can aid designers
with innovative analogies, which is useful in providing needed
details in design applications (Arroyo et al., 2018). Königseder
and Shea (2016) analyzed various strategies of rule applications
in two design synthesis case studies: bicycle frame synthesis and
gearbox synthesis, and they found that the effectiveness of each
strategy depends on the task scenario. Meluso and
Austin-Breneman (2018) build an agent-based model which
simulates the parameter estimation strategy in complex engineer-
ing systems on a large scale. They found that accuracy and uncer-
tainty of estimation depend mainly on subsystem behavior but not
much on the “gaming” strategy of system engineers’ (Meluso and
Austin-Breneman, 2018). McComb et al. (2017) developed a com-
putational model that analyzed how to use the characteristics of

configuration design problems into choosing optimal values of
teams, such as team size and frequency of interaction.
Equations were generated using regression analysis, which was
used to predict optimized team values given problem properties
(McComb et al., 2017). Min et al. (2016) calculated the structured
complexity of complex engineering systems with different levels of
decomposition. Their analysis found that the structural complex-
ity of the system is mainly dependent on the lowest level of archi-
tectural configurations. Ferguson and Lewis (2006) developed a
method for effective reconfigurable systems design, such as vehi-
cles. Their method focused on identifying changes in system
design variables and analyzing the stability of the reconfigurable
system with a state-feedback controller. Martin and Ishii (1997)
proposed a design-for-variety approach, which can help compa-
nies quickly adapt their products and address product variation
at different generations to reduce the time from products to mar-
ket. Both qualitative design and quantitative indices have been
developed, and the effectiveness of such tools was presented in
examples of electronics and automotive industries. Research in
previous complex system design requires extensive domain
knowledge to build models or draw inspiration from nature,
which can be time-consuming and hardly generalizable to differ-
ent scenarios. Moreover, it still remains a challenging task to gen-
erate design rules from global system requirements to local agents’
interactions.

Artificial SOS

Artificial SOS are designed by humans and can have emergent
behaviors and adaptability like nature (Reynolds, 1987). Much
research has been conducted in terms of the design of artificial
SOS. Werfel (2012) devised a system of homogeneous robots
that can build a pre-determined shape with square bricks.
Beckers et al. (2000) analyzed a robotic gathering task where mul-
tiple robots need to patrol a given area in order to collect pucks.
As robots have a preference for dropping pucks in high-density
areas, the collective positive feedback loop leads to a dense
group of available pucks (Ashby, 1991; Beckers et al., 2000).
Khani and Jin (2015) and Khani et al. (2016) introduced a social
rule-based behavior regulation approach, which can enforce the
agents to self-organize and push a rectangle box towards the
goal area. Swarms of UAVs can self-organize and accomplish
complex tasks, such as shape formation, target detection, and col-
laborative patrolling, based on a set of cooperation rules (Lamont
et al., 2007; Dasgupta, 2008; Ruini and Cangelosi, 2009; Wei et al.,
2013). Chen and Jin (2011) adopted an FBR approach, which can
assist self-organizing agents in accomplishing complex tasks such
as moving towards long-distance targets while avoiding obstacles.
Price and Lamont (2006) tested the effectiveness of the genetic
algorithm (GA) in optimizing multi-UAV swarm behaviors. He
analyzed the performance of using the GA algorithm in the
“destroying retaliating target” task with both homogenous and
heterogenous UAVs. The robotic applications mentioned above
have demonstrated great potentials for building SOS and the self-
organizing system design methods (Chen and Jin, 2011; Khani
and Jin, 2015; Khani et al., 2016) have had their drawbacks, as dis-
cussed in “Introduction”.

Multiagent RL

Multiagent RL applies to multiagent situations. It is based on the
basic concept of single-agent RL, such as Q-learning, policy

2 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

gradient, and actor-critic (Busoniu et al., 2008; Sutton and Barto,
2018). In comparison to single-agent RL, multiagent learning has
a non-stationary learning environment as multiple agents are
simultaneously learning.

In order to resolve the issues such as high-dimensionality of
state and action spaces in multiagent environments and to
approximate state-action values, there has been a move from
tabular-based approach to deep RL-based approach in the past
several years (Peng et al., 2017; Tampuu et al., 2017; Foerster
et al., 2018; Rashid et al., 2018). Multiagent systems can be clas-
sified into several categories: cooperative, competitive, and mixed
cooperative and competitive settings (Tampuu et al., 2017).
Cooperative agents share the same rewards, competitive agents
(usually in two-agent settings) have opposite rewards, and the
mix of cooperative and competitive environments assume agents
are not only cooperating but also have individual preferences. In
the design of SOS, the focus is on cooperative settings since agents
share the same goals.

A natural approach for multiagent RL is to optimize the value
functions or the policy of each individual agent. One commonly
used value function-based multiagent learning algorithm is inde-
pendent Q-learning (Tan, 1993). In independent Q-learning, each
individual’s state-action values are trained using Q-learning
(Watkins, 1989; Tan, 1993), and it is served as a common bench-
mark in the literature. Tampuu et al. (2017) expanded previous
Q-learning using deep neural networks and applied DQN
(Mnih et al., 2015) to train two independent agents learning
how to play the game, Pong. In his simulation, he shows how
the cooperative and competitive phenomenon emerges depending
on an individual’s different reward schemes (Tampuu et al.,
2017). Foerster developed a framework called “COMA” and
trained multiple agents learning how to cooperate and play
StarCraft games (Foerster et al., 2018). He utilized a centralized
critic network to evaluate decentralized actors and estimated a
counterfactual advantage function for each agent and finally allo-
cated credit among them (Foerster et al., 2018). In another work
by Foerster, he further analyzed the replay stabilization methods
he proposed for independent Q-learning in various StarCraft
combat scenarios (Foerster et al., 2017).

As a multiagent environment is often partially observable,
Hauskneche and Stone (2015) applied deep recurrent networks
such as LSTM (Hochreiter and Schmidhuber, 1997) or GRU
(Chung et al., 2014) to facilitate agents’ learning over long time
periods. Lowe et al. (2017) proposed Multiagent Deep
Deterministic Policy Gradient (MADDPG) algorithm, which
uses centralized training and decentralized execution. They devel-
oped an extension of the actor-critic policy gradient method,
which augmented critics with extra information about the policies
of other agents and then tested their algorithm in cooperative
navigation, predator–pre,y and other environments. Results of
their training algorithm show good convergence properties
(Lowe et al., 2017). Drogoul and Zucker (1998) and Collinot
and Drogoul (1998) introduced a framework for multiagent sys-
tem design named “Andromeda,” which integrates a machine
learning approach with an agent-oriented, role-based approach
named “Cassiopeia.” The main idea is to let learning take place
within different layers of “Cassiopeia” framework, such as indi-
vidual roles, relational roles, and organizational roles, which can
make the design of multiagent system more systematic and mod-
ular (Collinot and Drogoul, 1998; Drogoul and Zucker, 1998).
However, as a real multiagent environment can be rather com-
plex, the actions of agents are affected by not only their own

roles but also by other agents and the group. Dividing learning
into different layers of abstraction may not be feasible.
Abramson et al. (2020) studied how interactive intelligence can
be achieved by artificial agents. They used another learned
agent to approximate the role of the human and adopted ideas
from inverse RL to reduce the differences between human–
human and agent–agent interactive behavior. Results showed
that interactive training and auxiliary losses could improve
agent behavior beyond what can be achieved by supervised learn-
ing (Abramson et al., 2020).

Most multiagent RL algorithms emphasize achieving optimal
cumulative rewards or desirable convergence properties by pro-
posing new training techniques or neural network structures.
Many approaches are based on fully observable states, such as
the entire game screen. Training of the multiagent reinforcement
model is often conducted in prespecified environments with fixed
team sizes. Moreover, besides terminal reward often proposed in
the literature, it is crucial to identify other important reward func-
tions and test how such reward functions affect the performance
of the systems with different task features. For instance, having a
rotation reward in multiagent training can play a key role in reg-
ulating the system dynamics and facilitating agents’ learning. In
addition, the sensitivity of the trained network to different weights
of such reward function should be analyzed, which are crucial fac-
tors in SOS design. Finally, it is important to develop an evalu-
ation metric of SOS and offer guidelines on how design should
be implemented and analyzed in various task situations. Such
areas are often ignored in the literature and are the focus of this
paper.

