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Abstract: Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their 

subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits 

their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in 

practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex 

engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of 

a specific system design by means of analyzing association relations along different system attributes and synthesizing the information 

entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo 

simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail. 

The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A 

prototype system is established, and two case studies have been carried out. The case of an inverted pendulum system validates the 

effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need 

to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is 

ideally suited for plan selection and performance analysis in system design. 
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1  Introduction 
 

Today’s highly developed science and technology have 
made engineered systems more complex than ever before. 
This complexity extends the development cycle time and 
increases the development cost. Systems engineers have 
been developing effective system design techniques for 
decades, such as the well-known Quality Function 
Deployment (QFD)[1], Unified Program Planning (UPP)[2], 
Axiomatic Design Method (ADM)[3] and Design Structure 
Matrix (DSM)[4], to mention a few. One common feature of 
these methods is the assumption of the interdependencies 
between possible design parameters, components, or tasks 
can be identified so that they can be either excluded (e.g., 
by applying the independence axiom in Axiomatic Design) 
or managed (e.g., by using a design structure matrix). For 
the situations where such interdependencies may not be 
known to designers and other unintended interactions may 
emerge, new methods are needed that can help designers 
analyze the uncertainty of the system being designed and 
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predict the impact of their design decisions on system 
uncertainty. 

For complex systems, the sheer number of highly 
correlated variables makes the internal relations of a system 
hard to understand and manage. Any unexpected 
disturbance may cause a dramatic change to the system. 
The more complex the system is, the larger the uncertainty 
of the system is, as complexity significantly affects a 
system’s chances of fulfilling its functional requirements[5]. 
Being unaware of this inherent uncertainty in a system may 
result in a fragile system. Because this uncertainty is caused 
by the inherent characteristics of complex systems, 
traditional modelling methods may not be suitable. We 
propose a data driven uncertainty evaluation approach to 
support complex engineering design by providing a 
data-mining based uncertainty evaluation method to assist 
design decision-making. The method is composed of three 
main phases as shown in Fig. 1: data preparation, data 
processing and result analysis. The data to be evaluated 
should be collected in a data warehouse in advance. The 
data can be simulation data, experimental data, or any other 
data that need to be evaluated. The main steps of the data 
preparation phase include data transformation, which 
transforms the unrecognizable data to standard form; data 



 
 
 

YLIU Boyuan, et al: Data Driven Uncertainty Evaluation for Complex Engineered System Design 

 

·2· 

cleaning, which filters the outliers that will skew the result; 
and data reduction, which will reduce the size to be 
evaluated and increase the speed of the evaluation.  
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Fig. 1.  A data-driven uncertainty evaluation approach 

 

By combining different arithmetical operations and data 
handling methods, the data processing phase can generate 
the uncertainty metric and other performance indicators. In 
the phase of result analysis, the evaluation results are given 
to designers and engineers. The output at the end of the 
evaluation will result in system requirements for the 
subsequent detailed design phase. It is acknowledged that 
at regular intervals within the design process it is necessary 
for the state of the design solution to be evaluated[6], which 
will provide guidance for further design or iterations. 
Designers can adjust the system according to the evaluation 
results. 

In this paper, we focus on the “uncertainty evaluation” 
box in Fig. 1 and introduce general data driven uncertainty 
metrics to fulfil the need of rapid uncertainty evaluation in 
complex engineered systems. The remainder of this paper is 
organized as follows. In section 2, the related work is 
briefly reviewed. Section 3 proposes a novel data 
processing method to measure system uncertainty, and 
section 4 describes a Monte Carlo simulation based 
uncertainty value normalization. Two case studies are 
discussed in section 5, and conclusions and future work are 
presented in section 6. 

 
2  Related Work 

 
Much research has been done in the areas of complex 

systems, data-mining and uncertainty quantification. The 
fields of study have been motivated by two modern trends: 
an increase in the complexity of engineered systems, and an 
increase in data sensing, storage, and processing 
capabilities. In this section, we briefly survey the studies of 
complex systems, data mining, and uncertainty 
quantification within the context of engineering design, 
with a motivation and theoretical base in complexity 
theory. 

