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ABSTRACT 

 Standard Guidance, Navigation, and Control (GN&C) systems take state data from a navigation system and 

create a trajectory that minimizes some a-priori determined cost function.  These cost functions are typically 

time, money, weight, or any general physically realizable quantity.  Previous work has been done to show the 

effectiveness of using risk as the sole objective function.  However, this previous work used Poisson 

distributions and historical estimates to achieve this goal.  In this paper we present the situation-risk assessment 

(SRA) method contained within the intelligent situation assessment and collision avoidance (iSC) platform.  

The SRA method uses data clustering, and pattern recognition to create a historically based estimate of guidance 

probabilities.  These are then used in data driven, dynamic models to create the future probability fields of the 

situation.  This probability, along with the other agent’s goals and objectives, are then used to create a minimum 

risk guidance solution in the nautical environment.   

Keywords – GNSS, Galileo, EDAS, tracking, firefighting, multisensor, fusion, communication optimization 

I. INDRUCTION 

 Guidance, Navigation, and Control (GN&C) systems have had the same general structure since they were 

first developed by Goddard.  This GN&C loop is shown in Figure 1, below.  In this system sensor errors are 

filtered through a stochastic navigation algorithm to develop the best system state estimate.  A plan that was 

developed by teams of engineers is then calculated through the guidance algorithm. Finally this plan is executed 

through the system controller. 
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Figure 1.  Standard guidance, navigation, and control system. Source: authors. 

  

 Throughout this paradigm the designer imposes some a-priori situation analysis [Ullman, 2010].  Teams of 

engineers develop cases and clauses that are triggered in the guidance algorithm as certain navigational estimates 

are developed.  The robustness of a guidance solution is based on how many situation types a system will be 

able to account for.  It must be noted that this is robustness not in the control or navigation space, which has a 

fully developed theory [Lavertsky and Wise, 2013], but in the guidance solution itself.   

 Previous work [Williams and Jin, 2018] in this area has proposed a paradigm in which the uncertainty of the 

entire data becomes intrinsic to the guidance solution developed.  This brings a multitude of work [McHenry et 

al, 1979], [Fossen, 2002], [Steinfeldt et al, 2010], [Kaiser et al, 2010], etc on navigation uncertainty to the realm 

of guidance solutions.  Specifically setting up a methodology to answer the question of how to handle a situation 

or dataset that does not meet any of the a-priori assumptions of the system engineers. 

 This paper expands upon the previous work of risk determination from an arrival model, and instead utilize 

the direct probabilities and statistics of the situation.  The specific problem addressed in this is the nautical 

problem of ship collision avoidance.  Standard collision scenarios used to train ship captains will be used to 

assess the efficacy of the proposed methods.  It needs to be noted that the methods to arrive at the statistical 

probabilities are not discussed in this paper [Williams and Jin, 2019], but instead what the effects of this change 

are.  Also used in the development of these results are a formal optimal guidance solution. 

II. BACKGROUND 

A. Situation Awareness 

 From an engineering standpoint there are two (related) schools of thought on situation, situation awareness 

(SAW), and situation assessment (SA).  The first of these views is the method proposed by Endsley [Endsley, 

1995] on situation awareness. Endsley proposed that SAW is developed in through three levels.  The first is 

determining the entities and states in the environment.  The second level is understanding the relationships 

between those entities.  Finally the third is the ability of an agent to project that situation into the future.  This 

model is shown graphically Figure 2, below. 

 
Figure 2.  Endsley’s model of situation awareness.  Source: authors. 

 

 Endsley’s model was initially developed for human cognition, and not necessarily for autonomous systems.  

However, Endsley and others have updated this cognition method to include multiple agents and system 
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situational awareness [Endsley, 1998], [Endsley, 2017].  It should be noted that Endsley’s model resembles the 

standard guidance, navigation, and control loop.  The main difference is that SA views allow for a broader scope 

of data, beyond standard navigation state and sensor data. 