A deep multiagent RL model

Single-agent RL

Multiagent RL is based on single-agent RL, which is used to opti-
mize system performance based on training so that the system can
automatically learn to solve complex tasks from the raw sensory
input and the reward signal. In single-agent RL, learning is
based on the Markov Decision Process defined by a tuple of <S,
A, P, R, γ>. S is the state space, composed of the agent’s all pos-
sible sensing information of the environment. A is the action
space, including the agent’s all possible actions. P is the transition
matrix, which is usually unknown in a model-free learning envi-
ronment. R is the reward function, and γ is the discount factor for
the future rewards. At any given time t, the agent’s goal is to max-
imize its expected future discounted return, Rt =

∑T
t′ g

t′−trt ,
where T is the time when the game ends. Also, agents estimate
the action-value function Q(s, a) at each time step using
Bellman Eq. (1) as an update. E represents the expected value.
Eventually, such a value iteration algorithm converges to the opti-
mal value function.

Qi+1(s, a) = E[r + gmax
a′

Qi(s
′, a′)|s, a]. (1)

In recent years, deep neural networks are introduced as func-
tional approximators to replace the old Q-table for estimating
Q-values; such learning methods are called deep Q-learning
(Mnih et al., 2015). A Q-network with weights θi can be trained
by minimizing the loss function at each iteration i, illustrated in
Eq. (2),

Li(ui) = E[(yi − Q(s, a; ui))
2], (2)

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

where

yi = E[(r + gmax
a′

Q(s′, a′; ui−1)] (3)

is the target value for iteration i. The gradient can be calculated
with the following equation:

∇ui Li(ui) = Es,a,r,s′ [{r + gmax
a′

Q(s′, a′; ui−1)

− Q(s, a, ui)} ∇uiQ(s, a, ui)]. (4)

Multiagent RL

There are generally two approaches in multiagent training. One is
to train the agents as a team, treating the entire multiagent system
as “one agent.” It has good convergence property but can hardly
scale up or down. For increasing learning efficiency and maintain-
ing scalability, a multiagent independent deep Q-learning (IQL)
approach is adopted. In this approach, Ai, i = 1, …, n (n: number
of agents) are the discrete sets of actions available to the agents,
yielding the joint action set A = A1 × ⋅ ⋅ ⋅ × An. All agents share
the same state space and the same reward function as the task
is cooperative. During training, each agent has its own neural net-
work; they perceive and learn independently except that they
share the same reward function and hence the reward value. As
the agents are homogeneous and share the same action space,
the trained neural networks can be reused and applied in different
team sizes. In our multiagent RL mechanism described above,
each agent i(i = 1, 2, …, n) engages in learning as if it is in the
single-agent RL situation. The only difference is that the next
state of the environment, St+1, is updated in response to the
joint action at = {a1, a2, …, an}, instead of its own action ai, in
addition to the current state St.

In this research, we first introduced a rotation reward for reg-
ulating system dynamics and agents’ behaviors, as shown in Eq.
(5), where α2− α1 represents the change of angle of the moving
object under evaluation, the constant K is between 0 and 1 and
is used to discourage the agents’ behaviors that result in rotation
of the moving object with more than a certain degree threshold.
For example, if K = 0.98, the simulation discourages the rotation
of more than 11° as rotation reward Rrot would be negative.
This way, the object under control can be rotated constantly to
a small degree, which can facilitate the learning of agents by con-
trolling the search space of the agents during exploration with the
environment.

Rrot = Cos(a2 − a1)− K. (5)

After the introduction of the rotation reward, we evaluated the
sensitivity of the learning process to the rotation reward – that is,
whether good knowledge can be acquired through RL with differ-
ent weights of rotation reward. Then we looked into the knowl-
edge evaluation issue – that is, how to systematically evaluate
SOS performance in different tasks through a set of proposed
evaluation metrics: learning stability, quality of knowledge, and
scalability. Learning stability measures cumulative reward of
agents with increasing training episodes; quality of knowledge is
a greedy approach to assess the system performance under the
best state-action policy after training; scalability is measured by
reusing the trained neural networks to different team sizes, and
it tests whether SOS is robust enough to addition or loss of
team members.

Case study box-pushing

To test the concepts and explore the multiagent RL algorithm dis-
cussed above, we carried out a box-pushing case study.

The box-pushing problem

The box-pushing problem is often categorized as a trajectory
planning or piano mover’s problem (LaValle, 2006). Many topo-
logical and numerical solutions have been developed in the past.
In our paper, a self-organizing multiagent deep Q-learning
approach is taken to solve the box-pushing problem. During the
self-organizing process, each agent acts based on its trained neural
network, and collectively all agents can push the box towards a
goal without any system-level global control.

In this research, the box-pushing case study was implemented
in pygame, a multiagent game package in the Python environ-
ment. In the box-pushing case study, each individual agent is
trained with its IQL neural network as a member of a team.
After the training, the resulting neural networks are applied to
the testing situations with various team sizes between 1 and 10.
Both training and testing results are analyzed to elicit the learning
properties, the quality of learned knowledge, scalability, and
robustness of the learned neural networks.

A graphical illustration of the box-pushing case study is shown
in Figure 1. The game screen has a width x of 600 pixels and a
height y of 480 pixels. Numerous agents (the green squares)
with limited pushing and sensing capabilities need to self-
organize in order to push and rotate the brown rectangle towards
the goal (the white dot with a “+” mark). As there is an obstacle
(the red dot) on the path and walls (the white solid lines) along
the side, the agents cannot just simply push the box but must
rotate the box when necessary (Khani and Jin, 2015; Khani
et al., 2016). This adds complexity to the task. The box has sen-
sors deployed at its outside boundary. When the outside peri-
meter of the box reaches the horizontal x-coordinate of the
goal, represented as a white vertical line, the simulation is deemed
a success.

There are four major tasks of box-pushing, as summarized
below. Agents need to move, rotate the box, and keep the box
away from potential collisions with walls and obstacles.

Fig. 1. A graphical illustration of the box-pushing task.

4 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

T1 = <Move><Box> to <Goal>
T2 = <Rotate><Box> to <Goal>
T3 = <Move><Box> away from <Walls>
T4 = <Move><Box> away from <Obstacle>

In pygame, the distance is measured by pixels. Each pixel is a
single square area in the simulation environment. In this case
study, a brown box, which is 90 pixels wide and 225 pixels
long, is shown in Figure 1.

In box-pushing, agents have limited sensing and communica-
tion capabilities. They can receive information from the sensor
on the box, which measures the orientation of the box and senses
the obstacles at a range of distances. They have limited storage of
observation information: their experiences such as state, action,
reward, and next state. They possess a neural network that can
transform the perceived state information into action. These
assumptions are in line with the definition of the “minimalist”
robot (Jones and Mataric, 2003) and are reasonable with the
current applications of physical robot hardware (Groß et al.,
2006).

State space and action space

Task state space: Based on the task decomposition and constraint
analysis mentioned above, the state space of the box-pushing task
is defined as shown in Figure 2. For gathering relevant environ-
ment information, a sensor is deployed in the center of the box,
which can sense nearby obstacles. The radius of the sensor
range is 150 pixels, and the entire circular sensor coverage is
split into 8 sectors of equal size, as shown in Figure 2. In this
case study, part of the state space captures the state of each sector
at any given time: whether the sector is occupied by an obstacle,
represented as 1, or not, represented as 0. Furthermore, we
assume the sensor can also detect the orientation of the box’s
x-axis with respect to the location of the goal (Wang and De
Silva, 2006; Rahimi et al., 2018). Denoting the sectors with s1,

s2, s3, s4, s5, s6, s7, s8, and the box orientation with s9, respectively,
the state space can be defined as:

S = {s1, s2, s3, s4, s5, s6, s7, s8, s9}. (6)
For the example of Figure 2, sectors 3, 5, and 7 are occupied by

obstacles. Therefore, the corresponding state attributes s3, s5, s7 are
having value 1, and s1, s2, s4, s6, s8 are 0. In Figure 2, the box angle
θ is about 30°. And such degree information can be shaped into
the range of [−1,1] by applying s9 = (θ− 180)/180 =−0.83. This
shaped angle method can facilitate deep Q-network training
and is used commonly in practice (Wang and De Silva, 2006;
Rahimi et al., 2018).

