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Abstract 

Organizational structuring has been an important subject in the fields of organization science and engineering management. 
Due to the highly complex task environment and inherently sophisticated structure of organizations, it is often difficult to 
observe details of how an organization’s structure affects its performance. In computational studies of self-organizing systems, 
however, agents self-organize through a set of predefined rules for dealing with the dynamic changing environment and tasks. 
This offers a unique approach to gain insights on why and how structures evolve over time and how structuring impacts team 
performance under what conditions.  In this paper, a computer simulation based study is carried out to explore the impact of 
social rules on the performance of self-organizing teams with various team sizes. The results have shown that stronger 
structuring favors team effectiveness in general for both small and large team sizes, while team efficiency under strong 
structuring peaks at a given team size and then decline with the increase of team size. 
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Introduction 

Organizations employ different kinds of organization structures to deal with coordination problems and achieve 
their goals. According to Minzberg (1979, 1980, 1993), there are five basic structural configurations of organizations: 
simple structure, machine bureaucracy, professional bureaucracy, divisionalized form and adhocracy. Among 
these five configurations, professional bureaucracy takes a unique form in the sense that organizations are not 
centralized but attain a kind of bureaucracy (Minzberg, 1980; Lunenburg, 2012). This is important because such 
organizations are more robust to external changes of the environment and also to organization’s internal changes 
such as employee turnover. In professional bureaucracy, organizations’ behaviors are standard-ized by 
coordination mechanism of standardized skills, which allows an autonomy of work among its professionals 
(highly trained specialists) in the organizations’ operating core (Minzberg, 1980; Lunenburg, 2012).  

In case of teams, such as engineering project teams, social rules (i.e., coordination rules), and hence the structures 
resulted from these rules, are also important for achieving desired team performance. There can be multiple factors 
that influence the impact of social rules, including the content and amount of rules, the percentage of people who 
adopt or follow the rules, and the size of the team. The research question of this paper is: Given a set of social rules, 
how will the team performance be influenced by the interplay between the rule adoption rate (or percentage) and 
the team size? 

To answer this question, a computer simulation based study is carried out to investigate how self-organizing 
systems evolve structures based on given social rules. In such self-organizing systems, generally speaking, agents 
have high adaptability to the task environment through self-organizing (Chen and Jin, 2011; Chiang and Jin, 2011; 
Zouein, Chang and Jin, 2011). This is achieved by predefining a set of rules for agents to follow. Each agent is 
allowed freedom to explore, exploit and solve complex task by themselves while at the same time, through mutual 
adjustment, agents interact with their task environment and with each other, leading to self-organizing emergent 
behavior and functions at the system level (Chen and Jin, 2011; Chiang and Jin, 2011; Zouein, Chang, and Jin, 2011; 
Levitt and James, 1988; March, 1991). During this process, agents achieve global coordination while accomplishing 
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individual goals. Each agent makes their movement decisions completely based on its own sensed information of 
the environment, its own transformation algorithm, and its own decisions for action.  

In this paper, we explore a dynamic social structuring approach in self-organizing systems. We attain social 
structuring among agents by introducing social rules and devising a social-rule based regulation for agents to 
choose their actions (Khani et al, 2016). In this approach, agent’s behavior is adjusted through perceived social 
relations to be in harmony with system-wide welfare (Khani et al, 2016; Khani and Jin, 2015). Social rules can be 
designed based on the task definition and resolution of potential conflicts (Khani et al, 2016; Khani and Jin, 2015). 

In the rest of the paper, related work is reviewed and dynamic social structuring concepts are introduced. And 
then, a social rule based self-organization approach for organization structuring with various team sizes is 
presented. Next, results are discussed on how social rules and team size affect organization’s performance. At last, 
conclusions are drawn and future research directions are suggested.  