Complex systems have many parts whose interactions 
cause difficulty in analysis. These interactions can stem 
from dependencies based on geometry, function, or transfer 
of energy and material[7]. Complexity can also present in 
different forms during design, relating to the design 
problem, the design process, or the designed artifact[8]. 
Complexity can cause problems such as uncertainty and 
unclear or nonlinear relationships between a system’s 
inputs and outputs[9]. The consequence of complexity is not 
just subjective difficultly perceived by designers, but 
increased design effort and cost, as SINHA, et al[10] link a 
quantitative measure of structural complexity (based on the 
connectivity matrix of component interactions) to 
real-world consequences such as increased assembly time 
in experimental subjects and tentatively propose a 
nonlinear dependence of system development budget on 
system complexity. Another complexity quantification 
theory and its derivative software, OntoSpace, can quantify 
complexity by working with unfiltered data and applying a 
holistic quantitative score to the health of a system or 
company[11‒12]. Designers have used several strategies to 
overcome the uncertainty caused by complexity. 
Uncertainty-based robust design optimization is widely 
used to reduce the effects of uncertainty during design[13‒14]. 
CHALUPNIK, et al[15], compared different “ilities”, such as 
flexibility and reliability that can make a system insensitive 
to uncertainty. 

Engineers already have a long history of exploiting 
structured and well-organized data. Knowledge bases exist 
to aid designers in quickly retrieving relevant data as their 
design work progresses. Researchers introduced a failure 
mode knowledge base that connects with functional 
descriptions to aid in failure mode and effects analysis in 
early design phases[16]. Similar research has built a 
repository of successful designs focused on their function, 
behavior, and structure[17]; a biologically-inspired design 
aid[18]; and even preliminary steps toward the automated 
synthesis of functional systems based on a data set of 
functions and linkage constraints[19]. The effort that goes 
into building these knowledge bases is often quite extensive, 
and could be considered more as an academic pursuit than a 
profitable business operation.  

As a next step, data mining can be used to gather 
knowledge from data sets that are much easier to generate, 
but also less organized. Data is information in its rawest 
form. It can only be classified as information or knowledge 
once it has been cognitively filtered[20]. With the increasing 
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power of computers, the increasing affordability of data 
storage, and the increasing connectivity and ubiquity of 
sensors comes the ability to generate vast amounts of data, 
and there are calls to transform this data into a competitive 
advantage[21]. Data can be generated in-situ by products or 
through simulation. Some legacy data may already exist on 
company servers but is unused[22]. To interpret vast data 
stores automatically, many firms turn to data mining. 
KUSIAK, et al[23], outline areas of product and 
manufacturing system design for data mining applications 
in design such as pattern recognition and prediction of 
customer behavior. ROMANOWSKI, et al[24], apply data 
mining to support variant design activities. KIM, et al[25], 
present a data-mining-aided optimal design method which 
is able to find a competitive design solution with a 
relatively low computational cost. The potential 
applications are so great that, for modern complex systems, 
data generation and mining should be included in 
considerations of a product’s total lifecycle[26]. 

Uncertainties found in complex engineered systems can 
be results of both parametric and structural uncertainties. 
They can also be aleatoric or epistemic uncertainties. From 
a design point of view, structural uncertainty and epistemic 
uncertainty are potentially risky and can be the sources of 
system failures. They should therefore be avoided or 
reduced. Researchers in the area of uncertainty 
quantification (UQ) have proposed various methods for 
assessing and managing uncertainties including forward 
uncertainty propagation[27‒30], sensitivity analysis[31‒32], 
response surface tools[33‒34], and dimensional reduction 
tools[35]. These stochastic data analysis methods have been 
very useful in assessing and modeling uncertainty based on 
limited availability of data. When modeling capability is 
limited and the amount of available data is large, a 
data-mining based approach is more effective. Recently, 
data-mining techniques have started to play an important 
role in uncertainty quantification[36]. 

As technology progresses, the expectations placed on 
designers will only increase, and they will be faced with 
designing systems that are more and more complex. This 
complexity is manifest in uncertainty about system 
performance, increased design effort, and difficulty in 
manufacturing. A simultaneous increase in the capabilities 
of data collection and analysis, however, is providing 
resources that engineers can use to overcome complexity 
and uncertainty. Through the application of data mining, 
engineers can make use of abundant data to gain 
knowledge about their systems, and increase their 
confidence in their performance. Our research aims to 
provide a data-mining based uncertainty evaluation tool for 
engineers to understand the impact of their design decisions 
on the uncertainty of the resulting system. 