Given the above, the state representation of Figure 2 can be
expressed as a 9-item tuple <0,0,1,0,1,0,1,0, −0.83>.

During training, each agent is close to the vicinity of the box
center, and it can receive the sensor information broadcasted
locally among agents. It is assumed that the sensor can also
sense the distance from the center of the box to the location of
the goal, analogous to real-world radar sensor, and is also like
the gradient-based approach in literature where the task field is
assumed (Khani and Jin, 2015; Khani et al., 2016). Agents can
also receive such distance information from the sensor.

Box neighborhood: The box neighborhood is defined as six
regions (Khani and Jin, 2015; Humann et al., 2016), as shown
in Figure 3. During each simulation, an individual agent can
move to one of the six regions of the box neighborhood, and
that specific neighborhood is the position of the agent. As the
individual agent is relatively small, we assume there can be multi-
ple agents in the same region at the same time. This is in line with
the definition of the “minimalist” robot (Jones and Mataric,
2003).

Box dynamics: The box dynamics are based on a simplified
physical model. The box movement depends on the simulated
force and torque. Forces equal to the sum of vector forces of
each pushing agent. Every push carries the same amount of
force, which acts from an agent towards the box in the normal
direction. The sum of two pushes moves the box 10 pixels in a
given direction. Torque is assumed to be exerted on the centroid
of the box, and 2 pushes on the diagonal neighborhood of the box
(such as positions 2 and 5 each) rotate the box 10°. We assume
the box carries a large moment of inertia, and when it hits the
obstacle, which is considered rather small, it continues its move-
ment until its expected end position is reached.

Fig. 2. Box-pushing task state representation. Fig. 3. The six regions of the box neighborhood.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Agent action space: The agent action space is defined based on
the box neighborhood and simulated box dynamics. At each time
step, an agent can choose a place in one of the six regions of the
box neighborhoods to push the box. Therefore, the agents share
the same action space of A = {a1, a2, a3, a4, a5, a6}, as shown in
Figure 3. For instance, if an agent chooses action a1, it moves to
box region “1” and push the box from there, the box moves down-
wards along the box’s y-axis based on the simulated box
dynamics, and the same logic applies to other agent actions.

Reward schema and training model

In order to train multiple agents to self-organize and push the box
to the final goal area, which is the group level function, we need to
design a proper reward schema to facilitate agent training.
Adapted from the previous Q-table-based box-pushing reward
schema (Wang and De Silva, 2006; Rahimi et al., 2018), we
designed a new reward schema for agents’ box-pushing training.
The total reward is composed of four parts: distance, rotation, col-
lision, and goal.

Distance Reward: The reward for pushing the box closer to the
goal position is represented as Rdis, and is shown in Eq. (7). The
previous distance Dold represents the distance, measured in pixels,
between the center of the box and the goal position in the pre-
vious time step. Dnew represents such distance at the current
time step. Cd is a constant, called distance coefficient in our simu-
lation, and is set to 2.5. At each simulation time step, agents cal-
culate the change of distance between the current distance and
previous distance based on Eq. (7) and draw its distance reward.

Rdis = (Dold − Dnew) ∗Cd. (7)

Rotation Reward: The reward for rotation Rrot is represented
in Eq. (8). where α1 is the previous time step angle of the box’s
x-axis with respect to goal position and α2, the current angle.
The rotation reward is given to discourage the rotation of more
than 11°. This way, the box can be rotated constantly with
small degrees and avoid large rotation momentum, which can
result in a collision with obstacles. The rotation reward is relatively
small as it is used only for rotation of the box rather than pushing
the box towards the goal, which is the task’s goal.

Rrot = Cos(a2 − a1)− 0.98. (8)

Collision Reward: The collision reward is analogous to the
reward schema in common collision avoidance tasks (Liu and
Jin, 2018) and is represented in Eq. (9) with Rcol. During each
simulation step, if there is no collision for the box with either
the obstacle or the wall, Rcol = 0. If a collision occurs, a −900
reward is given to all the agents as a penalty.

Rcol = −900 if collision occurs
0 if no collision occurs.

{
(9)

Goal Reward: The reward for reaching the goal Rgoal is repre-
sented in Eq. (10). At each simulation step, if the box reaches the
goal position, each agent receives a positive 900 reward; if the goal
is not reached, the agents do not receive any reward.

Rgoal = 900 if reaching goal
0 if not reaching goal.

{
(10)

The total reward is a weighted sum of all these rewards, as
shown in Eq. (11).

Rtot = w1 ∗Rdis + w2 ∗Rrot + w3 ∗Rcol + w4 ∗Rgoal. (11)

In our simulations, after repeated testing, the weights were set
as w1 = 0.6, w2 = 0.1, w3 = 0.1, w4 = 0.2, with the sum of these
weights equal to 1, shown in Eq. (12). The weights are chosen
so that during each step in training: w1 = 0.6, which means agents
can have a more immediate reward in terms of whether or not
they are closer to the goal; w2 = 0.1, which gives a little incentive
for agents to rotate the box a small angle; w3 = 0.1, to offer some
penalty reward if box collides with an obstacle; w4 = 0.2, since the
agents’ final goal is to reach the target zone, if their goal is
achieved, they should be given more rewards than when box col-
lides with an obstacle. The weight for four different rewards is
adapted and based on previous research on multiagent box-
pushing (Wang and De Silva, 2006; Rahimi et al., 2018).

w1 + w2 + w3 + w4 = 1. (12)

During training, as the agents are homogenous and are coop-
erating to push the box, they should receive the same rewards.
This is the reason why the reward Eqs (7)–(10) are defined
based only on the box’s position and orientation. In this way,
each agent’s neural network considers other agents’ actions as
part of its environment and learns to explore its action space
and also its best policy based on an ϵ-greedy action selection strat-
egy. Gradually, the agent grasps how to differentiate its actions
from other agents to collaboratively push the box towards the
goal position, which is the characteristic of multiagent indepen-
dent deep Q-leaning neural networks.

Experiment design

As aforementioned, the three issues of this research are (1) the sta-
bility of the learning dynamics for agents to acquire knowledge for
self-organizing behavior regulation, (2) sensitivity of SOS perfor-
mance to specific reward functions, (3) evaluation of the SOS per-
formance with different task features. To address these issues, we
conducted a set of multiagent training and testing experiments,
as described below.

Multiagent RL-based agent training
As illustrated in Figure 4, for the multiagent RL-based training
process, the Deep Q-learning algorithm described above was
applied. The independent variable of the training is the Number
of Agents involved in the box-pushing task, denoted by #Tr, vary-
ing between 1 and 10. The dependent variables of the training
process are the Cumulative Reward signifying the learning behav-
ior of the agents, and a set of #Tr neural networks trained,
denoted as, NN#Tr, representing the learned knowledge.

Fig. 4. Agent training experiment design.

6 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

During training, each episode is defined by a complete simula-
tion run, from the starting point to the ending point. The starting
point is arranged as shown in Figure 1, where the agent positions
are randomly assigned while the box’s initial position and the goal
position are both fixed. For the ending point, there are three dif-
ferent situations: (1) the box is pushed into the target position, (2)
the box collides with the obstacle or any sidewall, and (3) the
simulation reaches the maximum number of 500 training steps
(each time an agent chooses its action, it is considered one train-
ing step). When any one of the three situations happens, a simu-
lation run is completed, and the episode finishes.

One training process in the experiment goes through 16,000
episodes. The numbers are chosen because they are the thresholds
for achieving training stabilization at the minimum training cost.
In order to maintain statistical stability, each training was run 100
times with different random seeds. The mean value of the 100
cumulative rewards of a corresponding episode is used as the
reward value of that episode and plotted as the solid colored
lines in the cumulative reward plots in the subsequent part of
“Case study box-pushing”. At the same time, the standard errors
are plotted as green spreads around the mean values.