Background and Prior Work 

Research has been done in the past that looks into organization configuration, its related coordination mechanisms, 
its basic components and its evolution. Minzberg (1979, 1980, 1993) proposed five different configurations of the 
organizations, five coordination mechanisms, five basic elements of the organizations and elaborated on each of 
these five organization configuration’s characteristics and applied areas. Lawler and Hage (1973) investigated into 
professional bureaucratic conflict and intraorganizational power-lessness among social workers by conducting an 
analysis of the data collected from interview of 144 social workers. Currie and Procter (2005) looked into how 
organizational performance can be affected by what is happening in the middle of the organization, rather than at 
the top. They argued that the role of middle managers in professional bureaucracy context is affected by limited 
factors. However, such conflict of role and ambiguity can be reduced by a process of socialization (Currie and 
Stephen, 2005). Other researchers examined organization from a different perspective. Levitt and March (1988) 
argued that organizational learning is routine-based, history dependent and target oriented. Originations learn 
through direct experience and from experience of others. March (1991) also came up with a mathematical model 
and identifies the relationships between two different kinds of organizational learning: exploration of new 
possibilities and exploitation of old certainties. And he found that exploitation helps more in the short run while 
exploration might benefit in the long run for organization evolution (March, 1991). Recently, organizational design 
has shown to be effective and is typically used to achieve better communication strategies (Horling and Victor, 
2004). It has been proved that the behavior of the system depends on shape, size and characteristics of the 
organizational structure (Galbraith, 1977; Brooks, 2003; Durfee et al, 1987). Researchers have suggested that there is 
no single type of organization that is a best match for all circumstances (Galbraith, 1977; Durfee et al, 1987). Despite 
wide research in the organization science and social structuring, little research has been done on how organization 
structures evolve in self-organizing systems in which agents can perform complex task given a list of 
predetermined coordination rules.  

In the system engineering and robotics world, there has been wide research on using multi-agent or multi-
components to realize system level function and accomplish complex task (Ferguson and Lewis, 2006; Martin and 
Ishii, 2002). Fukuda and Nakagawa (1988) developed a dynamically reconfigurable robotic system known as DRRS. 
Unsal et al (2001) focused on creating very simplistic i-Cube systems (with cubes being able to be attached to each 
other) in order to investigate whether they can fully realize the full potential of this class of systems. PolyBot has 
gone through several updates over the years (Yim, et al, 2002) but acquired notoriety by being the first robot that 
demonstrated sequentially two topologically distinct locomotion modes by self-configuration. SuperBot (Shen, et al, 
2006) is composed of a series of homogeneous modules each of which has three joints and three points of 
connection. Control of SuperBot is naturally inspired and achieved through a ‘hormone’ control algorithm. Despite 
the implicit and informal nature of some multi-agent relations, all multi-agent systems possess some form of 
organization.  

To develop adaptive and complex systems, our previous work investigated box-pushing cases and has gained 
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useful insights into how social rules affect self-organizing system’s performance in different complexity level 
settings (Khani, et al, 2016; Khani, and Jin, 2015).  

Social Rule Based Team Coordination 

To develop a computer model of self-organizing systems to study team coordination, we take a social rule based 
behavior regulation approach and explore various local and bottom up social relations to achieve dynamic social 
structuring. Generally speaking, the deficiency of disorderliness or disorganization can be divided into two 
categories. One is ‘conflict deficiency’ and the other ‘opportunity-loss deficiency’. For simple tasks where 
individual agents’ ‘goals’ are mostly consistent with the system goal, the agents’ effort can additively contribute to 
the system overall function. When tasks become more complex, conflicts between agents’ actions may occur and 
cooperation opportunities may be lost. In order to minimize the conflict between agents and exploit cooperation 
opportunities, social rules and social relations can play an important role.  

A social rule is a description of behavioral relationship between two encountering agents that can be used by the 
agents to modify their otherwise individually, rather than socially, determined actions. Two agents acting on a give 
social rule are said to be engaged in a social relationship.  

Based on the definitions mentioned above, when agents are engaged in social relations by following social rules, 
social structures emerge, leading to more order of the system. To avoid conflicts and promote cooperation, social 
rules can be defined to specify which actions should be avoided and which actions are recommended for given 
conditions. The conditions are often task domain dependent, although some of them can also be general. We have,  

Definition 1: (Social Rule): sRule = (C, ForbA, RecA) where C is a condition specifying a set of states; ForbA: 
forbidden actions for states specified by condition; RecA: recommended actions.  