 
3  Uncertainty Evaluation 

 

Uncertainty is an inherent property of systems. It 

characterizes the amount of “noise” in the information 
flow[37]. This kind of noise is usually measured by entropy. 
Data mining is the computational process of discovering 
patterns in large data sets involving methods at the 
intersection of artificial intelligence, machine learning, 
statistics, and database systems. Classical data mining 
methods can typically discover such knowledge as 
association rules, clustering rules, classification rules, and 
regression rules.  As data handling tools are developed, 
and processing speeds rise, the range of knowledge that 
data mining can bring to us also extends. Here we propose 
a novel data mining method which will assign an 
uncertainty metric to an engineered system. The process of 
uncertainty evaluation is summarized in Fig. 2, with details 
given in the following sections. 
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Fig. 2.  Process of uncertainty evaluation 

 

What we should prepare for the analysis is only data, 
which can be simulation data or operational data. The 
initial data should be organized in the structure of a 
bivariate table. For given n samples with m attributes, the 
set of the initial data can be represented as 
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where Ai is a specific attribute of data; aij is the concrete 
value corresponding to the attribute; it must be numeric. 
 
3.1  Extracting modes 

The first step is to organize valid modes. We choose 
different attributes as a benchmark in turn, and analyze 
each attribute’s relationship with another attribute by 
scatterplot. For 3 attributes, we can get 6 scatterplots: A1-A2, 
A1-A3, A2-A1, A2-A3, A3-A1 and A3-A2. It can be seen that for 
m attributes, we can get ( 1)m m-  scatterplots. For 
scatterplot A1-A2, A1 is taken as X-axis and A2 is taken as 
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Next the system is simulated in Matlab. The data 

recorded by Matlab are shown in Table 2, and the plot is 
shown in Fig. 13. The time and pendulum angle in both 
Table 2 and Fig 13 are dimensionless. 

 
Table 2.  Simulation data of inverted pendulum system 

Time t Angle 1 1  Angle 2 2  Angle 3 3  

0 0.1 0.1 0.1 
0.01 0.101 051 0.101 041 0.101 061 
0.02 0.102 203 0.102 183 0.102 223 
0.03 0.103 456 0.103 427 0.103 486 
0.04 0.104 809 0.104 77 0.104 849 
0.05 0.106 262 0.106 213 0.106 311 
0.06 0.107 813 0.107 754 0.107 872 
… … … … 

99.96 0.285 913 -1.211 11 0.299 434 
99.97 0.289 848 -1.207 19 0.303 422 
99.98 0.293 864 -1.203 16 0.307 491 
99.99 0.297 96 -1.199 03 0.311 641 
100 0.302 137 -1.194 79 0.315 872 

 

 
Fig. 13.  Pendulum angle curve of inverted pendulum system 

 
It can be seen from Fig. 13 and Table 2, at the initial time, 

the pendulum angles of all 3 motions are nearly identical. 
After 50, differences begin to appear. As time goes on, the 
differences become increasingly obvious. This extreme 
sensitivity to initial conditions for deterministic equations 
is usually considered chaos[41]. We treat the system as two 
separate systems according to the time period, and divide it 
into two parts: the first 50 and the last 50.  

Thus we are in essence measuring the output of two 
separate systems. Because only one attribute can be 
measured in the system, 3 angle data under different initial 
conditions are regarded as three different attributes, and their 
correlation is analyzed by the proposed method. For this 
system of about 5000 data points each, the evaluation 
precision is set to 7. All the evaluation results are as follows. 

Uncertainty of first 50: 
 

cur 248.882,U  min 216.326,U   
max 393.024,U  18.42%.U   

 
Uncertainty of last 50: 
 

cur 183.634,U  min 117.409,U   
max 207.591,U  73.43%.U   

 
From the evaluation results, it is obvious that the 

uncertainty value of the last 50 is bigger than the 
uncertainty of the first 50, which indicates the uncertainty 
brought on by a transition into chaos. By linking rising 
uncertainty, measured by our quantitative metric, to a 
known example of a system transitioning into chaos, this 
case study verifies the validity of the uncertainty metrics 
successfully. 

 
5.2  An oil sump design 

In order to evaluate its actual role in practice, an oil 
sump design is taken as an empirical case. As an important 
part of diesel engines, an oil sump is used to store lubricant 
and seal the engine, and also helps in heat dissipation.  

The model of the oil sump is created in HyperMesh. Two 
plans are put forward and modeled separately. Most of the 
dimensions are the same for both plans, and the parameters 
that vary between plans are shown in Table 3. These 
parameters are explained by the labels in Fig. 14 and Fig. 15.  