As shown in Figure 4, the two dependent variables of the train-
ing process are cumulative rewards and the resulting neural net-
works, representing the team learning behavior and the agents’
learned knowledge, respectively. Details of these variables are dis-
cussed subsequent part of “Case study box-pushing”.

Table 1 summarizes the training parameters used in the simu-
lations. Replay memory size is 1000, and 32 mini-batches are ran-
domly sampled from the replay memory during each training
step. The discount factor is 0.99, and the learning rate is 0.001.
Total training episodes are 16,000. The ϵ-greedy action selection

algorithm was followed where ϵ is annealed from 1.0 to 0.005 over
100,000 training steps during training. Agents choose actions
from entirely random (i.e., ϵ = 1.0) to nearly greedy (ϵ = 0.005).
The target neural networks are updated at every 200 training
steps to stabilize the training. Training the network of each
agent consists of an input layer of 9 states, a hidden layer of 16
neurons, a dueling layer (Wang et al., 2016), and output 6
state-action values.

Testing and performance evaluation
The neural networks that are acquired from the MARL-based
training are evaluated through testing simulations. Figure 5 illus-
trates the design of the testing experiment, in which #Tr indicates
the number of agents trained and #Ts is the number of agents
being tested.

There are three independent variables in the testing experi-
ment. They are: learned neural networks NN#Tr, agent team size
(1, …, 10), and noise level (10%). The noise level is defined by
the percentage in which the agents choose random actions instead
of greedy ones during testing runs. This variable is introduced to
model system malfunctions, such as sensor errors and agent dis-
abilities. By correlating the system response to the noise levels, the
robustness of the trained neural networks can be evaluated.

When the number of trained agents #Tr is not the same as the
number of testing agents #Ts (i.e., #Tr≠ #Ts), there exists a
mismatch for deploying the neural networks. To resolve this mis-
match, for cases of #Tr < #Ts, one or more randomly selected net-
works are repeatedly deployed in the test case. When #Tr > #Ts,
then #Ts networks are randomly selected for the testing team
agents.

There is one dependent variable performance score in the test-
ing experiment design, as shown in Figure 5, which indicates the
quality of the learned knowledge and scalability as it is trained
(#Tr = #Ts) and when it is applied in knowledge transfer testing
situations (#Tr ≠#Ts), respectively. Furthermore, correlating the
performance score with the noise level helps assess the robustness
to noise.

As mentioned above, for each training situation, that is, given
#Tr, there are 100 training runs. At the end of each training run, a
greedy testing simulation is carried out to evaluate whether the
box-pushing is successful. The training performance score, in
this case, is defined by the percentage of the number of successful
runs. Usually, the training performance score is greater than 60%,
except for the team of one agent, which is close to 30%, as will be
discussed below.

From the more than 60 successful runs of each training situa-
tion (#Tr), 50 sets of neural networks are randomly selected for

Table 1. Simulation parameters

Replay memory size 1,000

Mini-batch size 32

Discount factor 0.99

Learning rate α 0.001

Total training episodes 16,000

ϵ 1.0 → 0.005

Annealing steps 100,000

Target network update frequency 200

Training network size (9, 16, dueling layer, 6)

Fig. 5. Testing experiment design and performance evaluation.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

testing cases. Again, for statistical stability, each selected set of
neural networks is simulated 100 times, and the performance
score is the percentage of the successful ones among the 100
simulations. This way, after 50 × 100 testing runs, the average per-
formance score of the 50 sets of neural networks is used as the
performance score of the testing situation (#Tr, NoiseLevel).

Results and discussion

Box-pushing trajectory
Figure 6 shows one successful testing run with 6 agents pushing
the box by following max state-action values with motion trace
examples. Although the final optimized trajectory is not strictly
perfect, through applying the multiagent deep Q-networks, agents
can approximate their actions and push the box towards the goal
area.

Training stability
As the number of agents trained varies from 1 to 10, details of the
training stability plots of each agent are included in the appendix.
When the number of agents is smaller than 5, it is hard for the
system to reach a stable and high reward level. The standard
deviation of these training cases is significant. This implies that
the box-pushing task requires the cooperative effort of agents,
and the size of agents needs to be at least 5 agents to reach a rea-
sonable performance level. This “magic” number 5 appears to be
correspondent to the complexity level of the box-pushing task
(Ashby, 1961), which will be mentioned again below.

When the agent size is between 6 and 10, the final converged
reward tends to decrease as team size increases. This is a strong
indication that adding more agents to the system does not neces-
sarily lead to better performance; having more agents involved
only makes the learning less effective. Finding a good team size
is crucial in self-organizing design, especially in constrained envi-
ronment training cases.

Quality of learned knowledge
The quality of the learned knowledge is evaluated based on the
performance score. The “performance score” (see Fig. 5) of a spe-
cific team is defined by the percentage of the successful simulation
runs based on the learned knowledge, as discussed in

“Experiment Design”. Because the multiagent RL is only partially
observable, not all training cases can be successfully trained. By
“being successfully trained,” it is meant that after training, the
trained agents can successfully push the box towards the target
by taking actions greedily suggested by their own neural networks.
Figure 7 illustrates the results of the performance score of the
trained teams of different sizes. When the number of agents is
small, the performance score of training is low as it is hard to
train a small number of agents to push the box. When the number
of agents reaches the “magic” number 5, the performance score of
training becomes 97%. When the number of agents further
increases, the performance score drops. This means that the qual-
ity of the learned knowledge depends on the team size: higher-
quality knowledge can be acquired for the team sizes at the
“magic” number 5; for smaller and larger teams, the learned
knowledge is less reliable. Identifying the “magic” number –
that is, the matching point between the task complexity and
team complexity – is the key to acquiring high-quality knowledge
through multiagent RL.

As rotation reward is a critical element in regulating agents’
behaviors during training, we tested the sensitivity of the quality
of knowledge with respect to different weights of rotation reward
in different team sizes.

During training, the rotation reward is multiplied by a weight
factor Wf in addition to its original weight W2, as shown in Eq.
(13). A list of values was chosen for Wf: 0, 0.1, 1, 10, 100.
When Wf = 0, agents are trained with no rotation reward, and
when Wf = 100, agents are trained with a very big rotation reward.
After training, with the new trained neural networks NN#Tr, we
evaluated the quality of learned knowledge using the same
method as discussed before.

Rtot = w1 ∗Rdis + w2 ∗Rrot ∗wf + w3 ∗Rcol + w4 ∗Rgoal. (13)

The results of the sensitivity analysis are shown in Figure 8. As
the number of agents increases, there is a general trend that the
quality of knowledge improves with higher performance scores
and plateaus at the “magic” team size of 5 agents. And after 5
agents, the performance score drops, which is similar to the
trend shown in Figure 7. The finding shows that “magic” team
size is insensitive to the weights of rotation reward and is related
to the complexity of the system and task.

Also, for each specific team size, there is not a big difference
between the quality of knowledge when agents are trained with
various weight factors of rotation reward. This is because in a box-
pushing environment, as agents’ goal is merely reaching the goal
area, the final orientation of the box is not crucial. As rotation
reward regulates box-pushing angles, it is not very important
with respect to its terminal goal. Also, as there is an obstacle
between the initial box position and the goal area, it serves as
an additional constraint during box-pushing. This makes learning
more robust as it provides more state information for agents dur-
ing learning and also prevents the box from rotating too much
before hitting the obstacle, thus eliminating the need for incorpor-
ating rotation reward in regulating box rotation.

Scalability and robustness
The neural networks learned from a given team size are tested in
teams of different sizes for scalability evaluation. In addition, 10%
of random agent actions are introduced to evaluate the robustness
of the trained networks to environmental changes. The results areFig. 6. A successful box-pushing trajectory with motion traces of a 6-agent team.

8 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

shown in Figure 9. The colors of the curves in the figures repre-
sent the different sets of neural networks obtained from the train-
ing of different numbers of agents. For example, “Tr:3” means the
neural networks used by the agents are obtained from the training
of 3 agents. The horizontal axis indicates the number of agents
that engaged in the testing of the box-pushing task, that is, #Ts.
The vertical axis shows the performance score of simulation runs.

