
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Liu X, Jin Y (2020).
Reinforcement learning-based collision
avoidance: impact of reward function and
knowledge transfer. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing
1–16. https://doi.org/10.1017/
S0890060420000141

Received: 19 March 2019
Revised: 7 January 2020
Accepted: 11 January 2020

Key words:
Agent-based systems; autonomous vehicle;
collision avoidance; deep reinforcement
learning; machine learning

Author for correspondence:
Yan Jin, E-mail: yjin@usc.edu

© Cambridge University Press 2020

Reinforcement learning-based collision
avoidance: impact of reward function and
knowledge transfer

Xiongqing Liu and Yan Jin

Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue,
OHE-430, Los Angeles, CA 90089-1453, USA

Abstract

Collision avoidance for robots and vehicles in unpredictable environments is a challenging
task. Various control strategies have been developed for the agent (i.e., robots or vehicles)
to sense the environment, assess the situation, and select the optimal actions to avoid collision
and accomplish its mission. In our research on autonomous ships, we take a machine learning
approach to collision avoidance. The lack of available ship steering data of human ship mas-
ters has made it necessary to acquire collision avoidance knowledge through reinforcement
learning (RL). Given that the learned neural network tends to be a black box, it is desirable
that a method is available which can be used to design an agent’s behavior so that the desired
knowledge can be captured. Furthermore, RL with complex tasks can be either time consum-
ing or unfeasible. A multi-stage learning method is needed in which agents can learn from
simple tasks and then transfer their learned knowledge to closely related but more complex
tasks. In this paper, we explore the ways of designing agent behaviors through tuning reward
functions and devise a transfer RL method for multi-stage knowledge acquisition. The com-
puter simulation-based agent training results have shown that it is important to understand
the roles of each component in a reward function and the various design parameters in trans-
fer RL. The settings of these parameters are all dependent on the complexity of the tasks and
the similarities between them.

Introduction

In the recent years, the development of autonomous vehicles, especially autonomous cars, has
been a common topic reported frequently in newspapers and television programs, thanks to
the advance in control systems and the proliferation of machine learning techniques. Our
research on collision avoidance for ships at sea aims to develop technologies that will even-
tually lead to the future autonomous ships that can not only steer in open waters and less con-
gested areas but also are capable of avoiding collisions in congested harbors and reaching
alongside berths without direct human involvement.

There have been various approaches to solving vehicle collision avoidance problems which
can be divided into two large categories. One is vehicle control system development and the
other traffic control system development, with the former being more relevant to this research.
Vehicle control can be further categorized into the dynamical systems approach (e.g., Machado
et al., 2016), which relies on traditional control theories, and the intelligent systems approach
(e.g., Yang et al., 2017), which employs knowledge-based systems and machine learning tech-
niques to make collision avoidance decisions. Although the dynamical systems approach can
be effectively applied in mostly predictable circumstances, when the uncertainty level becomes
high and exceptions happen, the intelligent systems approach will be needed. Traditional
knowledge-based systems have been applied to collision avoidance (e.g., Jin and Koyama,
1987). However, the issues of knowledge acquisition, formalization, and management have
remained to be practically challenging.

The recent progress in machine learning, especially the deep learning (LeCun et al., 2015),
has opened the ways to developing systems that can learn from humans’ operation experiences
(e.g., through supervised deep learning) and from machines’ own experiences [e.g., through
reinforcement learning (RL)]. The RL approach allows an agent to learn from its own experi-
ence. By interacting with the environment, the agent learns to select actions at any state to
maximize its total reward. In case of deep learning, for example, AlphaGo (Chen, 2016),
the agent learns from the experience of human experts and apply the learned skills to solving
the problems in the same domain of the experts. Furthermore, computer agents can learn to
play games, for example, Go, by themselves through RL without any input from humans.
AlphaGo-Zero is such an example that even won the human experience based AlphaGo in
game matches (Silver et al., 2017).

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060420000141
https://doi.org/10.1017/S0890060420000141
mailto:yjin@usc.edu
https://orcid.org/0000-0002-6502-5837

In this research, the attempts have been made to apply the
human experience-based supervised learning approach to train
neural networks, but the effectiveness has been limited, largely
because it was a nontrivial process to acquire sufficient human
steering data to train the computer agents to a high skill level.
Only rarely could we have opportunities to obtain meaningful
data for complex ship encounters and the amount of such data
is often too small for the agent training purpose. Therefore, we
adopted the RL approach to acquire collision avoidance knowl-
edge in complex ship encounter situations.

From a system point of view, the development of RL agents
needs to satisfy two requirements. The first requirement relates
to ship behavior design. Although through deep RL, ship agents
can learn their optimal policies given the state and action spaces,
the state transition, and reward functions, the learned neural net-
work is still a black box that provides little identifiable knowledge
about agents’ action mechanisms. To make agents’ behavior more
transparent, it is important to understand how the agents’ behav-
ior changes in response to the change of reward functions. In this
paper, an initial effort in turning the reward functions for ship
agent behavior design is presented.

Second, training in RL takes time, and the capability of trans-
ferring previously learned knowledge (i.e., neural network) in the
new learning situations effectively is needed not only for speeding
up the learning processes but also for expanding the range of sit-
uations by including the ones covered by other agents. This
requirement calls for transfer learning in the reinforcement learn-
ing context. In this paper, a belief-based transfer RL method is
introduced, and its design features are investigated and presented.

To summarize, in this research we address two research ques-
tions: (1) how the agent behavior is determined by reward func-
tions in RL? and (2) what are the important parameters that
impact both the learning and task behaviors of the agent in a trans-
fer RL context?

The rest of the paper is organized as follows. The related work
is reviewed in the section “Related work”, and then, the task of
ship collision avoidance is described in the section “Tasks of
ship collision avoidance”. “Machine learning based knowledge
capture” provides details of a machine learning approach for col-
lision avoidance, and section “Case study design” presents the
design of case studies, and the results and discussion are described
in the section “Results and discussion”. The conclusions are
drawn in the section “Conclusions” together with the directions
of future work.

Related work

Collision avoidance

Over the years, collision avoidance has been a common research
topic in many industrial domains, including robotics, shipping,
air traffic control, and self-driving cars. In the area of robotics,
research has focused on issues related to how vehicle robots
avoid obstacles and collisions with each other (Brunn, 1996;
Alonso-Mora et al., 2013; Shiomi et al., 2014) and how assembly
robots, or manipulators, avoid interferences among its own arms
or with those of others (Hourtash et al., 2016; Hameed and
Hasan, 2016). In the sea and river shipping industry, collision
avoidance can be highly difficult, when the water areas are becom-
ing congested, due to the large inertia of ships causing immova-
bility when movement is needed (Goerlandt and Kujala, 2014).
Once a collision happens at sea, the loss can be tremendous

(Eleftheria et al., 2016). Airplane collision avoidance (Zou et al.,
2016) and even the collision with debris in space (Casanova
et al., 2014) have become issues due to the increasing level of con-
gestion. The self-driving industry is a rapidly growing field in the
recent years, and fully autonomous cars are expected to become
available soon. A self-driving system is considered to be more
engineered in the sense that each car agent is equipped with
more intelligence, which is at least able to (a) process human-level
perceptions, that is, detecting lanes, traffic signs, pedestrians,
other vehicles/obstacles, etc.; (b) predict trajectories of pedestrians
and other vehicles; and (c) deal with complex social interactions
with other vehicles and pedestrians. After all, self-driving cars
must be able to avoid obstacles and other vehicles in various sit-
uations (Mukhtar et al., 2015; Kuderer et al., 2015).

Collision avoidance problems have always attracted the atten-
tion of researchers in various research fields such as artificial
intelligence, control theory, robotics, multi-agent system, and so
on. The traditional practice to achieve real-time obstacle avoid-
ance was to create an artificial potential field (Khatib, 1986).
Fahimi et al. (2009) proposed harmonic potential functions and
the panel method to address multi-robot obstacle avoidance prob-
lem in the presence of both static and dynamic obstacles.
Mastellone et al. (2008) designed a controller for collision avoid-
ance based on the Lyapunov-type approach and demonstrated the
robustness of the system when the communication between
robots was unreliable. Keller et al. (2016) designed a path planner
for unmanned aircraft systems to provide surveillance by combin-
ing graph search and B-spline parametric curve construction,
which could successfully navigate around obstacles and provide
sufficient coverage. Tang and Kumar (2015) proposed the OMP
+ CHOP algorithm for a centralized multi-robot system, which
was shown to be safe and complete, but at the cost of optimality.