 The second direction comes from the ontological build up of SAW and SA through the sensor fusion 

community.  This begins with the work of Barwise [Barwise, 2006] and later Devlin [Devlin, 2006] on the 

philosophical basis of situation and situation awareness.   The ontology based SAW [Kokar et al, 2009] was 

developed as an object oriented data model completed with a UML based diagram.  The use of predicate calculus 

and infons through the use of object oriented data development allows for the development of autonomous SA. 

 The situation assessment model and a traditional GN&C system can be combined to have the flow of 

information be that shown in Figure 3, below. 

 
Figure 3.  Combination of traditional GN&C and situation assessment method.  Source: authors. 

 

Previous work in this area [Williams and Jin, 2018] stressed the need to correctly identify our agents’ goals.  

This will allow the system to classify the information into a correct situational assessment.  For the nautical 

collision avoidance scenarios the following goals/objectives will be used: 

1. Do not collide with anything 

2. Get to the waypoint 

3. Avoid changes to the optimal power 

4. Do not roll the ship 

 

B. Trajectory Optimization 

 The work that has been done on risk minimization in the past has used a greedy approach.  Since it was a 

state arrival based model of risk, the arrival in the future was pre-built into the analysis of the system risk.  This 

allowed for a simple greedy algorithm to determine the current guidance decision [Kutsuna et al, 2018].  

However, since the current collision risk model is based upon the dynamics of the system and the decision 

making statistics a full trajectory analysis must be used. 

 This is accomplished by turning the trajectory optimization problem into a multivariable design optimization 

problem.  Current systems use a pseudospectral approach [Ross and Karpenko, 2012] to solve this.  However, 

it has been observed in tests that for the nautical environment a single shooting method is sufficient. 
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 The simple single shooting method works for the risk minimization problem since all of the constraints are 

held within the objectives and are part of the risk minimization itself.  So the traditional optimization problem 

shown in equation (1) has less external constraints and is thus easier to converge. 

            min  

s.t. , , 
                                              (1)

 

The reformulated optimization problem (equation (2)) has fewer external constraints.  So standard design 

optimization methods allow for rapid convergence [Vanderplaats, 1984]. 

         min                                         (2) 

     s.t.  

 

III. RISK MODELING 

 As was stated in Section 2-A, an agent’s objectives are what define that agent’s risk.  As such there are four 

different possible failure points for the nautical situation.  The agent needs to go to the waypoint without 

colliding with anything, using too little or too much power, and also avoid rolling the vessel. 

 Each component of the total instantaneous risk is itself a percent chance of failure for that goal/objective.  In 

the non-dynamic risk equations ((3), (5), (6)) there are scaled parameters.  These parameters are determined 

through expert analysis or least squares fitting.  Specifically the iSC system accesses data within a database and 

determines these coefficients from observed events in situation dependent categories.  A discussion of this is 

provided in another work [Williams and Jin, 2019]. 

 A diagram of the iSC system can be seen in Figure 4.  This paper focuses on the Situation Assessment and 

Operation Planning portion of this system.  However, much of the work to accomplish this path planning is 

needed to be done before hand.  The statistical analysis and coefficient determination are done in the Data 

Collection and Knowledge Management portions of the system. 

 

Figure 4.  iSC system architecture.  Source: authors. 

 

For the purposes of this paper the system flow is shown in Figure 5.  When the system has identified the 

objects in the environment the Knowledge Management module is queried to retrieve the best estimate of 

decision probabilities and dynamic response values.  These are then used to propagate the probabilities of the 

system state forward in time (for purposes of this paper this is 10 minutes in the future).  The optimal trajectory 
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is then determined that minimizes the total risk.  After a settling time (for this paper that is 30 seconds of 

simulation time) the system is re-evaluated and a new optimized trajectory is developed based upon the latest 

system state. 

 
Figure 5.  Data flow for the SA and OP portion of the iSC.  Source: authors. 

 

A. Waypoint Risk 

 If there were no other goals, the best solution would simply point OwnShip’s velocity vector in the direction 

of the way point and go as fast as possible to minimize the risk to get to the waypoint as shown in Figure 6. 

 
Figure 6.  Waypoint geometry.  Source: authors. 

 

 There are two components to the risk as can be seen.  The first is how far away from the waypoint the agent 

is.  This is calculated through equation (3).  