Scalability for knowledge transfer
As shown in Figure 9, when the trained network is applied to the
same team size, the performance score of testing runs first increases
up to team size 5 and then decreases. This is consistent with the
performance score of quality of knowledge of each team size.

Scaling downward: Transferring NN#Tr downward to the
teams of a smaller size #Ts leads to a much inferior performance
score as transferring downward loses some vital information/
knowledge within the system. Also, this can be considered due

to the mismatch between the task complexity and the team com-
plexity (Mnih et al., 2013).

Scaling upward: When the trained agent team size #Tr is
small and the learned networks are applied to a larger team,
that is, #Tr < #Ts, scaling upward has led to reasonably good per-
formances within neighboring 3–4 agents. This shows that system
performance is more robust to adding more agents. Introducing
additional agents can be considered as adding extra noise to the
system; since neural networks are trained with random noise, it
is robust to such “noise” generated by the additional agents.

Case study self-assembly

Self-assembly problem

A graphical illustration of a self-assembly case study is shown in
Figure 10. The game screen has 800 × 800 pixels. Numerous

Fig. 7. Performance score with a different number of
agents in box-pushing task.

Fig. 8. Sensitivity of performance score with different
weight factors of rotation reward in different number
of agents in box-pushing task.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

agents (the green squares) with limited pushing and sensing cap-
abilities need to self-organize in order to push and rotate the box
(the brown rectangle) towards the static target box (the gray rec-
tangle box) and form a T-shape structure centered at the target.
The agents cannot just simply push the box but have to rotate
the box when necessary (Khani and Jin, 2015; Khani et al.,
2016). This adds complexity to the task. Pymunk, a physics
simulation module, was used to build the case study model.
In pymunk, the distance is measured by pixels. As an example,
the brown box is 60 × 150 pixels, and the gray box is 60 × 210
pixels.

State space and action space

The state space of the self-assembly task is defined as S = < s, α, β,
ω, v >, as shown in Figure 11a and Table 2.

For gathering the state information, a sensor is deployed in the
center of the moving box, which can sense nearby obstacles or tar-
gets with a radius of 200 pixels, and the entire circular sensor cov-
erage is equally split into 24 sectors. The vicinity situation is
modeled by s = {s1, s2…, s24} with si representing the correspond-
ing sector situation: has nothing or obstacle or target. In the state
of Figure 11a, three obstacles are detected.

The box neighborhood is defined as six regions (Humann
et al., 2014; Khani and Jin, 2015), as shown in Figure 11b. The
box dynamics are based on the pymunk physics model. The
mass of the box is 1 kg. An agent can push the box from its posi-
tion. Every push carries the same amount of impulse acting on the
center of one of the box regions from an agent towards the box.
The magnitude of an impulse is 1(N ⋅ s), and the box will have
a change of velocity of 1 m/s in the pushing direction and a
change of angular velocity of around 1°/s if agents push on one
of the longer sides of the box neighborhood. For every step in
the simulation, agents perform an action and wait for 1 s until
the next push is carried out. The agent action space is the same
as the box-pushing case study, as shown in Figure 11b.

Reward schema

The reward schema follows the same format as the previous case
study, and the total reward is composed of four parts: distance,
rotation, collision, and goal.

Distance Reward: The reward for pushing the box closer to the
goal position is represented as Rdis, and is shown in Eq. (14).
Distance coefficient Cd is set to 0.02.

Rdis = (Dold − Dnew) ∗Cd. (14)

Fig. 9. Performance score of running with 10% individ-
ual random actions of a varying number of trained
agents in box-pushing task.

Fig. 10. Graphical illustration of self-assembly task.

10 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Rotation Reward: The reward for rotation Rrot is represented
in Eq. (15), where α1 is the previous time step angle between
the center of the target box with respect to the moving box’s
x-axis, and α2 is the current angle. Cr is called rotation coefficient
and is set to 0.1.

Rrot = (Cos(a2 − a1)− 0.98) ∗Cr. (15)
Collision Reward: The collision reward is represented in Eq.

(16) as Rcol,

Rcol = −10 if collision occurs
0 if no collision occurs.

{
(16)

During each simulation step, if there is no collision for the box
with the wall, Rcol = 0. If a collision occurs, a −10 reward is given
to all the agents as a penalty.

Goal Reward: The reward for reaching the goal Rgoal is repre-
sented in Eq. (17),

Rgoal = 100 ∗ |Sin(a)| ∗ |Cos(b)| if reached goal
0 if no reaching goal.

{
(17)

α and β are shown in Table 2. During simulation, if the box
reaches the target box and form a perfect T-shape, each agent
receives a 100 reward; if reached the target box but slightly off
angle, the reward is between 0 and 100; if the target is not reached,
the agents do not receive any reward. The total reward is the sum

of all the rewards, as shown in Eq. (18). The simulation parame-
ters of our algorithm can be seen in Table 3.

Rtot = Rdis + Rrot + Rcol + Rgoal. (18)

Issue and experiment setup

The case study is focused on three issues: (1) achieving stable
learning dynamics by investigating the impact of rotation reward,
(2) sensitivity of SOS to different weights of rotation reward func-
tion, (3) evaluation of the SOS performance by analyzing the
quality of learned knowledge and assessing the robustness of the
learned neural network knowledge in the context of varying
team sizes and environmental noise.

The number of agents i during training was varied between 4
and 40, with 4 agents in between, that is, 4≤ i≤ 40. The training
yields i different neural networks denoted as Ni which is a set of i
networks. To evaluate the robustness of the acquired network knowl-
edge, each Ni was applied to the testing cases with j number of agents,
and j was varied between 4 and 40, with 4 agents in between, that is,
4≤ j≤ 40. The notation Nj

i (4 ≤ i ≤ 40; 4 ≤ j ≤ 40) describes the
situation where the network knowledge obtained from the train-
ing of i agents is applied to the testing case of j agents. It is con-
ceivable that there are 10 training cases but 100 testing cases.
When the testing case agent number j is larger than the training
agent number i, that is, i < j, four or more randomly selected net-
works are repeatedly deployed in the test case. When i > j, then j
networks are randomly selected from Ni for testing simulations.

Fig. 11. Box state and neighborhood: (a) box state representation, (b) six regions of box neighborhood.

Table 2. State space definition

State Description

s The vicinity situation (has nothing/obstacle/target) of the 24
equal sectors around the moving box within 200-pixel range.

α Angle between moving box x-axis and the target vector [20–21].

β Angle between fixed box x-axis and the moving box center

ω Angular velocity of the moving box.

v Velocity of the moving box in global x-axis and y-axis directions

Table 3. Training simulation parameters and values

Replay memory
size

1,000 ϵ 1.0 → 0.01

Mini-batch size 32 Annealing steps 250,000

Discount factor 0.99 Target network
update frequency

200

Learning rate 0.001

Total training
episodes

16,000 Dueling DQN network
size

(29, 64,
128,6)

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

For maintaining statistic stability, for each i agents team, the
agents are trained 100 times with different random seeds, result-
ing in neural networks Nil, 4≤ i≤ 40; l = 1, 2, …, 100. To evaluate
the performance of a specific Nil after training, the goal reward of
Eq. (17) is used as the performance score. The maximum score is
100, which is when the perfect T-shape is formed in the middle of
the target box. For a given i, all 100 networks Nil were collected as
the network dataset from which a specific Nil is randomly selected
to test j-agent teams, Nj

il . The testing simulation for a given
j-agent team is also run 100 times, and the mean cumulative
reward values and performance scores are used in the plots
shown in Figures 13–16.

Results and discussion

Box-pushing trajectory
Figure 12 shows one successful training run with an 8-agent team
by following a policy that maximizes state-action values. Although
the final optimized trajectory is not strictly perfect, through mul-
tiagent deep Q-networks, agents can approximate its actions and
push the moving box towards the target box and form a T-shape
structure.

Fig. 13. Reward plot versus training episodes of 24-agent with standard error of the mean in green shaded region: (a) total reward including rotation reward, (b)
rotation reward, (c) total reward excluding rotation reward, (d) total reward trained without rotation reward.