Machine learning

In order for collision avoidance algorithms to be more adaptive
and flexible in the real-world complex environment, learning cap-
abilities of a multi-agent system have been developed. In the
recent years, deep learning has achieved tremendous success in
various areas such as image recognition (Krizhevsky et al., 2012;
Le et al., 2012), speech recognition (Hinton et al., 2015), auto-
matic game playing (Mnih et al., 2013), self-driving (Bojarski
et al., 2016; Ohn-bar and Trivedi, 2016), and so on. Deep learning
algorithms can extract high-level features by utilizing deep neural
networks, such as convolutional neural networks (CNNs)
(Krizhevsky et al., 2012), multi-layer perceptrons, and recurrent
neural networks (RNNs) (LeCun et al., 2015). Scaling up deep
learning algorithms is able to discover high-level features in a
complex task. Dean et al. (2012) constructed a very large system,
which was able to train 1 billion parameters using 16,000 CPU
cores. Coates et al. (2013) scaled to networks with over 11 billion
parameters using a cluster of GPU servers.

RL is about an agent interacting with the environment, learn-
ing an optimal-policy, by trial-and-error, for sequential decision-
making problems in a wide range of fields in both natural and
social sciences, and engineering (Sutton and Barto, 2018;
Bertsekas and Tsitsiklis, 1996; Matarić, 1997; Szepesvari, 2010).
Mnih et al. (2013) introduced a deep learning algorithm using
experience replay and CNNs to learn a Q-function, which can
play various Atari 2600 games better than human players.
Experience replay allows an online learning agent to random sam-
ple batches from past experiences to update Q-values, thus

2 Xiongqing Liu and Yan Jin

breaking the correlations between consecutive frames. By combin-
ing the supervised learning and RL approach, the group at
DeepMind has further proven that their deep learning algorithm
can outperform a world champion in the most challenging classic
game Go (Silver et al., 2016, 2017; Churchland and Sejnowski,
2016; Wang et al., 2016a), which has extremely large number of
possible configurations, and is difficult to evaluate board posi-
tions. Schaul et al. (2016) further developed a prioritized experi-
ence replay framework to sample more important transitions and
learn more efficiently. For reward function studies, there have
been ways to do inverse RL (Ng and Russell, 2000), reward strat-
egy analysis (Manju and Punithavalli, 2011), and reward function
generation (Mericli et al., 2010).

Chen et al. (2016) developed a decentralized multi-agent colli-
sion avoidance algorithm based on deep RL. Two agents were
simulated to navigate toward their own goal positions and learn
a value network which encodes the expected time to goal, and
the solution was then generalized in multi-agent scenarios.
Deep learning algorithms have been successful in achieving
end-to-end learning. Dieleman and Schrauwen (2014) investi-
gated whether it is possible to apply feature learning directly to
raw audio signals by training CNNs. Traditionally, content-based
music information retrieval tasks are resolved based on engi-
neered features and shallow processing architectures, which relies
on mid-level representations of music audio, for example, spectro-
grams. The results showed that even though the end-to-end learn-
ing does not outperform the spectrogram-based approach, the
system is able to learn automatically frequency decompositions
and feature representations from raw audio.

Self-driving cars mentioned above is a promising field which
took off in the last few years and heavily relies on the advances
in deep learning. Since self-driving cars always require a great
deal of expensive and complex hardware, Yu et al. (2016) imple-
mented a deep Q-learning algorithm using dataset (images) from
real-time play of the game JavaScript Racer. In a recent published
paper (Bojarski et al., 2016), a CNN is trained to map steering
commands directly from raw pixels from camera input. The sys-
tem automatically learned internal processing steps such as
detecting useful road features with only the human steering
angle as the training signal. This end-to-end learning approach
is challenging in that it requires a huge number of inputs and
the advantage is that it releases the rely on the designer’s prior
domain knowledge.

Transfer learning

Given a complicated task which is difficult to learn directly, trans-
fer learning is a commonly used technique which can generalize
previously learned experience and apply these experiences into
new tasks (Arnold et al., 2007; Pan and Yang, 2010; Bahadori
et al., 2014). Transfer learning refers to utilizing knowledge gained
from source tasks to solve a target task. It is believed that in an RL
context, transfer learning can speed up the learning agent to learn
a new but related task (i.e., target task) by learning source tasks
first. Taylor and Stone (2007) introduced a transfer algorithm
called Rule Transfer, which summarizes source task policy, modi-
fies the decision list, and generates a policy for the target task.
Rule learning is well understood and human readable. The
agent benefits from the decision list initially and continues to
refine its policy through target task training. It was shown that
Rule Transfer could significantly improve learning in robot soccer
using learned policy from a grid-world task.

Fernandez and Veloso (2006) proposed two algorithms to
address the challenges of Policy Reuse in an RL agent. The
major components include an exploration strategy and a similar-
ity function to estimate the similarity between past policies and
new ones. The PRQ-learning algorithm probabilistically bias an
exploration learning process by using a Policy Library. In the sec-
ond algorithm called PLPR, the Policy Library is created when
learning new policies and reusing past policies.

Torrey et al. (2006) introduced the induction logic program-
ming for analyzing the previous experience of source task and
transferred rules for when to take actions. Through an advice-
taking algorithm, the target task learner could benefit from out-
side imperfect guidance. A system AI2 (Advice via Induction
and Instruction) for transfer learning in RL was built, which cre-
ates relational transfer advice using inductive logic programming.
Based on a human-provided mapping from source tasks to target
tasks, the system was able to speed up RL.

In transfer learning within deep neural networks, a base network
on a base dataset and task is first trained, and the learned features
are then transferred to the target network to be trained on a target
dataset and task. Transfer learning can be particularly useful to train
a large target network without overfitting if the target dataset is
much smaller than the base/source dataset. One common approach
is to copy the first n layers of the base network to the first n layers of
the target network, while the remaining layers of the target network
are randomly initialized and trained. Yosinski et al. (2014) presented
a way to measure the degree to which a certain layer is general or
specific and found that initializing a network with transferred fea-
tures from almost any layers could boost the performance after fine-
tuning to a new dataset. A task-driven deep transfer learning frame-
work for image classification was designed (Ding et al., 2016), where
the features and classifiers are obtained at the same time. Through
pseudo labels for target domain, the system could transfer more dis-
criminative information to the target domain. Parisotto et al. (2016)
proposed a transfer reinforcement learning approach (Actor-Mimic)
to mimic expert decisions for multi-task learning, which adopts the
concept of policy distillation (Hinton et al., 2015).

To date, there has been little literature aiming to combine deep
RL and transfer learning to solve robotic collision avoidance prob-
lems, because (a) it is difficult to directly learn from raw pixel or
distance sensory inputs and (b) it requires large amount of train-
ing data, which is not easy to generate in real life. This research
combines transfer and RL approaches for ship agents to acquire
collision avoidance knowledge more efficiently.

Tasks of ship collision avoidance

Collision avoidance at sea

Collision avoidance at sea involves a ship agent, called own ship, a
number of target ships and obstacles, and the designated routes
for different types (e.g., different size) of ships. Figure 1a illus-
trates a typical ship encounter situation, where Ship-A is the
own ship, Ships B, C, D, and E are target ships of the own
ship. Each ship has its own destinations such as a specific berth
when moving into a port or an exit direction when moving out.
There are also obstacles, such as Obs-a, Obs-b, and Obs-c,
which can be islands, fixtures, or buoys. The routes are often indi-
cated on the hardcopy or electronic maps, called charts. In addi-
tion, there are regulations, dictated by COLREG rules (Ford,
2009), by which the ships will be considered as having the
“right of the road” or should “give way” to other ships depending

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

on their position in the encounter situation. Although the regula-
tions are supposed to be followed by all the ships, there is no guar-
antee that a target ship will follow the rules, especially when the
situation can be interpreted in different ways by different ships.

In this research, since our focus is to investigate the issues
related to RL-based collision avoidance knowledge capture, we
define a simplified version of the tasks of collision avoidance.
As shown in Figure 1b, the own ship is on track moving north
(or upward). The destination of the own ship is any point on
the upper edge of the rectangle, indicated as “Goal”. So the “suc-
cess” of the own ship in this task is defined as reaching the goal
without hitting any other ships or obstacles, and the “efficiency”
of the own ship in a successful run is defined by the normalized
inverse of the total number of units of distance (or steps) traveled
by the ship. The efficiency of unsuccessful runs is defined as 0
(zero). There can be stationary obstacles and moving ships in
the water area. The objective of RL based knowledge capture is
to train ship agents, so that they can achieve successful runs
with high efficiency for various encounter situations.