Definition 2: (Social Rule Adoption Rate): The probability of adoption of the social rules by each agent when any 
of the rules become applicable. 

Definition 3: (Social Structuring): Dynamical employment of the social rules among agents leads to real time 
structured interactions among the agents in the self-organising system. 

Definition 4: (Team Size): The number of agents within each simulation is considered the team size. 

Social rules introduce relations among encountering agents. It is conceivable that when an agent encounter 
neighbors and neighbors encounter their neighbors the cascading effect may lead to a large scale network structure 
with varying density of connections.  

To apply a social rule, an agent needs to  

1) generate its independent action profile,  

2) identify and communicate with its neighbors,  

3) possess social rules,  

4) know which rule to apply for a given situation, 

5) know how to generate new socially compliant action.  

Each of the 5 steps can be task domain dependent. The modelling details of these steps can be found in our 
previous work (Khani et al, 2016; Khani, and Jin, 2015). In the following section, we present a case study and 
explore social rule based self-organizing with various team sizes. We investigate how the change of social rule 
adoption rate among agents and team sizes affect the overall system’s structure and hence performance.  

Case Study: Search and Capture 

In this paper, a case study on a ‘Search and Capture’ task is carried out. The objective of this case study is to gain 
insights on how social rule adoption rate actually affects the self-organizing system’s performance with various 
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team sizes. Moreover, the obtained insights should provide guidance for engineering team management. All the 
results of the study are the mean values of 300 simulations runs. 

Tasks 

The ‘Search and Capture’ task is illustrated in Fig 1. The blue human shapes are agents. The star shapes are targets. 
The targets with larger size are ‘strong targets’ and those with smaller size are ‘weak targets’. Each target holds 
some amount of energy and each agent’s goal is to search and capture the energy from the targets, trying to get the 
most of energy within a limited time (in this simulation, the limited time is defined as 100 ticks/steps of the 
simulation) and capture as many targets as possible.  

 
FIG. 1 EXPLANATION OF THE TASK OF ‘SEARCH AND CAPTURE’ 

Attributes of Target and Agent  

The two basic components of this self-organizing system are agents and targets. Each component has a number of 
attributes associated, which are shown in TABLE. 1. 

TABLE. 1 ATTRIBUTES OF TARGET AND AGENT 

Target Attribute Agent Attribute 

Number of Targets (50) Team Size (10:10:50) 

Location Location 

Energy (1 or 6) Energy (+0 or +1 or +2) 

Strength of Targets Visibility Range (R5) 

Capture Range (R2) Communication Range(R5) 

Targets Mix-up Rate (30%) Social Rule 

Color State (O, M, G) Color State (Blue) 

Visibility (50%) 
Social Rule Adoption Rate 

(0%,10%,30%,50%,70%,100%) 

Target Attributes  

• Total number of targets: The total number of targets in this simulation is 50, including both strong and weak 
targets.  

• Strength of target: There are two kinds of targets: strong targets and weak targets. Three agents are needed to 
capture a strong target, while only one agent is needed to capture a weak target. 

• Energy of the targets: Strong targets have 6 units of energy and weak targets have 1 unit of energy.  

• Location (x, y, dx, dy, angle): After the initial setup, targets are distributed at random locations on a squre plane; 
during simulation, targets move randomly in different directions.  

• Visibility (V(t)): Targets have two different states: visible and invisible (to the agents). In our simulation, targets 
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become visible 50% of the time on a random basis. Specifically, when a target’s color becomes orange, it is visible 
to the agents and when its color turns magenta, it is invisible to the agents.  

• Capture Range: The radius of the circle around a target within which agents are able to capture the target. In our 
model, we define the capture range to be a radius of 2.  

• Color State: As stated above, orange means targets are visible to the agents while magenta means not visible. 
Moreover, when target’s energy is captured, its color becomes grey. In Table 1, O means orange, M means 
magenta and G means grey. 

• Target Mix-up Rate: The percentage of weak targets among total number of targets is called target mix-up rate. In 
our simulation, 30% is used as the target mix-up rate.  

Agent Attributes  

• Team Size: The total number of agents. Team size varies with each set of simulations, from 10 to 50 with an 
interval of 10.  