Fig. 12. Successful self-assembly trajectory with motion traces.

12 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Training stability
It was found that, unlike the first case study, the cumulative
reward does not differ much between different team sizes. This
is due to a rather small difference in reward values in self-
assembly tasks among various team sizes. Therefore, in
Figure 13, we only show the training convergence results of
24-agent teams, N24. The reward plots are based on the mean val-
ues of 100 training simulation runs, i.e., l = 1, 2, …, 100, with dif-
ferent random seeds.

Figure 13a–c shows the reward plots for teams trained with the
rotation reward [see Eq. (15)]. Figure 13d is the reward plot for
teams trained without the rotation reward. As shown in
Figure 13a, the cumulative reward of the 24-agent teams trained
with the rotational reward converges to almost 100, and once
the cumulative reward reaches the threshold, it stays the same
without much oscillation. The green shaded region in the plots
represents the standard error from the mean value of the reward.
Figure 13b shows how the rotation reward changes with increasing
episodes. As the episode number increases, the rotation reward first
decreases and then increases to around 0. Figure 13c shows how the
cumulative reward, excluding rotation reward increases with epi-
sodes. It is used as a comparison with Figure 13d, in which the

agents are trained without the rotation reward, and training finally
converged to only around 80 rewards.

This result indicates that introducing rotation reward had a
significant impact during training in the self-assembly task,
which further demonstrates that providing terminal rewards
alone is not enough for agents to find optimal policies success-
fully. Regulating agents’ behavior during the training process is
essential to mitigate the effect of too much or too little rotation
for arriving at the maximum potential of the agent team.

Quality of learned knowledge

The quality of the learned knowledge is evaluated by a perfor-
mance score. For each i agents team, the agents are trained 100
times with different random seeds, resulting in neural networks
Nil, 4≤ i≤ 40; l = 1, 2, …, 100. The performance score of each
Nil is evaluated using the goal reward of Eq. (17). The standard
error of the mean is also calculated for each team size based on
the 100 different performance scores of each random seed.
Figure 14 illustrates the results of the performance score of the
trained teams of different sizes. Similar to the box-pushing case
study, the quality of the learned knowledge depends on the

Fig. 14. Performance score with a different number of
agents in self-assembly task.

Fig. 15. Sensitivity analysis of performance score with a
different number of agents with a different weight factor
of rotation reward in self-assembly task.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

team size: higher-quality knowledge can be acquired for the team
sizes at the “magic” number 20 or 24 compared to smaller and
larger teams. Finding the “magic” number – that is, the matching
point between the task complexity and team complexity – is cru-
cial in acquiring high-quality knowledge through multiagent RL.

We also tested the sensitivity of quality of knowledge with
respect to different weights of rotation reward in various team
sizes: 1, 2, 4, 12, and 24. During training, the rotation reward is
multiplied by a weight factor Wf in addition to its original weight
1, as shown in Eq. (19). A list of values was chosen for Wf: 0, 0.1,
1, 10, 100. After training, with the new trained neural networks
Nil, we evaluated the quality of learned knowledge using the
same evaluation method: performance score.

Rtot = Rdis + Rrot ∗wf + Rcol + Rgoal. (19)

The results of the sensitivity analysis are shown in Figure 15.
The error bar shows the standard error of the mean of the perfor-
mance score with trained neural networks Nil. When agents of
various team sizes are trained with Wf = 100, agents ultimately
learned how to rotate the box for an extensive period of time in
order to accumulate rotation reward instead of learning how to
form the T-shape structure. The performance score is indicated
with a black rectangle, which represents the inferior quality of
knowledge learned when Wf is very big. Except Wf = 100, when
the number of agents is 1, there is not a big difference between
the quality of knowledge trained with various weight factors of
rotation reward. This is because one agent can only move the
box with a change of angular velocity of around 1°/s, which is
not a very large angle. Thus, having a rotation reward as a penalty
reward is not very useful in this case. However, when agent sizes
reach 2, 4, and beyond, the quality of knowledge learned is largely

dependent on the weights of rotation reward. When Wf = 0 and
Wf = 0.1, the effect of regulating agents’ behavior is not very
strong, and the performance score is low. When Wf = 1 and Wf

= 10, there is enough regulation, and agents can reach the full
potential of learning, and the final performance score is most
optimal. Thus, for the self-assembly task, it is always advised to
introduce some rotation reward, and the weight of such rotation
reward cannot be too small nor too big, especially when the
agent team size is relatively large: greater than one.

Scalability and robustness
The scalability of the learned neural network knowledge to differ-
ent team sizes and the robustness to various noises are two impor-
tant issues for this case study. Applying neural network trained
with i-agent teams to test and assess the performance of j-agent
teams, that is, Nj

i (4 ≤ i ≤ 40; 4 ≤ j ≤ 40), allows us to assess
the scalability. Further, introducing 10% random agent actions
helps evaluate the robustness of the trained networks. The results
are shown in Figure 16. The curves with different colors in the fig-
ure represent the training of i-agent teams. For example, Tr4
means training of the 4-agent team and Tr8 8-agent team. The
horizontal axis indicates j-agent testing teams. The vertical axis
shows the performance score of testing [Eq. (17)], with error
bars showing the standard error of the mean.

Similar findings can be drawn compared to the box-pushing
case study. As shown in Figure 16, when the trained networks
are applied to the same team size, Ni

i , agents have a performance
score of above 90. As the team size i increases, the performance
score of testing runs Ni

i first increases and then decreases, indicat-
ing that there is a threshold of the effect of adding more agents. In
this case study, the threshold is around 20.

Like the box-pushing case study, transferring learned knowledge
downward is less effective compared to doing so upward in terms of

Fig. 16. Transfer performance score with a different
number of transfer agents with error bars indicating
the standard error.

14 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

team size. This is because during scaling upward, the extra agents
can be considered as extra noise, and the system is robust to the
impact of “noise.” Scaling downward is more detrimental as the sys-
tem loses some knowledge within its learned neural networks.

Implications for future SOS design

Although it is worth mentioning that the findings and insights
described above are limited to the two case studies reported in
this paper, some general guidelines for future SOS design can
be derived as follows.

Adding more agents to the system increases system complexity.
The “magic” team size is the point where system complexity
matches task complexity and has optimal learning stability, qual-
ity of knowledge, and scalability. Magic team size is dependent on
the type of tasks and system dynamics and is insensitive to the
weights of rotation reward during training. Designers can test
hypothetical “magic” team sizes using multiagent RL to obtain
maximum system performance. For example, from the training
stability perspective, at “magic” team size, training becomes
most stable and reaches the maximum cumulative reward. From
an evaluation perspective, magic team sizes should have a better
quality of the learned knowledge and are most robust in response
to environmental noises among all team sizes tested.

Learning stability, quality of knowledge, and scalability are three
metrics that can be used to assess the SOS. Depending on the type
of task, the results of each evaluation measurement can vary.

Learning stability: For tasks with fixed terminal rewards, for
example, box-pushing, when agents successfully push the box to
the goal, they can get a fixed terminal reward. Failure to push the
box to the goal area leaves agents with zero terminal rewards. The
variation between the learning stability of agents of various sizes
can be manifested with cumulative reward plots as there is a big dif-
ference of reward between successful pushing and unsuccessful
pushing. For the self-assembly task, the goal reward is based on
the final orientation of the box; it is a variational reward depending
on the terminal position and is in the range of 0–100. Thus, in self-
assembly tasks, it is hard to differentiate between the learning stabil-
ity of a different number of agents using cumulative reward plots.

Quality of knowledge: Unlike learning stability, which evalu-
ates the learning behavior of agents during training, quality of
knowledge assesses the learned knowledge of agents after training.
The performance score is a numerical value that measures the
quality of knowledge learned. In both box-pushing and self-
assembly case studies, quality of knowledge measurement is an
effective tool in assessing the learned knowledge of SOS because
it can represent slight differences in values by using a perfor-
mance score, which can be used to determine the “magic” team
size of the SOS. In the box-pushing case study, for specific
team size, the quality of knowledge is insensitive to the weight
of rotation reward. This is because the final goal is not strictly
related to the box orientation, and the presence of an obstacle
along the pushing trajectory regulates agent behaviors and
reduces the need for rotation reward in regulating agents’ actions.
However, in the self-assembly task, the inclusion of rotation
reward is essential in obtaining the best quality of knowledge.
This is because the self-assembly task does not have obstacles
along the box’s trajectory, and the final position and orientation
of the box are critical in accomplishing the task.