Task complexity and similarity

The collision avoidance tasks indicated in Figure 1 can be simple
or more complex depending on how many target ships and obsta-
cles are involved and how difficult the encounter situation can be.
From a knowledge capture perspective, it will be ideal that the
ship agents can be trained in simple situations and the knowledge
(i.e., neural networks) obtained from the simpler situations can be
applied and extended through further learning in more complex
situations. It is conceivable that knowledge transfer between sim-
ilar cases tends to be easier than that between dissimilar cases. To
facilitate the knowledge transfer study, simple measures of task
complexity and similarity are introduced as follows.

The complexity of a collision avoidance task can be generally
considered to have two major components, namely internal com-
plexity and external complexity. The internal complexity stems
from how difficult the own ship can be maneuvered to avoid

collision (e.g., large ships are hard to move, and smaller ones
easier to move), while the external complexity captures how diffi-
cult the encounter situation can be to avoid collision. Since mov-
ing targets are harder to avoid than stationary obstacles and more
targets or obstacles are harder to deal with, the external complexity
can be further decomposed into object complexity – measured by
whether an object is moving (ship) or stationary (obstacle) and
aggregate complexity – measured by the total number of target
ships and obstacles. Figure 2 illustrates such a complexity hierarchy.

In this research, the similarity between two collision avoidance
tasks is measured by the inverse of the “distance” between the two
tasks in the three-dimensional task complexity space, as indicated
in Figure 3a. The three axes in the figure are x-axis is the obstacle
dynamics plane (red), y-axis is the number of obstacles plane
(green), and z-axis is the vehicle dynamics plane (blue). Figure 3b
shows a specific contextualization of this task complexity model,
with the three dimensions having specific value ranges specified
as Vehicle dynamics = {large ship, small ship}, Obstacle dynamics =
{static, moving}, and Number of obstacles = {single, multiple}.

For any two tasks i and j in Figure 3b, their task complexity can

be determined by two vectors: complexity
���������

i = (ODi, NOi, VDi) and

complexity
���������

j = (ODj, NOj, VDj), respectively, where OD is obstacle
dynamics, NO is the number of obstacles, VD is vehicle dynamics.
The weighted length of the vectors from the origin can be used as
a scaler measure for the task complexity, that is,

||complexity
���������

i|| =
�����������������������������
l1OD2

i + l2NO2
i + l3VD2

i

√
. (1)

In this research, the inter-task similarity of the two tasks, i and
j is defined as the distance between the two points in the complex-
ity space given as follows:

similarityi,j=
1

1+
��
(ODi−ODj)

2+ (NOi−NOj)
2+ (VDi−VDj)

2
√ .

(2)

Fig. 1. Ship collision avoidance at sea.

4 Xiongqing Liu and Yan Jin

In general, the three factors may not be equally important in
determining the inter-task similarity. Thus, three additional
weights can be added, as we did in Eq (1):

similarityi,j =
1

1+
��
l1(ODi − ODj)

2 + l2(NOi − NOj)
2 + l3(VDi − VDj)

2
√ .

(3)

Determining the values of the relative weights of λ1, λ2, and λ3
require a deep understanding of the collision avoidance tasks in
corresponding domains. In the case study section of this paper,
a simplified measuring scheme is adopted for simulation and
training purposes.

Machine learning based knowledge capture

For the collision avoidance tasks and the similarity definition
introduced above, an RL approach is adopted to (1) capture the
collision avoidance knowledge through trial-and-error and (2)
transfer the captured knowledge to closely related but more com-
plex tasks. Following subsections describe the principles and algo-
rithms of the methods introduced.

Knowledge capture: deep RL

RL for collision avoidance involves sensory data and collection of
sufficient data through trial-and-error processes. However, it can
be difficult to collect a sufficient amount of data as the training
input by only relying on sensory inputs. In addition, the state/
action space is always continuous which makes it impractical to
build a look-up Q-table. To overcome the curse of dimensionality,
deep neural networks are used as functional approximators to
replace the Q-table and approximate Q-values.

We began this research by implementing the deep RL algo-
rithm with experience replay as proposed in Mnih et al. (2013).
First, standard Q-learning (Watkins, 1989) is considered, which
can be formulated as a tuple of

Q-learning : S,A, P,R, g
〈 〉

, (4)

where S = {s1, … }: state space; A = {a1, …} : action space; P : tran-
sition matrix; Rt =

∑T
t′ g

t′−trt′ : reward function; and γ : discount
rate.

In Eq. (4), S is the state space, which consists of agent’s all pos-
sible states in the environment. A is the action space consisting of
all the possible actions that the agent can take. P is the transition
matrix (usually unknown in a model-free environment), R is the
reward function, and γ is the discount factor. At any given time t,

Fig. 2. Collision avoidance task complexity hierarchy.

Fig. 3. Complexity spaces and task locations.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

the agent’s goal is to maximize its future discounted return
Rt =

∑T
t′ g

t′−trt′ , where T is the time when the game or episode
terminates. Like many other RL algorithms, the agent estimates
at each time step the action value function Q(s, a), using a
Bellman equation, Eq. (5), as an update. Such value iteration algo-
rithms converge to the optimal value function:

Qi+1(s, a) = E r + gmax
a′

Qi(s′, a′)|s, a
[]

. (5)

In order to adapt to tasks involving infinitely large state/action
space where building the Q-table is impractical, deep Q-learning
with experience replay uses a neural network as a function
approximator (Q-network). A Q-network with weights θi can be
trained by minimizing the loss function Li(θi) at each iteration i,

Li(ui) = E[(yi − Q(s, a; ui)2], (6)

where yi = E
[
r + gmax

a′
Q(s′, a′; ui−1)

]
is the target Q-value for

iteration i. The gradient is calculated by the following:

∇ui Li(ui) =

Es, a, r, s′ r + gmax
a′

Q(s′, a′; ui−1) − Q(s, a; ui)
()

∇uiQ(s, a; ui)
[]

.

(7)

The deep Q-learning algorithm utilizes a technique called experience
replay where the agents’ experiences, et = (st, at, rt, st+1), are stored
into a replay memory, D = {e1, e2, …, eN} (N is the capacity of the
replay memory). Then, mini-batches are randomly sampled from
D and applied to Q-learning updates. The agent selects an action
according to the ε-greedy policy.

Various approaches have been proposed to stabilize learning
process such as deep Q-network (DQN) (Mnih et al., 2013), dou-
ble DQN (van Hasselt et al., 2015), and dueling DQN (Wang
et al., 2016b). In this research, our base network is built by combin-
ing these three approaches. The double DQN algorithm is able to
solve the problem of overoptimistic value estimates, by separating
the target network, which is used for action evaluation, from the
current network which is used for action selection. The agent’s
experience is randomly assigned to update one of the two networks.

In standard DQN, at each update of the Q-values, only the
value for one of the actions is updated, whereas others remain
untouched. Dueling DQN separates the Q-value into a state
value and action advantages, so that the state value is updated
more frequently.

Agent learning behavior
In this research, a computer game environment was created to
conduct case studies, as shown in Figure 4. The game environ-
ment consists of a learning agent (the green ball), static and mov-
ing obstacles (the red balls), and a goal area (the orange
rectangle). The dark slice on the ball indicates the direction of
the ball’s movement. An end-to-end deep learning approach
(Mnih et al., 2013) is taken and the game window images are cap-
tured as input state information. Therefore, a state si∈ S in Eq. (4)
for this study is defined as the pixel values of the game window.
Figure 4 shows an example of the game window.

The action space is composed of seven actions, A = {a1, …, a7},
as indicated in Table 1. Each action is defined by a pair of

forward velocity v, and angular velocity ω, that is, ai = (vi, ωi),
i = 1, 2, …, 7.

Reward functions and knowledge capture
For tasks like ship collision avoidance, usually the reward function
is composed of two major items. One is ending reward, or term-
inal reward, that rewards the agent when the game or episode is
completed (hence ending or terminal). Typically, a large positive
reword is given for success and a large negative reward for failure.
The other reward item is shaping reward, which signifies how the
agent will be rewarded during the process of the task execution.
Typically, a small negative reward is given for every step of action
or every unit time because staying in the game (or process) should
be penalized, so that the agent will attempt to complete the task as
soon as possible. Based on this consideration, the following
Typical Reward Function is applied as a baseline design:

rt =
200, if reach goal
−200, if hit obstacle
−1, else

⎧⎨
⎩ . (8)

Since one of the research questions mentioned above relates to
assessing how variations of reward function can influence the

Fig. 4. A screen shoot of the game system for case studies.