• Energy Captured (+1 from a small target, +2 from a large target, 0 if no captured target): Agents start with zero 
energy and gain energy by capturing energy from the targets. If a strong target is captured by 3 agents, each 
agent get 2 units of energy. If captured by more than 3 agents, agents do not get energy from the strong targets 
because of the overpopulation. If there are fewer than 3 agents within capture range, energy of the target is not 
captured. Meanwhile, if a weak target is captured, it immediately gives 1 unit of energy to the agent.  

• Location (x, y, dx, dy, angle): After initial setup, agents are distributed at random locations. During simulation, 
agents move either randomly or based social rule depending on the rule adoption rate. 

• Visibility Range: Agents are able to see targets within a visibility range of radius 5 circle. Agents can only see the 
targets that are visible to them (when the targets become orange) and are within the visible range. 

• Communication Range: Agents are exchanging position information with each other inside the communication 
range, which is set to be the same as the visibility range.  

• Social Rules: Agents move and communicate according to their social rule. Details of the social rules will be 
illustrated further in the next section.  

• Social Rule Adoption Rate: When a social rule bcomes applicable, an agent has the option to follow or ignore the 
rule. The social rule adoption rate is the likelihood that agents will follow the social rule. In our simulation, social 
rule adoption rate ranges from 0%,10%,30%,50%,70% to 100%. 

Actions of Agent  

The detailed actions that agents perform can be categorized as follows:  

A1 = <Find ><Target >  
A2= <Distinguish ><Target > 
A3= <Seek ><Help > 
A4= <Capture ><Target Energy > 
Each agent has its individual goal, which is to find targets and acquire the maximum amount of energy. However, 
since one agent is not able to capture strong targets by itself, they need to seek help from other agents. Cooperation 
arises when the agents are communicating between each other for the sake of their own interest. However, conflict 
also rises if they over-cooperate (i.e., when more than 3 agents capturing 1 strong target) or under-cooperate (i.e., 
less than 3 agents working on 1 strong target).  

Social Rules: A Coordination Mechanism 

Social rules are usually introduced to facilitate cooperation or avoid conflicts. In this case study, it helps agents 
cooperate and fulfill their mutual interests. Agents can see targets within their visibility range, broadcast their 
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position information and ask for help from neighboring agents within their communication range. The 
communication rule is illustrated in the hierarchical decision tree in Fig. 2. 

Meanwhile, agents make decisions whether to follow or ignore communication rules based on the social rule 
adoption rate.  

 
FIG. 2 HIERARCHICAL DECISIOIN TREE OF AGENTS 

Performance Mearsure and Experiment Setup 

In order to fully investigate the impact of social structuring on the self-organizing system performance, we 
measure performance of the system based on effectiveness and efficiency. For this case study, we choose the fixed 
duration of the simulation to be 100 tick times. Then, the overall system effectiveness is assessed by measuring the 
success rate—i.e., percentage of targets captured. Individual Efficiency is evaluated by measuring the average 
energy each agent captured. Fig. 3 shows the experiment setup for the ‘Search and Capture’ case study.  

 
FIG. 3 EXPERIMENT DESIGN WITH TWO INDEPENDENT VARIABLES AND THREE DEPENDENT VARIABLES 

• Success Rate: Success rate is measured by measuring the number of targets captured divided by the total number 
of targets.  

• Average Energy/Agent: It is measured by sum of the energy captured by all the agents divided by the total 
number of agents.  

The simulation was run under ‘Netlogo’, a multi-agent simulation software commonly used in simulating self-
organizing system. Each individual test parameter was run 300 times to maintain the statistical significance of the 
simulation results and to avoid randomness of results introduced in each simulation. The final simulation result is 
an average mean value based on 300 simulation runs.  

Results 

Fig. 4 shows the screen shots of a typical simulation run when team size (number of agents) = 30. At time tick = 0, 
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agents and targets are randomly distributed. At tick = 30, some small groups of agents are formed (which are 
shown in blue circle). At this time, social structuring and groups formation help agents capture the energy of the 
strong targets. At tick 50, more and larger groups are formed, which are shown in blue circle, and agents tend to 
stick to their groups without leaving. At tick = 100, most of the targets are captured, agent groups have a tendency 
to desolve and agents spread out more randomly across the plane, similar to the initial setup condition.  