                                                   (3) 

 The second part of this is the component of where the agent is likely to go based upon its state geometry.  

That is calculate that through equation (4). 

                                                                 (4) 

 This is then combined through a logical “AND” arrangement to get the probability that the agent will not get 

to its waypoint (equation (5)). 
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For nautical systems power generation is a key consideration.  By changing the speed of the vessel the decision 

maker changes the power generation of the ship.  The curve that expresses this is shown in Figure 7. 

 

Figure 7.  Power setting risk plot.  Source: authors. 

 

 This is a simple piecemeal equation (6) where the risk of failure occurs at the redline or if the power off is 

shut off entirely to the system.  The minimum risk occurs when the system has the optimal power usage set.  

The value of the optimal position is vessel dependent.  This function is also developed this way such that the 

derivative is smooth across the break so that gradient based methods have a derivative that exists for all power 

settings. 

                    (6) 

 

C. Roll Risk 

 At some point (also vessel specific) the vessel will tip.  Ideally the vessel does not have to change direction.  

This risk is shown graphically in Figure 8. 

 
Figure 8.  Turn rate risk.  Source: authors. 

 

 The model for this risk is also piecemeal (equation (7)).  Like the equation in Section 3-B, the equation also 

needs to have a continuous first derivative with a well defined minimum value (0 turn rate). 
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             (7) 

 

D. Collision Risk 

 The first step to assess the risk of collision is to linearize the equations of motion so that the agent’s system 

is an approximation of the non-linear dynamics.  The coefficients of these matrices (f
1
 and f

2
) are determined 

from the pre-processing of the observed historical data.  This allows for a state transition matrix of the form 

shown in equation (8). 

           
            (8)

 

 This gives the system the ability to update the variance of the system through this linearized estimate 

equation (9).  Note that for this simulation the agent has the knowledge of the command variance.  However, 

there are other implementations [Williams and Jin, 2019] that don’t assume or have data directly on this.  In 

these cases other variance updates are used. 

          S
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T
            (9) 

 For computational efficiency a multivariate Gaussian distribution (equation (10)) is used that is the sum of 

multiple Gaussian distributions (equation (11)).  Details of how these variances are determined are outside the 

scope of this specific paper [Williams and Jin, 2019], but are discussed elsewhere. 

                 (10) 
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 For multiple TargetShips collisions cannot be added since they are not independent events.  For the same 

reason the probability of any collision is not the multiplication of these non-independent events.  However, 

misses are each independent events.  Thus, to determine the probability of all collisions the system takes the 

probability of all misses and then perform a logical “NOT” (equation (12)). 

             PCol =1-
i=1

ntarg

P 1- PCO->i
( )

          (12)

 

 In the determination of each individual probability (10) there are integrals with infinite bounds.  These are 

all the non-position (physical).  The infinite bounds are there to denote that the system does not need to know 

any specific non-location state.  The only concern that the agent has is when the positions overlap.  The velocity 

and orientation (for instance) can be any value. 
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E. Trajectory Risk 

 To calculate the risk along the trajectory the sytem starts with a discretized command set that allows it to 

calculate OwnShip trajectory.  It then estimates the average trajectory (for each Gaussian component), , for 

each TargetShip. 

 Along this trajectory at each time step the SRA determines the instantaneous risk (equation (13)).  This is 

the value of the risk at that specific instance of time calculated from the component risk pieces (which are what 

was defined as the OwnShip objectives). 

                (13) 

 This instantaneous risk is integrated across the projected trajectory (equation (14)).  A discount factor is 

included in this integral since the further in time we go, the less valuable those values are. 

           (14) 

 

 

IV. SIMULATION RESULTS 

 

 A set of standard scenarios are used to test ship captains on their ability to avoid collisions when confronted 

with dangerous situations.  These set of 17 scenarios have been used by the iSC team to test the efficiency of 

updates to the nautical collision avoidance algorithms.  This set is shown in Table 1, and locations are provided 

in the NED frame.  The scenarios that are highlighted in yellow are those that will be presented.  All of these 

scenarios were run and verified, these are chosen solely for aesthetic purposes. 

Table 1.  Standard test scenarios.  Source: authors. 