Table 1. Agent actions

Action v ω

a1 5 0.35

a2 5 0.2

a3 5 0.1

a4 10 0

a5 5 −0.1

a6 5 −0.2

a7 5 −0.35

6 Xiongqing Liu and Yan Jin

agents’ learning and performing behavior, we need to introduce
untypical or variable reward functions. Because the agents’ task
performing behavior occurs during the process of task execution,
rather than at the ending point of the process, the focus of varying
reward functions can be put on the shaping reward item. More
specifically, we attempt to shape the agents’ behavior so that the
efficiency of collision avoidance, as defined in the section
“Collision avoidance at sea”, can be increased.

Figure 5 illustrates an example of the efficiency difference
between different task performing behaviors of a ship agent.
Given the obstacles in the center area, the agent can go either
the two side paths, A and C, or the center path, B. Although all
three paths can lead to a successful run, the efficiency of path
B is much better since it is the shortest path for reaching
the goal.

In order for the agent to learn explicitly the most efficient
behavior, for every step from start to end, the agent receives an
additional reward, which is computed by a goal reward rg and a
deviation reward rdev. Thus, at any time step t, the reward function
is defined as the following Enhanced Reward Function:

rt =
200, if reach goal
−200, if hit obstacle
−(vg · rg + vdev · rdev), else

⎧⎨
⎩ . (9)

The goal reward, rg, is the reward of moving toward goal direction,
and the deviation reward, rdev, is the negative reward of deviating
from the goal direction. Currently, rg and rdev are computed by a
linear function (10) of agent’s current location coordinates, y and
xdev, where xdev is the agent’s deviation from the horizontal center
of the window: xdev = abs(x/width− 1/2), and width is the hor-
izontal length of the game window, kg, bg, kdev and bdev are con-
stant coefficients. To make the learning more stable, rg and rdev
are clipped between [−1, 1] and [0, 0.5], respectively. ωg and
ωdev are the relative weight on rg and rdev:

rg = kgy + bg [[−1, 1]
rdev = kdevxdev + bdev [[0, 0.5]

{
. (10)

It is worth mentioning that the shaping reward designed this
way can be used to “design” the agent’s behaviors as will be dis-
cussed later.

Knowledge transfer: a belief-based approach

As mentioned above, RL has been successfully applied to capture
domain knowledge for various tasks including the game of Go
(Silver et al., 2016, 2017). However, RL can be expensive in
terms of the time for training and that for exploring various pos-
sible situations. Furthermore, for highly complex task situations,
RL may not be able to converge at the desired level of total reward.
To deal with these issues, transfer RL has been explored to expand
the reach of RL.

Expert agent and student agent
In this research, we consider that two agents are involved in trans-
fer RL, an expert agent and a student agent. The expert agent is
first trained through ordinary RL with a relatively simple task,
called source task, and becomes an “expert” in that task. The
knowledge (i.e., the neural network) of the expert can then be
transferred to the student agent that is completely know-nothing
at the beginning but can be “taught” by the expert agent through
(1) receiving part or all of the expert’s knowledge as initialization
so that the student holds part or all of the knowledge for the
source task and (2) asking the expert agent for help from time
to time when the student agent ventures to learning closely related
but more complex new tasks, called target tasks. “What knowl-
edge and how much” should be passed from the expert to the stu-
dent, and “what help and how often” should be provided by the
expert to the student are two important questions.

Belief-based transfer learning
The goal of transfer learning is to transfer the expert’s knowledge
to the student agent, so that the student can applied the expert’s
knowledge to engage in learning with the closely related but more
complex tasks more effectively – that is, converge to a high level of
total reward – and efficiently – that is, fast ramping-up and fast
convergence. In this research, we consider three phases of transfer
learning. First is “copy expert” knowledge (neural network) as the
student’s initial neural network, as shown in Figure 6. If the stu-
dent agent plans to work only with the same tasks as the expert
did, then “copy expert” alone will be sufficient. However, the stu-
dent agent wants to engage in learning in the closely related but
more complex new target tasks. Therefore, the second phase “con-
sult expert” is needed in which the student occasionally asks the
expert for suggested actions for given states. As the student’s
learning progresses, the expert’s help decreases until being phased
out completely, leading to the last phase, called “learn by self”,
where the student performs ordinary RL without further influ-
ence from the expert. Figure 6 shows an illustration of the three
phases of the transfer RL together of the starting and ending
points.

As shown in Figure 6, “consult expert” is the phase where the
expert’s “helping” or “coaching” happens. In this phase, we differ-
entiate between three types of student actions based on the
mechanism that produces the actions for the given state
information.

a) Transfer action: With probability p1 in Eq. (11a), the student
agent seeks the help from the expert and selects the transfer
action which is produced by directly using the expert neural

Fig. 5. Agent task performing behavior in collision avoidance.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

network (see Fig. 6). Ttrans is a hyperparameter, called trans-
fer period, during which the student is “helped” by the expert,
and the frequency of help decreases linearly from β0 at the
beginning to zero at Ttrans. Thus, the transfer period Ttrans

equals the duration of the “consult expert” phase in
Figure 6. β0 is another hyperparameter, called initial transfer
belief, which indicates how much confidence the student puts
in the expert knowledge. The higher the confidence, the more
often the student tends to ask the expert for help.

p1 = b0 1− t
Ttrans

()
, t ≤ Ttrans

0, t . Ttrans

⎧⎨
⎩ (11a)

p2 = 1(1− p1) (11b)

p3 = (1− 1)(1− p1) (11c)

p1 + p2 + p3 = 1 (11d)

b) Exploration action: With probability p2 of Eq. (11b), the stu-
dent agent selects a random action. In this research, an
ε-greedy method is adopted for ordinary RL, in which the
exploration probability usually decreases linearly from 1 to
a fixed small number, say 0.01, over a period of time Texpl,
Texpl≥ Ttrans. In this research, in order to leave rooms for
“transfer actions”, the decreasing of the ε-value adopts a non-
linear concave shape rather than a linear shape. Therefore,
the exploration probability decreases nonlinearly splitting a
large portion from “exploitation” until Ttrans. Our experiment
results have shown that without such a large portion of
exploration, the student agent will not learn about the new
task effectively. The reason is partly that the initial student
network is the same as the transfer network, so the “exploita-
tion” is the same as, or similar to “transfer”. Too little
exploration will cause insufficient expansion to try the new
tasks, leading to ineffective learning.

c) Exploitation action: With probability p3 of Eq. (11c), the stu-
dent agent selects the current best action produced by its own
learned neural network, as in the ordinary RL. It should be
noted that the expert network (the square NN in Fig. 6) is
not updated during the student training process. Only the
student network (the trapezoid NN in Fig. 6) is updated in

the target task domain. As the learning converges and trans-
fer period Ttrans passes, the expert network will be completely
phased out.

Case study design

As indicated in Figure 6, there are different learning paths for a
student agent to move from the “start” to the “end”. First, the stu-
dent can learn from scratch by moving from “start” directly to
phase 3 “learn by self”. Second, the student can select phase 1
“copy expert” and then move to phase 3 “learn by self”. Lastly,
the student agent can take the whole course of “copy expert”,
“consult expert”, and then “learn by self”. In the following,
these three leaning paths are called L-Path1, L-Path2, and
L-Path3, respectively.

Table 2 categorizes the case studies that are performed in this
research including the cases, the parameters, and used parameter
values. The reward function exploration is carried out only for
L-Path1, since mixing the knowledge transfer may confound the
effect of reward function. Both L-Path2 and L-Path3 are explored
to assess the impact of pure “copy expert” and the inclusion of
“consult expert”. The cases shown in Table 2 are carried out
against various tasks and task transfer situations, which are dis-
cussed in detail in the following section “Tasks for training and
transfer”.

Training parameters

As mentioned in the section “Agent learning behavior”, an
end-to-end RL approach (Mnih et al., 2013) is employed in this
research. The game window images, such as the one shown in
Figure 4, are captured as input state information. The size of
the game window is 400 × 400 pixels. During preprocessing, the
window is first scaled down to 84 × 84 pixels, and then converted
to grayscale since the color should not influence the agent’s
decision-making. At each step, the agent stacks 4 previous frames
together, which are then fed into the neural network. The network
structure is the same as the original DQN paper (Mnih et al.,
2013) with 84 × 84 pixels input and an output of 7 actions. The
experience replay size is 50,000. At every step, a mini-batch of
size 32 is randomly sampled from the experience replay.