Fig. 5 shows the success rate comparison for various social rule adoption policies for the team of agents with 
various team sizes. Success rate measures the percentage of targets captured at the end of simulation run. As can 
be expected, as team size increases, success rate goes up accordingly. This is because the ’number’ advantage wins 
over and help the team better tackle the task. Also, when social adoption rate is increased at a given team size, 
there is an increase in the success rate, which means the larger social rule adoption rate helps agents better 
cooperate in terms of reaching overall goal of the system. So, strictly following social rules helps the team to form 
structures for achieving overall effectiveness. However, as team size becomes larger, the effect of social rule 
adoption diminishes due to overwhelming coverage of vast team size. So, it is not necessary to have an oversized 
team for reaching overall system effectiveness, since a smaller team size can already perform well.  

 
FIG. 4 SCREENSHOTS OF A TYPICAL SIMULATION RUN AT VARIOUS TICK NUMBERS WHEN TEAM SIZE IS 30 

Fig. 6 shows that the average energy that each agent captures at the end of the simulation. As can be seen in the 
figure, increasing social adoption rate helps the average energy acquisition when team size is small. This is because 
the smaller the team size, the stronger need for cooperation in order to accomplish complex tasks. As the team size 
increases, it reaches a point where large social adoption rate does not help with the average energy capturing 
anymore. Specifically, after team size reaches 30, increasing social adoption rate actually weakens agents’ ability to 
acquire energy from the targets. We can also notice in this figure that for the same social adoption rate, increasing 
the team size has some beneficial effect on energy acquisition when team size is small (below 30). This means that 
given limited time (e.g. within 100 tick simulation run) and resources (eg. total energy in the simulation 
environment), it might be beneficial to increase team size and still benefit each team member at the same time. 

However, when team size reaches 30, further increase in team size does not help individual agents acquire energies 
from targets. The worst case scenario is that when the team size reaches 50, there is a slight tendency that average 
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energy captured by an agent goes down. So, in designing effective organization structures with limited resources, 
when team size becomes large, there are fewer individual gains. In summary, choosing an optimal team size is 
essentially important in forming organization structures.  Teams with optimal size can not only benefit individuals 
but also help increase system effectiveness. Furthermore, the social rule adoption rate should also be carefully 
chosen in accordance with the team size. 

 
FIG. 5: SUCCESS RATE COMPARISON FOR VARIOUS SOCIAL RULE ADOPTION POLICIES FOR THE ‘SEARCH AND CAPTURE’ TASK 

WITH VARYING TEAM SIZES 

 

 
FIG. 6: ENERGY/AGENT COMPARISON FOR VARIOUS SOCIAL RULE ADOPTION POLICIES FOR THE ‘SEARCH AND CAPTURE’ TASK 

WITH VARYING TEAM SIZE 

Conclusions 

In this research, we explored the impact of social rules on the performance of teams with various sizes through a 
self-organizing search and capture case study. Specifically, we investigated on how changing parameters such as 
team size and social rule adoption rate influences team effectiveness and efficiency. The following conclusions can 
be drawn.  

1). For overall system effectiveness (i.e., success rate):  

a) Stronger social structuring helps agents reach better success rate when completing their tasks.  

b) As team size becomes larger, the effect of social rule adoption diminishes due to overwhelming coverage of 
vast team size.  

2). For individual efficiency (energy/agent):  

a) When team size is small, increasing social rule adoption rate helps improve efficiency.  

b) As team size increases, there is a transition point where the social rule adoption rate does not affect the 
efficiency of the team.  
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c) When team size becomes large, the social rule adoption actually decreases the efficiency of the system due to 
its overhead cost.  

The overall recommendation for designing engineer-ing organization structure is that team size should be made 
neither too small nor too large. Also, given a team size, social adoption policy should be specially selected such that 
when team size is small, teams should work more specifically according to the social rules. When teams become 
larger, the social rules should only be loosely followed.  

Our future work will address the issues arising from teams with heterogeneous agents, and expand the task 
domains by carrying out more case studies.  
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