Scalability: Scalability is another measurement that is used
after training. In both case studies, scaling upward to a higher
team size has less impact on system performance during the

transfer of knowledge than scaling downward. This is because a
neural network is more robust to the noise generated by extra
agents than losing knowledge within its team.

Future SOS design should consider the features of the tasks,
such as the ultimate goal of the task and whether there are phys-
ical constraints like obstacles presented, and introduce appropri-
ate behavior regulation reward, for example, rotation reward
during training. Finally, designers can selectively choose three
metrics mentioned in our paper to evaluate their system perfor-
mance depending on the type of task.

Conclusions and future work

In multiagent RL-based SOS design, the sensitivity of SOS perfor-
mance to specific reward functions and systematic evaluation of
SOS are essential issues to consider. In this paper, a rotation
reward function has been introduced, and the sensitivity of SOS
performance to such reward function was analyzed through two
different case studies. Three evaluation metrics, including learning
stability, quality of knowledge, and scalability, were investigated.
Following conclusions can be drawn from the experiment results.

• The multiagent RL training process has good stability with a
proper range of agent team sizes with different types of tasks.

• When the system complexity matches the task complexity,
reaching the “magic” number, the learned knowledge has the
best team performance, scalability, and robustness.

• The optimal team size and quality of knowledge are insensitive
to the weights of rotation reward.

• Introducing rotation rewards has a significant impact on train-
ing performance.

• The multiagent RL-based self-organizing knowledge captured
in the form of neural networks can scale upward better with
respect to the team size.

The main contribution of this research to engineering design is
twofold. First, the introduction of the rotation reward penalizes
the excessive rotation movements and allows the agents to learn
from making serious mistakes; the experiment results indicate
that the landscape of shaping rewards reflects the essence of the
tasks and should be carefully explored and designed. Second,
three evaluation metrics, namely, learning stability, quality of
learned knowledge, and scalability, are proposed to systematically
measure the performance of SOS; the case studies have demon-
strated the effectiveness of these measures. From a designing per-
spective, depending on the type of tasks, designers should choose
appropriate weights of reward functions to obtain the full potential
of agent learning capability. The evaluation metrics in our paper
can be used to identify the optimal number of agents to achieve
the desired system performance, and the selection of evaluation
metrics should be based on the characteristics of the task.

It is worth mentioning that the insights obtained and the con-
clusions are limited by the case studies described. Future work
includes adding more case studies to justify our results and find-
ings. Also, introducing a more refined reward model could poten-
tially benefit the learning of agents and improve the performance
of the SOS. For instance, the collision reward in our paper only
considers the situation when the box collides with the walls or
obstacles and ignores the collision between agents as the assump-
tion of minimal robots is made, and agent team size is relatively
small. For large team sizes such as hundreds or thousands of
agents, the collision between agents would become inevitable as

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

agents are likely to follow similar routes. Assigning a large colli-
sion reward as a penalty could be a generator of noise during
training. Therefore, collision reward needs to be introduced
with more precision in such situations, and additional measures
need to be taken in the event of a collision to obtain better SOS
performance. Finally, introducing mathematical measurement of
the complexity of the task and the system is another direction
for predicting the “magic” team size of SOS.

Acknowledgements. This paper was based on the work supported in part by
the Autonomous Ship Consortium with member companies of MTI Co., Japan
Marine United Corporation, Tokyo Keiki Inc., BEMAC Inc., ClassNK, and
Japan National Maritime Research Institute. The authors are grateful to the
sponsors for their support for this research.

References

Abramson J, Ahuja A, Barr I, Brussee A, Carnevale F, Cassin M, Chhaparia
R, Clark S, Damoc B, Dudzik A, Georgiev P, Guy A, Harley T, Hill F,
Hung A, Kenton Z, Landon J, Lillicrap T, Mathewson K, Mokrá S,
Muldal A, Santoro A, Savinov N, Varma V, Wayne G, Williams D,
Wong N, Yan C and Zhu R (2020) Imitating interactive intelligence.
arXiv preprint arXiv:2012.05672.

Arroyo M, Huisman N and Jensen DC (2018) Exploring natural strategies for
bio-inspired fault adaptive systems design. Journal of Mechanical Design
140, 091101-1–091101-11.

Ashby WR (1961) An Introduction to Cybernetics. London, UK: Chapman &
Hall Ltd.

Ashby WR (1991) Requisite variety and its implications for the control of
complex systems. In Klir CJ (ed.), Facets of Systems Science. Boston, MA:
Springer, pp. 405–417.

Bar-Yam Y (2002) General features of complex systems. In Kiel LD (ed.),
Encyclopedia of Life Support Systems (EOLSS). Oxford, UK: UNESCO,
EOLSS Publishers.

Beckers R, Holland OE and Deneubourg JL (2000) From local actions to
global tasks: stigmergy and collective robotics. In Cruse H, Dean J and
Ritter H (eds), Prerational Intelligence: Adaptive Behavior and Intelligent
Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational
Intelligence: interdisciplinary Perspectives on the Behavior of Natural and
Artificial Systems, Volume 3. Dordrecht: Springer, pp. 1008–1022

Busoniu L, Babuska R and De Schutter B (2008) A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 38, 156–172.

Chen C and Jin Y (2011) A behavior based approach to cellular self-
organizing systems design. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Vol. 54860, pp. 95–107.

Chiang W and Jin Y (2012) Design of cellular self-organizing systems.
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Vol. 45028. American Society
of Mechanical Engineers, pp. 511–521.

Chung J, Gulcehre C, Cho K and Bengio Y (2014) Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

Collinot A and Drogoul A (1998) Using the Cassiopeia method to design a
robot soccer team. Applied Artificial Intelligence 12, 127–147.

Dasgupta P (2008) A multiagent swarming system for distributed automatic
target recognition using unmanned aerial vehicles. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans 38, 549–563.

Drogoul A and Zucker JD (1998) Methodological Issues for Designing
Multiagent Systems with Machine Learning Techniques: Capitalizing
Experiences from the Robocup Challenge (Doctoral dissertation, LIP6).

Ferguson SM and Lewis K (2006) Effective development of reconfigurable sys-
tems using linear state-feedback control. AIAA Journal 44, 868–878.

Foerster J, Nardelli N, Farquhar G, Afouras T, Torr PH, Kohli P and
Whiteson S (2017) Stabilising experience replay for deep multiagent

reinforcement learning. International Conference on Machine Learning.
PMLR, pp. 1146–1155.

Foerster J, Farquhar G, Afouras T, Nardelli N and Whiteson S (2018)
Counterfactual multiagent policy gradients. Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32, No. 1.

Groß R, Bonani M, Mondada F and Dorigo M (2006) Autonomous self-
assembly in swarm-bots. IEEE Transactions on Robotics 22, 1115–1130.

Hausknecht M and Stone P (2015) Deep recurrent q-learning for partially
observable mdps. arXiv preprint arXiv:1507.06527.

Hochreiter S and Schmidhuber J (1997) Long short-term memory. Neural
Computation 9, 1735–1780.

Humann J, Khani N and Jin Y (2014) Evolutionary computational synthesis
of self-organizing systems. AI EDAM 28, 259–275.

Humann J, Khani N and Jin Y (2016) Adaptability tradeoffs in the design of
self-organizing systems. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Vol. 50190. American Society of Mechanical Engineers, p. V007T06A016.

Ji H and Jin Y (2018) Modeling trust in self-organizing systems with hetero-
geneity. ASME 2018 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. American
Society of Mechanical Engineers Digital Collection.

Ji H and Jin Y (2019) Designing self-organizing systems with deep multi-
agent reinforcement learning. International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
Vol. 59278. American Society of Mechanical Engineers, p. V007T06A019.