All the case studies were trained using Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 0.0001. The dis-
count factor γ is set to be 0.99. The agent follows ϵ-greedy policy,
with ϵ being annealed down from 1 to 0.01 during the first 1

Fig. 6. Three phases of transfer RL.

8 Xiongqing Liu and Yan Jin

million frames. The weight on goal reward ωg is 1. The weight on
deviation reward ωdev can be 0, 0.5, 1.0, 1.5, or 2.0 for this study.
Table 3 shows major system parameters and their values of the
case studies.

Tasks for training and transfer

In this case study, four different tasks are considered, as shown in
Figure 7. Task A is a simple task, in which there is only one static
obstacle in a small restricted area. The position of the obstacle is
randomly set within the restricted area for each episode during
training.

Task B is more complex than Task A in that there are two sta-
tic obstacles randomly generated for each episode within a larger
area. Task C and Task D involve moving obstacles (i.e., target
ships) with the constant moving speed at 20 pixels per time
step. Again, the initial position and moving direction of the target
ships in Task C and Task D are set randomly for each episode.

Task B is used for reward function study, in which both typical
reward function and enhanced reward function are tried, and their
training results compared.

For the knowledge transfer studies, Task A is used as the source
task, and the rest of the tasks are used as target tasks. To assess the
complexity of each task and the similarity level between the tasks,
we make the following assumptions.

1. The own ship is a small ship with desirable movability. Hence,
for all tasks, the vehicle dynamics VD = 1.0.

2. The number of obstacles and/or target ships is either 1 (NO =
1.0) or 2 (NO = 2.0) depending on how many of them are
involved.

3. For stationary obstacles, the object dynamics is 1 (OD = 1.0);
for moving target ships, it is 2 (OD = 2.0).

4. Given that moving target ships are much more difficult to
avoid and the own ship vehicle dynamics is minimum (for
small ships), we set up the weight coefficients as follows: λ1
= 3, λ2 = 1.5, and λ3 = 1.

Based on the above, we have the complexity vector for each task

in Figure 7 represented as follows: complexity
���������

A = (1.0, 1.0, 1.0),

complexity
���������

B = (1.0, 2.0, 1.0), complexity
���������

C = (2.0, 1.0, 1.0), and

complexity
���������

D = (2.0, 2.0, 2.0). Based on these vectors and the
Eqs (1) and (3), the complexity values of each task and the similarity
values between the tasks can be calculated, as shown in Table 4.

Results and discussion

In this research, four case studies are performed to investigate the
RL based knowledge capture. They are reward function for behav-
ior design, copy expert for knowledge transfer, adjust transfer
period, and adjust transfer belief for knowledge transfer. In the
following, we first discuss the results of reward function study
and then provide details of how knowledge transfer strategies
interact with the tasks of different similarities.

Table 2. Cases, parameters, and their values

Knowledge capture from
scratch (L-Path1)

Knowledge capture with transfer from expert

Copy expert (L-Path2) Copy expert + Consult expert (L-Path3)

Transfer duration Belief level

Typical reward
function

Baseline NNs(t0) = NNe(t0) (Baseline for KT) Ttrans (150 K/300 K/700 K/1 M) β0 (0/0.5/1.0/1.5/2.0)

Enhanced reward
function

Change ωdev

(0/0.5/1.0/1.5/2.0)
X

Table 3. System training parameters

System design parameters Parameter values Remarks

Experience replay size 50,000 N = 50 K in D = {e1, e2, …, eN}, where et = (st, at, rt, st+1)

Mini-batch size 32 Bet = {et1, et2, …, et32}, eti (1≤ i≤ 32) is randomly selected

Discount factor γ 0.99 See Eq. (4)

Learning rate 0.0001

Total training episodes 50,000 One complete training = 50 K episodes

Annealing frames 1 million 1 M frames for ϵ to decreases from 1 to 0.01

ϵ 1→ 0.01 Linearly decrease from 1 to 0.01 over Texpl

ϵT β0→ 0.01 Concavely decrease from β0 to 0.0 over Ttran

Goal weight ωg 1 See Eq. (9)

Deviation weight ωdev 0/0.5/1.0/1.5/2.0 Values explored; see Eq. (9)

Transfer duration (frames) Ttrans 150 K/300 K/700 K/1 M Frames explored; see Eq. (11a)

Initial transfer belief β0 0.1/0.3/0.5/0.9 Values explored; see Eq. (11a)

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

Reward functions for designing system behavior

In this study, Task B in Figure 7 is used as the learning task and
L-Path2 is used for agent training. The ship agent starts from
scratch and captures collision avoidance knowledge through ordi-
nary RL (i.e., there is no knowledge transfer involved). The goal of
this study is to explore the effect of applying the enhanced reward
function of Eqs (9) and (10) and investigate the behavioral
response of the ship agent to the changing reward function vari-
ables. The typical reward function [Eq. (8)] is used as a baseline
case. Training of ship agents is carried out with varying values
of the reward function parameter: deviation weight ωdev. Five val-
ues of ωdev were tried: 0, 0.5, 1.0, 1.5, and 2.0. The agent’s learning
speed and the rate of the successful runs (see “Collision avoidance
at sea” section) are used as the performance measurements.

Figure 8 shows the average reward of each case. The x-axis is
the number of episodes into the training process, and the y-axis
is the average reward. The different colored lines correspond to dif-
ferent deviation weights. The deviation weight ωdev = 0, that is, Eq.
(8) is used as reward function, is treated as the baseline case.

From Figure 8, it can be seen that adding a small (negative)
deviation reward can boost learning speed. The reward plots of
ωdev = 0.5, 1.0, and 1.5 (orange, green, and red curves, respec-
tively) ramp up much faster than the baseline. At 100 × 100 epi-
sodes, it is already more than three times (3×) better, and at 150 ×
100, about one and half times (1.5×) better.

Since the shaping rewards in these cases are all different, it is
unreasonable to compare the agent’s average reward after the con-
vergence. In fact, they all converge to a similar range of reward
(100–150).

To further evaluate the agent’s learned behavior in different
cases, 500 random tests were carried out for each ωdev setting,
where the success rate and the average time of reaching the goal
were recorded.

Figure 9 summarizes the average time of reaching the goal and
the success rate of different cases with varying deviation weights.
The baseline uses the typical reward function. All the statistics of
average goal reaching time have been converted to relative per-
centage of the baseline. As can be seen, after adding deviation
reward (penalty) to the reward function, the agent saves 5%,
14%, 11%, and 11% of time, as well as energy, in cases where
ωdev = 0.5, 1.0, 1.5, and 2.0, respectively. When ωdev = 1.0 the
goal reaching time is the best, only 86% of the baseline time.
However, in all these cases, the success rate drops slightly.
When ωdev keeps increasing to 1.5 or 2.0, the success rate drops
to 0.91 and 0.89.

The simulation results of the baseline case (typical reward
function) and various reward tuning cases (enhanced reward
function with varying ωdev) have demonstrated the impact of
reward functions on the agent’s learning and working behavior.
Such an impact can be very sensitive to small changes in the val-
ues of the reward function parameters. Following are some
insights drawn from the results.

Ending reward and interim reward: The baseline is based on
the typical reward function in Eq. (8). The major feature is that
it has two important step-function like “ending-rewards”, one
for reaching the goal +200, and the other for hitting an obstacle
−200, signifying two opposite endings of the episode. The “−1”
in (8) and the added − (ωg · rg + ωdev · rdev) in (9) are “interim
awards” that are devised to guide the way for the agent to reach
its ending point. A close look at the work behavior of the agent
trained based on Eq. (8) reveals that the agent always tries to
avoid the whole “congested” water area and takes the side ways
to reach the goal no matter how the obstacles in the area are posi-
tioned, as shown as Path A and Path C in Figure 5. By adding the
penalty for horizontal deviation ωdev · rdev the agent’s behavior
changed: it seeks both the middle opportunities, for example,
Path B, as well as the safer sideways, Path A and Path C. The

Fig. 7. Collision avoidance Tasks A through D used for case studies.