 

In each of these scenarios if no action is taken a collision will occur.  The total risk determined by the system is 

plotted as a function of time against each scenario.  A value of 100% risk means that one of the goals/objectives 

has failed.  For this problem 100% risk means that a collision will have occurred. 

Scenario	

#

Bearing	

(deg)

Distance	

(nmi)

Course	

(deg)

Speed	

(kts)
Scenario	

#

Bearing	

(deg)

Distance	

(nmi)

Course	

(deg)

Speed	

(kts)

1 45 2.0 270 15 0 1.0 0 8

2 70 1.0 340 15 80 0.3 0 15

315 2.0 90 15 45 1.4 270 15

45 2.0 270 15 315 2.0 90 15

4 0 2.0 180 15 45 2.0 270 15

5 6 2.0 180 15 45 3.0 270 15

6 0 1.0 0 10 45 4.0 270 15

45 1.4 270 15 45 3.0 270 15

0 2.0 180 15 328 4.3 135 15

45 1.4 270 15 333 4.5 135 15

0 2.0 180 15 338 4.7 135 15

315 1.4 90 15 343 4.9 135 15

80 0.4 350 15 348 5.1 135 15

315 3.0 90 15 45 4.3 270 15

80 0.4 350 15 37 4.5 270 15

315 3.0 90 15 51 3.4 270 15

45 3.0 270 15 330 6.0 135 15

80 0.3 0 15 0 6.7 180 15

315 2.0 90 15 80 0.5 0 15

0 2.0 180 15 45 4.2 270 15

80 0.3 350 15 0 6.0 180 15

280 0.3 10 15 355 6.0 180 15

0 2.0 180 15

12

13

14

15

16

17

3

7

8

9

10

11
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The first scenario is a simple short distance crossing.  The trajectory for a whole 10 minute trajectory is shown 

in Figure 9.  The associated risk is presented in Figure 10.  This is a somewhat simple encounter and the risk 

avoidance algorithm makes the correct decision and is similar to what a trained ship captain would make. 

 

Figure 9.  Scenario 1 trajectories.  Source: authors. 

 

 Scenario 12 is significantly more complicated than the first scenario, and the density of objects in the theater 

causes the risk to intrinsically increase dramatically.  However, as can be seen in Figures 11 and 12 the iSC 

system does avoid the vessels and follows a path similar to what an experienced ship captain would suggest. 

 

Figure 10.  Scenario 1 risk percentage.  Source: authors. 

 

 Scenario 12 is significantly more complicated than the first scenario, and the density of objects in the theater 

causes the risk to intrinsically increase dramatically.  However, as can be seen in Figures 11 and 12 the iSC 

system does avoid the vessels and follows a path similar to what an experienced ship captain would suggest. 
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Fig. 11.  Scenario 12 trajectories 

 
Fig. 12.  Scenario 12 risk percentage 

 

 The final scenario data presented is 13.  This is shown in Figures 13 and 14.  Again this shows the system 

correctly identifying the risks and not following strict COLREGS since that would actually lead to a collision. 
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Figure 13.  Scenario 13 trajectories.  Source: authors. 

 
Figure 14.  Scenario 13 risk percentage.  Source: authors. 

 

 It should be noted that in each of these simulation runs, no information is provided that would not be available 

under normal circumstances.  Similarly there is no assumption that these vessels are in any direct communication 

with each other. 

 

V. CONCLUSIONS 

 The work that has been done on the iSC system has shown that by removing the certainty of the case-by-

case decision making intrinsic to traditional guidance solutions typical human captain decisions arise naturally.  

This does not come from knowing everything that will happen, but instead using data to create a time varying 

probability field.  This field is then used directly to minimize the negative possibilities.  Work in this paper and 

previous work has shown that this is an effective way to provide flexible and safe guidance solutions. 

 This work is still ongoing and there are still many aspects that need to be developed, most significantly what 

are the effects of poor or incorrect information.  Similarly the work done thus far assumes a fairly simple 
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dynamic model is accurate.  Work needs to be done to incorporate the probability that the model itself is flawed 

and thus future state estimates will also be flawed beyond just initial state estimate errors. 
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