Ji H and Jin Y (2020) Designing self-assembly systems with deep multiagent
reinforcement learning. Design Computing and Cognition’14. Springer,
Cham, pp. xx–xx.

Jones C and Mataric MJ (2003) Adaptive division of labor in large-scale
minimalist multi-robot systems. Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453), Vol. 2. IEEE, pp. 1969–1974.

Kennedy J (2006) Swarm intelligence. In Zomaya AY (ed.), Handbook of
Nature-InspiredandInnovativeComputing. Boston,MA:Springer,pp.187–219.

Khani N and Jin Y (2015) Dynamic structuring in cellular self-organizing sys-
tems. In Gero JS (ed.), Design Computing and Cognition’14. Cham:
Springer, pp. 3–20.

Khani N, Humann J and Jin Y (2016) Effect of social structuring in self-
organizing systems. Journal of Mechanical Design 138, 041101-1–
041101-11.

Königseder C and Shea K (2016) Comparing strategies for topologic and
parametric rule application in automated computational design synthesis.
Journal of Mechanical Design 138, 011102-1–011102-12.

Lamont GB, Slear JN and Melendez K (2007) UAV swarm mission planning
and routing using multi-objective evolutionary algorithms. 2007 IEEE
Symposium on Computational Intelligence in Multi-Criteria Decision-
Making. IEEE, pp. 10–20.

LaValle SM (2006) Planning Algorithms. Cambridge, UK: Cambridge
University Press.

Liu X and Jin Y (2018) Design of transfer reinforcement learning mechanisms
for autonomous collision avoidance. International Conference on-Design
Computing and Cognition. Cham: Springer, pp. 303–319.

Lowe R, Wu Y, Tamar A, Harb J, Abbeel P and Mordatch I (2017)
Multiagent actor-critic for mixed cooperative-competitive environments.
arXiv preprint arXiv:1706.02275.

Martin MV and Ishii K (1997.Design for variety: development of complexity
indices and design charts. Proceedings of ASME 1997 Design Engineering
Technical Conferences, September 14–17, 1997, Sacramento, CA,
DFM-4359-1–DFM-4359-9.

McComb C, Cagan J and Kotovsky K (2017) Optimizing design teams based
on problem properties: computational team simulations and an applied
empirical test. Journal of Mechanical Design 139, 041101-1–041101-12.

Meluso J and Austin-Breneman J (2018) Gaming the system: an agent-based
model of estimation strategies and their effects on system performance.
Journal of Mechanical Design 140, 121101-1–121101-9.

Min G, Suh ES and Hölttä-Otto K (2016) System architecture, level of
decomposition, and structural complexity: analysis and observations.
Journal of Mechanical Design 138, 021102-1–021102-11.

16 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D and
Riedmiller M (2013) Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG,
Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S,
Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D,
Legg S and Hassabis D (2015) Human-level control through deep reinfor-
cement learning. Nature 518, 529–533.

Peng XB, Berseth G, Yin K and Van De Panne M (2017) Deeploco: dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (TOG) 36, 1–13.

Pippin CE (2013) Trust and Reputation for Formation and Evolution of
Multi-robot Teams (Doctoral dissertation). Georgia Institute of Technology.

Pippin C and Christensen H (2014) Trust modeling in multi-robot patrolling.
2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, pp. 59–66.

Price IC and Lamont GB (2006) GA directed self-organized search and attack
UAV swarms. Proceedings of the 2006 Winter Simulation Conference. IEEE,
pp. 1307–1315.

Rahimi M, Gibb S, Shen Y and La HM (2018) A comparison of various
approaches to reinforcement learning algorithms for multi-robot box push-
ing. International Conference on Engineering Research and Applications.
Cham: Springer, pp. 16–30.

Rashid T, Samvelyan M, Schroeder C, Farquhar G, Foerster J and Whiteson
S (2018) Qmix: monotonic value function factorisation for deep multiagent
reinforcement learning. International Conference on Machine Learning.
PMLR, pp. 4295–4304.

Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral
model. Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques. pp. 25–34.

Ruini F and Cangelosi A (2009) Extending the evolutionary robotics approach to
flying machines: an application to MAV teams. Neural Networks 22, 812–821.

Sutton RS and Barto AG (2018) Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press.

Tampuu A, Matiisen T, Kodelja D, Kuzovkin I, Korjus K, Aru J, Aru J and
Vicente R (2017) Multiagent cooperation and competition with deep rein-
forcement learning. PLoS One 12, e0172395.

Tan M (1993) Multiagent reinforcement learning: Independent vs. cooperative
agents. Proceedings of the Tenth International Conference on Machine
Learning. pp. 330–337.

Wang Y and De Silva CW (2006) Multi-robot box-pushing: single-agent
q-learning vs. team q-learning.2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 3694–3699.

Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M and Freitas N (2016)
Dueling network architectures for deep reinforcement learning.
International Conference on Machine Learning. PMLR, pp. 1995–2003.

Watkins CJCH (1989) Learning from delayed rewards.
Wei Y, Madey GR and Blake MB (2013) Agent-based simulation for uav

swarm mission planning and execution. Proceedings of the Agent-Directed
Simulation Symposium, pp. 1–8.

Werfel J (2012) Collective construction with robot swarms. In Doursat R,
Sayama H and Michel O (eds), Morphogenetic Engineering. Berlin,
Heidelberg: Springer, pp. 115–140.

Appendix

Figure A1 shows the convergence results of box-pushing simulations with a
different numbers of agents. The figures show the average cumulative reward
of 100 random training seeds with respect to the training episodes. The stan-
dard error of the mean is plotted with the green shaded region.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Fig. A1. Cumulative reward versus training episode plots with varying sizes of teams. (a) team size = 1, (b) team size = 2, (c) team size = 3, (d) team size = 4, (e) team
size = 5, (f) team size = 6, (g) team size = 7, (h) team size = 8, (i) teams size = 9, (j) team size = 10.

18 Hao Ji and Yan Jin

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Hao Ji received his PhD degree in Mechanical Engineering from the
University of Southern California in the summer of 2021. His research
was focused on developing multiagent reinforcement learning algorithms
for self-organizing systems. Dr. Ji received his BS degree from Donghua
University and his Master’s degree from the University of California at
Berkeley. He worked as an affiliate researcher at the University of
California at Berkeley before joining the University of Southern California
for his PhD study. He is currently working as a data scientist in machine
learning-related areas.

Yan Jin is Professor of Aerospace and Mechanical Engineering at the
University of Southern California. He received his PhD degree in Naval
Engineering from the University of Tokyo and did his post-doctoral research
at Stanford University. Dr. Jin’s research covers design theory & methods,
multiagent, and self-organizing systems. His current research interests
include design cognition, machine learning and its applications in engineer-
ing design, knowledge capturing, self-organizing, and adaptive systems. Dr.
Jin is a recipient of the National Science Foundation CAREER Award and
TRW Excellence in Teaching Award. He served as Editor-in-Chief of
AIEDAM and Associate Editor of JMD and is currently Associate Editor
of Design Science Journal. Dr. Jin is a Fellow of ASME.

Fig. A1. Continued.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19

Downloaded from https://www.cambridge.org/core. 17 Jan 2022 at 05:29:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

	Evaluating the learning and performance characteristics of self-organizing systems with different task features
	Introduction
	Related work
	Design of complex systems
	Artificial SOS
	Multiagent RL

	A deep multiagent RL model
	Single-agent RL
	Multiagent RL

	Case study box-pushing
	The box-pushing problem
	State space and action space
	Reward schema and training model
	Experiment design
	Multiagent RL-based agent training
	Testing and performance evaluation

	Results and discussion
	Box-pushing trajectory
	Training stability
	Quality of learned knowledge
	Scalability and robustness
	Scalability for knowledge transfer

	Case study self-assembly
	Self-assembly problem
	State space and action space
	Reward schema
	Issue and experiment setup
	Results and discussion
	Box-pushing trajectory
	Training stability

	Quality of learned knowledge
	Scalability and robustness

	Implications for future SOS design

	Conclusions and future work
	Acknowledgements
	References
	Appendix