Table 4. Task complexities and similarities

Task A Task B Task C Task D

complexity
���������

2.345 3.162 3.808 4.359

Task A 1.000

Task B 0.449 1.000

Task C 0.366 0.320 1.000

Task D 0.320 0.366 0.499 1.000

Fig. 8. Learning performance – average reward for different ωdev values.

10 Xiongqing Liu and Yan Jin

added negative reward encouraged the agent to explore more the
middle ways despite the collision risks. The result is that the aver-
age goal reaching time is shortened, but the success rate suffers a
bit too. The interim reward provides an effective means to
“design” the agent’s behavior and embedding the rules, regula-
tions and heuristic knowledge.

Sparse reward versus shaped reward: The reward functions with
only “ending reward” items are sparse. Although the baseline
function Eq. (8) had “−1” as its interim reward, it is sparser com-
pared to function (9) which has more interim items involved.
Sparse rewards slow down learning because the agent needs to
take many actions before getting any significant reward. To
avoid sparse rewards, the interim reward items are used to create
shaped reward function (hence also called shaping rewards). As
shown in Figure 8, shaped reward function (9) with more shaping
items has led to better learning speed, thanks to the reward gra-
dient created by the shaping items. When the gradient’s effect
expands to the point where the reward field is distorted, the suc-
cess rate falls significantly through a threshold 0.9 (as shown in
Fig. 9), the learning speed drops (Fig. 8 with ωdev = 2.0). One
can set an upper limit for shaping the reward function that is
determined by threshold 0.9 (or another desired number) of the
success rate.

Copy expert for knowledge transfer

When the given domain task is too complex and the sensory
information limited, RL may become ineffective and/or inefficient
for knowledge capture. In this case study, we investigate how
directly copying the knowledge (i.e., neural network) from the
expert agent who learned from simpler tasks can help the student
agent learn in the closely related but more complex tasks. It is
assumed that the expert agent has been fully trained using the
source Task A with complexity (A) = 2.345 (Fig. 7 and Table 3),
and L-Path2 (Table 2) is employed for student training.

In this study, the first target task is Task B: complexity (B) =
3.126, similarity (A,B) = 0.449. This transfer case can be consid-
ered as a “high similarity” case. The second target task is Task
D: complexity (D) = 4.359, similarity (A,D) = 0.320. Comparing
with Task B, this case can be considered as a “low similarity”
case. For the purpose of comparison, two “bootstrap” scenarios

are introduced, in which the student agent learns from scratch
in the target tasks B and D without receiving any information
from the expert agent.

Figure 10 illustrates the results of this case study, with
Figure 10a showing the effect of “copy expert” for a high similarity
case and Figure 10b for a low similarity one. The plots are all the
average values of 10 simulation runs. The spreads in Figure 10b
show the large deviation of the 10 simulations runs due to the
higher task complexity and lower task similarity. Deviations for
simpler tasks A and B are relatively small and are not plotted.

As shown in Figure 10, “copy expert” helped the student learn
much faster compared with “bootstrap”. When the target task
similarity is high (Fig. 10a), the “bootstrap” learner can eventually
reach the desired reward level, but “copy expert” transfer
improved the learning efficiency significantly. When the similarity
is low (Fig. 10b), however, the “bootstrap” learner can hardly
reach a desired level of reward or it may take endless time to
do so. In this case, “copy expert” played a significant role to
increase the learning effectiveness and efficiency for the student
agent. While the learning variance is relatively low for low com-
plexity and high similarity target tasks (Liu and Jin, 2018), signif-
icant learning variance can be seen in high complexity and low
similarity tasks, meaning many student agents could not achieve
a higher reward score, especially for the bootstrap agents, as
shown in Figure 10b.

The results in Figure 10 indicate that “copy expert” can help
increase the learning efficiency and the improvement can be sig-
nificant for low similarity tasks. However, when the target task
becomes more complex and the similarity is low, “copy expert”
alone may not be effective enough in guiding the learning process
of student agents, as shown in Figure 10b. In the next two case
studies, we explore whether and how adding a transfer period to
“copy expert” may help learning in more complex and unsimilar
target tasks.

Adjust transfer period

In this study, the belief-based transfer RL approach described in
the section “Knowledge transfer: a belief-based approach” is
applied to train the student agents through L-Path3 (Table 2).
Both Task B and Task D are used as target tasks, so that both
high similarity and low similarity tasks are covered. The goal
here is to investigate how changing transfer duration length
may influence the student agent’s learning behavior while keeping
the transfer belief at β0 = 0.9. Since the student agent takes learn-
ing path L-Path3, it has already copied the neural network from
the expert agent that was trained in source task Task A.

Figure 11 illustrates the learning performance of varying trans-
fer period from 150 K to 300 K, 700 K, and 1 M frames with yel-
low, blue, green, and pink colors, respectively. The target task is
Task B, a high similarity task. As described in the section
“Knowledge transfer: a belief-based approach”, shorter transfer
period Ttran means the shorter period of expert help (Fig. 6).
From a learning speed point of view, the results in Figure 11
show that longer transfer periods lead to better learning perfor-
mance, with the effect diminishing as it becomes excessively
long (after 700 K frames). When the transfer period is getting clo-
ser to 1 million frames, which is also the annealing time of ε
decreasing to 0.1, the performance decreases. Comparing with
the “copy expert” case (the red line in Fig. 11), the positive impact
of expert help is considerably large, especially until the 20 K epi-
sodes range.

Fig. 9. Task performance – goal reach time and success rate for different ωdev values.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

Since the transfer period of 700 K turned out as the best
arrangement for transfer learning in the similar target task situa-
tions, we applied the same parameter values β0 = 0.9 and Ttrans =
700 K to target Task D, a low similarity task. Figure 12a shows the
results of the simulation runs, where the baseline case is in blue
average and green spread and is based on learning path L-Path2
“copy expert and then learn by self”, while the transfer learning
is in red average and brown spread. Unlike the high similarity
cases, the effect of adding “transfer period” did not have much
effect on the learning behavior of the student agent.

For Ttrans = 700 K, during the early stage, the performance is
better than the baseline. However, after the transfer period, the
learning variance starts to grow. Although the maximum perfor-
mance (the upper edge of the brown spread) is still better than
baseline, many students perform worse than the baseline (lower

edge of the brown spread) due to the high level of variance of
learning. The average performance is slightly higher than baseline
but can hardly be considered as improvement.

For Ttrans = 300 K, again, during the early stage, the perfor-
mance is better than the baseline. However, because the transfer
period is rather short, the learning speed did not pick up after
the transfer period. The learning variance also starts to grow.
Although the maximum performance is still better than baseline
(shown as the upper edge of the orange spread), many student
agents perform worse than the baseline, as indicated by the
lower part of the orange spread. The average performance is
slightly lower than baseline but not by a large amount. To a cer-
tain extent, the short transfer period with high belief level inter-
fered the normal learning and led to the inferior performance
due to the dissimilarity of the target task.

Fig. 11. For target Task B (high similarity): average learning
performance.

Fig. 10. Comparison of “copy expert” transfer learning and “bootstrap” learning from scratch.

12 Xiongqing Liu and Yan Jin

Adjust transfer belief level

Because the student transfer learning in more complex and low
similarity target tasks is not sensitive to the change of transfer
period in the last case study (given β0 = 0.9), we turn to varying
the transfer belief β0 in this case study. The target task here is
Task D. The transfer period Ttrans is fixed at 700 K, and the base-
line case is the same as the one described in the last case. The
initial transfer belief is varied from 0.9 to 0.5, 0.3, and 0.1.

Figure 13 illustrates the results of simulation runs of varying
initial transfer beliefs, with β0 being set to 0.9, 0.5, 0.3, and 0.1,
shown in Figure 13a–d, respectively. β0 measures the initial prob-
ability of the student agent picking transfer action suggested by
the expert network (this probability is linearly decreasing to 0
at the end of transfer period). As shown in Figure 13b–d, the
jump-start effect of lower initial transfer belief settings is less
obvious compared to β0 = 0.9. Additionally, when β0 = 0.5, as
shown in Figure 13b, many students perform much better
than the baseline after the transfer period, and the learning var-
iance is very low. This pattern is unique and cannot be found
in other transfer beliefs (i.e., β0 = 0.9, 0.3, and 0.1). Another inter-
esting pattern is that higher transfer belief (β0 = 0.9) helps the stu-
dent perform much better in the early learning stage for
frequently trying transfer actions; however, this does not guaran-
tee a better performance in the later stage. As can be seen in
Figure 13a, the average convergence time of β0 = 0.9 is almost
the same as the baseline. On the other hand, though the early
stage performance is almost overlapping with the baseline in
the cases with smaller transfer beliefs, as time proceeds, the learn-
ing starts to differentiate from the baseline. It appears that the
value of the initial belief level β0 has a profound impact on the
later part, rather than start-up, of students’ learning process.

Conclusions

Both robotic research and transportation industries have dealt
with collision avoidance problems for years. In addition to system
control methods, the intelligent collision avoidance support is
often needed for unforeseeable situations where human-like

intelligence is demanded. Recent progress in machine learning,
especially RL, has made it possible to train agents to acquire colli-
sion avoidance knowledge in the way closely as humans do. The
knowledge capture based on RL is still domain and task-
dependent. A better understanding is needed on how to shape
agents’ learning and task performance, and how to make use of
the machine knowledge that has already been acquired through
previous machine learning processes.

In this research, both the design of reward functions and the
use of previously learned knowledge are investigated in the
context of knowledge capture. The exploration of the reward
functions revealed the trade-offs between types of shaping
functions, and our proposed belief-based transfer RL approach
provided useful design parameters to transfer experts’ knowledge
in different target task situations. The following are some
conclusions.

• Reward function is a useful instrument for designing agent
behaviors. It is important to understand the effect of ending/
terminal rewards and interim/shaping rewards. Designing
interim rewards is an effective way to shape the agent’s behav-
ior, provided the sparsity and shape of the reward function are
recognized and the trade-off between the performance measures
clarified, since unexpected effects may happen.

• “Copy expert” can be a very effective strategy for multi-step
learning in approaching complex RL tasks. For high similar tar-
get tasks, copy expert can significantly improve the initial learn-
ing stage and provide needed jump-start of learning. For more
complex and low similarity cases, copy expert can significantly
reduce the learning deviation and orient the learning
process into a right direction reaching to a much higher level
of reward.

• “Consult expert” by adding a transfer period to copy expert can
be very helpful for the student agent in transfer learning. For
high similarity target tasks, longer transfer period tends to be
more effective in ramping learning early, and there appears to
be an optimal length of the transfer period, beyond which the
effect diminishes and turns negative. For more complex target

Fig. 12. Performance learning for target Task D, low similarity, with β0 = 0.9.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

tasks with low similarity, consult expert does not have a signif-
icant effect in providing a further improvement on top of copy
expert.

• For more complex and low similarity target tasks, adjusting
initial transfer belief is a useful way to gain further improve-
ment. While higher transfer belief level helps high similarity
target tasks, for low similarity target tasks, lower belief level
works better since the expert’s old knowledge is less relevant
in the new target task. Instead of having a “jump-start” effect,
reducing the level of transfer belief helps accelerate learning at
a later time after the transfer period is passed. There appears
to be a best value of transfer belief where the learning is most
effective, and the variation the least.

It should be noted that the complexity and similarity measures,
the simulation results and the insights discussed above are limited
to the types of the tasks explored in this research. Further research
is needed in order to draw more general conclusions. Our ongoing
research attempts to expand the generality of this work by explor-
ing more design parameters and more case studies. Another
direction along this research line is to explore multi-agent transfer
reinforcement learning in the domains of autonomous collision
avoidance for ships, cars, and industrial robots.

Acknowledgments

The authors are grateful to the Monohakobi Research Institute
(MTI) team, led by Dr. Hideyuki Ando, for their support and col-
laboration on this research. Thanks are also extended to Mr.
Edwin Williams for his valuable comments and suggestions dur-
ing the course of this research.

Funding. This paper was based on the work supported by MTI and Nippon
Yusen Kaisha (NYK). The authors are grateful to MTI and NYK for their kind
support.

References

Alonso-Mora J, Breitenmoser A, Rufli M, Beardsley P and Siegwart R
(2013) Optimal reciprocal collision avoidance for multiple non-holonomic
robots. In Martinoli A. et al. (eds) Distributed Autonomous Robotic Systems.
Berlin, Heidelberg: Springer, pp. 203–216.

Arnold A, Nallapati R and Cohen W (2007) A comparative study of methods
for transductive transfer learning. Seventh IEEE International Conference on
Data Mining Workshops (ICDMW 2007), 31 March 2008. Omaha, NE,
USA: IEEE Computer Society.

Bahadori M, Liu Y and Zhang D (2014) A general framework for scalable
transductive transfer learning. Knowledge and Information Systems 38,
61–83.

Fig. 13. Learning performance in response to changing initial beliefs for low similarity tasks.

14 Xiongqing Liu and Yan Jin

Bertsekas DP and Tsitsiklis JN (1996) Neuro-Dynamic Programming. MIT
Press.

Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel
LD, Monfort M, Muller U, Zhang J, Zhang X, Zhao J and Zieba K (2016)
End to end learning for self-driving cars. arXiv: 1604.07316 [cs.LG].

Brunn P (1996) Robot collision avoidance. Industrial Robot: An International
Journal 23, 27–33.

Casanova D, Tardioli C and Lemaître A (2014) Space debris collision avoid-
ance using a three-filter sequence. Monthly Notices of the Royal
Astronomical Society 442, 3235–3242.

Chen JX (2016) The evolution of computing: AlphaGo. Computing in Science
& Engineering 18, 4–7.

Chen YF, Liu M, Everett M and How JP (2016) Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning. arXiv: 1609.07845 [cs.MA].

Churchland PS and Sejnowski TJ (2016) The Computational Brain.
Chambridge, MA, USA: MIT Press.

Coates A, Huval B, Wang T, Wu D and Ng A (2013) Deep learning with
COTS HPC systems. Proceedings of the 30th International Conference on
Machine Learning. PMLR, Vol. 28. pp. 1337–1345.

Dean J, Corrado G, Monga R, Kai C, Devin M, Mao M, Ranzato M, Senior A,
Tucker P, Yang K, Le QV and Ng AY (2012) Large scale distributed deep
networks. NIPS’12: Proceedings of the 25th International Conference on
Neural Information Processing Systems, Vol. 1. Red Hook, NY, USA:
Curran Associates Inc.

Dieleman S and Schrauwen B (2014) End-to-end learning for music audio.
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, New York, NY USA.

Ding Z, Nasrabadi N and Fu Y (2016) Task-driven deep transfer learning for
image classification. IEEE International Conference on Acoustics, Speech and
Signal Processing, 4–9 May 2014. Florence, Italy: IEEE.

Eleftheria E, Apostolos P and Markos V (2016) Statistical analysis of ship
accidents and review of safety level. Safety Science 85, 282–292.

Fahimi F, Nataraj C and Ashrafiuon H (2009) Real-time obstacle avoidance
for multiple mobile robots. Robotica 27, 189–198.

Fernandez F and Veloso M (2006) Probabilistic policy reuse in a reinforce-
ment learning agent. 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), Vol. 58, 8–12 May 2006.
Hakodate, Japan, pp. 720–727.

Ford JWW (2009) A Seaman’s Guide to the Rule of the Road. Gloucestershire,
UK: Morgans Technical Books Limited.

Goerlandt F and Kujala P (2014) On the reliability and validity of ship–ship
collision risk analysis in light of different perspectives on risk. Safety Science
62, 348–365.

Hameed S and Hasan O (2016) Towards autonomous collision avoidance in
surgical robots using image segmentation and genetic algorithms. 2016
IEEE Region 10 Symposium (TENSYMP), 9–11 May 2016. Bali, Indonesia:
IEEE, pp. 266–270.

Hinton G, Vinyals O and Dean J (2015) Distilling the Knowledge in a Neural
Network. arXiv. 1503.02531v1 [stat.ML] 9 Mar.

Hourtash AM, Hingwe P, Schena BM and Devengenzo RL (2016) U.S.
Patent No. 9,492,235. Washington, DC: U.S. Patent and Trademark Office.

Jin Y and Koyama T (1987) On the design of marine traffic control system
(1st report). Journal of the Society of Naval Architects of Japan 162, 183–
192.

Keller J, Thakur D, Gallier J and Kumar V (2016) Obstacle avoidance and
path intersection validation for UAS: a B-spline approach. 2016
International Conference on Unmanned Aircraft Systems (ICUAS).
Arlington, VA, USA: IEEE, pp. 420–429.

Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research 5(1), 90–98.

Kingma DP and Ba J (2015) Adam: A method for stochastic optimization, in
Proceedings of ICLR, 2015.

Krizhevsky A, Sutskever I and Hinton G (2012) ImageNet classification with
deep convolutional neural networks. Communications of the ACM 60
(6), 84–90.

Kuderer M, Gulati S and Burgard W (2015) Learning driving styles for
autonomous vehicles from demonstration. 2015 IEEE International

Conference on Robotics and Automation (ICRA), 26–30 May 2015. Seattle,
WA, USA: IEEE, pp. 2641–2646.

Le Q, Ranzato M, Monga R, Devin M, Chen K, Corrado G, Dean J and Ng A
(2012) Building high-level features using large scale unsupervised learning.
International Conference on Machine Learning: arXiv: 1112.6209v5 [cs.LG].

LeCun Y, Bengio Y and Hinton G (2015) Deep learning. Nature 521, 436–444.
Liu X and Jin Y (2018) Design of transfer reinforcement learning under low

task similarity. ASME 2018 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference,
IDETC2018-86013, 26–29 August 2018. Quebec City, Quebec, Canada:
American Society of Mechanical Engineers Digital Collection.

Machado T, Malheiro T, Monteiro S, Erlhagen W and Bicho E (2016)
Multi-constrained joint transportation tasks by teams of autonomous
mobile robots using a dynamical systems approach. 2016 IEEE
International Conference on Robotics and Automation (ICRA), 16–21 May
2016. Stockholm, Sweden: IEEE, pp. 3111–3117.

Mastellone S, Stipanovic D, Graunke C, Intlekofer K and Spong M (2008)
Formation control and collision avoidance for multi-agent non-holonomic
systems: theory and experiments. The International Journal of Robotics
Research 27, 107–126.

Matarić MJ (1997) Reinforcement learning in the multi-robot domain.
In Arkin RC and Bekey GA (eds) Robot Colonies. Boston, MA, USA:
Springer, pp. 73–83.

Mericli C, Mericli T and Akin HL (2010) A reward function generation
method using genetic algorithms: a robot soccer case study (extended
abstract). Proceeding of 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), Vol. 1–3, 10–14 May
2010, Toronto, Canada.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D and
Riedmiller M (2013) Playing Atari with deep reinforcement learning.
arXiv:1312.5602v1 [cs.LG].

Mukhtar A, Xia L and Tang TB (2015) Vehicle detection techniques for col-
lision avoidance systems: a review. IEEE Transactions on Intelligent
Transportation Systems 16, 2318–2338.

Ng AY and Russell S (2000) Algorithms for inversereinforcement learning, in
Proceedings of ICML 2000.

Ohn-Bar E and Trivedi MM (2016) Looking at humans in the age of self-
driving and highly automated vehicles. IEEE Transactions on Intelligent
Vehicles 1, 90–104.

Pan SJ and Yang Q (2010) A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering 22, 1345–1359.

Parisotto E, Ba J and Salakhutdinov R (2016) Actor-mimic: deep multitask
and transfer reinforcement learning. arXiv:1511.06342v4 [cs.LG] 22 Feb
2016.

Schaul T, Quan J, Antonoglou I and Silver D (2016) Prioritized experience
replay. arXiv:1511.05952v4 [cs.LG] 25 Feb 2016.

Shiomi M, Zanlungo F, Hayashi K and Kanda T (2014) Towards a socially
acceptable collision avoidance for a mobile robot navigating among pedes-
trians using a pedestrian model. International Journal of Social Robotics 6,
443–455.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A,
Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre
L, van den Driessche G, Graepel T and Hassabis D (2017) Mastering
the game of Go without human knowledge. Nature 550, 354–359.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G,
Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M,
Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap
T, Leach M, Kavukcuoglu K, Graepel T and Hassabis D (2016)
Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484

Sutton RS and Barto AG (2018) Reinforcement Learning: An Introduction.
Cambridge MA, USA: MIT Press.

Szepesvari C (2010) Algorithms for Reinforcement Learning. Morgan &
Claypool Publishers.

Tang S and Kumar V (2015) A complete algorithm for generating safe trajec-
tories for multi-robot teams. In: Bicchi A., Burgard W. (eds) Robotics
Research. Springer Proceedings in Advanced Robotics, vol 3. New York,
NY, USA: Springer, pp 599–616.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

Taylor M and Stone P (2007) Cross-domain transfer for reinforcement learn-
ing. ICML ’07: Proceedings of the 24th International Conference on Machine
Learning. ACM, pp. 879–886. June 2007, Corvalis, OR, USA

Torrey L, Shavlik J, Walker T and Maclin R (2006) Skill acquisition via trans-
fer learning and advice taking. European Conference on Machine Learning.
Berlin, Heidelberg: Springer, pp. 425–436.

van Hasselt H, Guez A and Silver D (2015) Deep reinforcement learning with
double Q-learning. arXiv:1509.06461v3 [cs.LG].

Wang FY, Zhang JJ, Zheng X, Wang X, Yuan Y, Dai X, Zhang J and Yang L
(2016a) Where does AlphaGo go: from Church-Turing thesis to AlphaGo
thesis and beyond. IEEE/CAA Journal of Automatica Sinica 3, 113–120.

Wang Z, School T, Hessel M, van Haselt H, Lanctot M and de Freitas N
(2016b) Dueling network architectures for deep reinforcement learning.
arXiv:1511.06581v3 [cs.LG] 5 Apr.

Watkins CJCH (1989) Learning from delayed rewards (Doctoral dissertation).
Cambridge University, Cambridge University Press, Cambrdige, UK.

Yang IB, Na SG and Heo H (2017) Intelligent algorithm based on support
vector data description for automotive collision avoidance system.
International Journal of Automotive Technology 18, 69–77.

Yosinski J, Clune J, Bengio Y and Lipson H (2014) How transferrable are fea-
tures in deep neural networks? NIPS’14: Proceedings of the 27th
International Conference on Neural Information Processing Systems, Vol.
2. Cambridge, MA, USA: MIT Press.

Yu A, Palefsky-Smith R and Bedi R (2016) Deep Reinforcement Learning for
Simulated Autonomous Vehicle Control. Course Project Reports: Winter 2016
(CS23 1n: Convolutional Neural Networks for Visual Recognition). Stanford
University, pp. 1–7.

Zou X, Alexander R and McDermid J (2016) On the validation of a UAV col-
lision avoidance system developed by model-based optimization: challenges
and a tentative partial solution. 2016 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshop (DSN-W), 28
June–1 July 2016. Toulouse, France: IEEE, pp. 192–199.

Xiongqing Liu received his PhD degree in Mechanical Engineering from
University of Southern California in the summer of 2019. His research
was focused on developing transfer reinforcement learning algorithms for
robotic and vehicle collision avoidance. By combining reinforcement learn-
ing with transfer learning, Dr. Liu introduced a belief-based approach to
enable the transfer of knowledge obtained from reinforcement learning in
one task domain to another similar task domain. The approach allows
engineers to adjust the belief level and transfer period for the best transfer
effect depending on the similarity levels of the source and target tasks. Dr.
Liu received his BS degree from Shanghai Jiaotong University and is cur-
rently working as a system engineer in the machine learning related areas.

Yan Jin is Professor of Aerospace and Mechanical Engineering at University of
Southern California. He received his Ph.D. degree in Naval Engineering from
the University of Tokyo and did his post-doctoral research at Stanford
University. Dr. Jin’s research covers design theory & methods, multiagent
and self-organizing systems. His current research interests include design
cognition, machine learning and its application in engineering design,
knowledge capturing, self-organizing and adaptive systems. Dr. Jin is a reci-
pient of National Science Foundation CAREER Award and TRW Excellence
in Teaching Award. He served as Editor-in-Chief of AIEDAM and Associate
Editor of JMD and is currently Associate Editor of Design Science Journal.
Dr. Jin is a Fellow of ASME.

16 Xiongqing Liu and Yan Jin

	Reinforcement learning-based collision avoidance: impact of reward function and knowledge transfer
	Introduction
	Related work
	Collision avoidance
	Machine learning
	Transfer learning

	Tasks of ship collision avoidance
	Collision avoidance at sea
	Task complexity and similarity

	Machine learning based knowledge capture
	Knowledge capture: deep RL
	Agent learning behavior
	Reward functions and knowledge capture

	Knowledge transfer: a belief-based approach
	Expert agent and student agent
	Belief-based transfer learning

	Case study design
	Training parameters
	Tasks for training and transfer

	Results and discussion
	Reward functions for designing system behavior
	Copy expert for knowledge transfer
	Adjust transfer period
	Adjust transfer belief level

	Conclusions
	Acknowledgments
	References