 
Table3.  Parameters in two designs 

Parameter Plan 1 (mm) Plan 2 (mm) 

Back_Reinforcing 6.0 5.0 
Bottom_R 5.4 4.0 
Front_Reinforcing1 5.0 5.0 
Front_Reinforcing2 6.0 5.0 
Left_Reinforcing1 2.0 5.0 
Left_Reinforcing2 2.0 5.0 
Left_Reinforcing3 2.0 5.0 
Left_Reinforcing4 2.0 5.0 
Right_Reinforcing1 2.0 5.0 
Right_Reinforcing2 2.0 5.0 
Right_Reinforcing3 2.0 5.0 
Side_Wall_R 4.1 4.0 
Upper_R 12.0 8.0 

 

 
Fig. 14.  Top-view parameters of oil sump 
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Fig. 15.  Bottom-view parameters of oil sump 

 
For the oil sump design, there are many important 

performance metrics such as rigidity, strength and modal 
shape. Here its dynamic characteristics are considered by 
analyzing resonance in a frequency domain. At a resonance 
point, intense vibration responses will occur. The vibration 
response can be reduced by changing the structure to avoid 
a resonance point, or by improving rigidity. Next the two 
plans are analyzed in Nastran. Nastran will output the 
acceleration of different viewpoints on the oil sump as a 
response to an oscillating disturbance. The movement of 
the viewpoints will represent the overall vibration 
performance, and the designer can analyze the performance 
according to the data. The attributes are as follows: 

 
 Y acceleration of viewpoint #1 on bottom; 
 Y acceleration of viewpoint #2 on bottom; 
 Y acceleration of viewpoint #3 on bottom; 
 Y acceleration of viewpoint #4 on bottom; 
 Y acceleration of viewpoint #5 on bottom;  
 X acceleration of viewpoint #1 on back wall;  
 X acceleration of viewpoint #2 on back wall; 
 X acceleration of viewpoint on front wall;  
 Z acceleration of viewpoint on right wall; 
 Z acceleration of viewpoint on left wall. 
 
To get enough data to analyze the two plans completely, 

every parameter in Table 3 fluctuates independently within 
10% to get the simulation results. Some of the data 
generated by plan 1 are shown in Table 4. 

 
Table 4.  Simulation data of plan 1 

Run 
Y acc. on bottom 
#1 A1/(m•s‒2) 

… 
Z acc. on right 

wall A9/(m•s‒2) 
Z acc. on left wall 

A10/(m•s‒2) 

1 6.296 9 … 149.311 7 49.644 51 
2 6.563 6 … 3127.138 864.195 6 
3 6.2 … 257.988 62.283 02 
4 6.478 7 … 1086.718 609.315 4 
5 6.090 9 … 58.485 92 114.114 1 
… … … … … 

100 6.442 4 … 146.263 7 251.592 2 

 
The two plans both can meet the high-level design 

requirements well, and therefore as an auxiliary index, our 
uncertainty metric is introduced to evaluate them.  

For this system of 100 data samples each, the evaluation 
precision is set to 5. For plan 1, analyzed by the proposed 
algorithm, 46 modes are extracted. In all the extracted 
modes, there are 9 modes that take the X acceleration of 
point #1 on the back wall as a source, and 11 modes that 
take the X acceleration of point #2 on the back wall as a 
source. Because the two attributes create the most 
associations with others, they are the most important 
attributes in the plan. After synthesizing all modes, we can 
get the following results. 

Uncertainty of plan 1: 
 

cur 37.7918,U  min 29.798 8,U   
max 49.439 8,U  40.72%.U   

 
For plan 2, 63 modes are extracted. The most important 

attributes in plan 2 are the Y acceleration of point #3 on the 
bottom, which holds 10 modes, and the X acceleration of 
the viewpoint on the front wall, which holds 8 modes. The 
results are as follows. 

Uncertainty of plan 2: 
 

cur 37.416 5,U  min 26.263 9,U   
max 44.059 2,U  62.67%.U   

 
From the evaluation results, it is obvious that the 

uncertainty value of plan 2 is larger than that of plan 1, 
which means the oil sump designed according to plan 1 will 
show higher stability. This also shows that the behavior 
patterns of plan 2 are more chaotic than plan 1. While both 
plans can meet the design requirements, for long operation, 
the oil sump designed by plan 2 may cause more problems 
such as fatigue or performance degradation. 

In practical engineering, for two or more plans to be 
compared, the plan with the lowest uncertainty value tends 
to be more reliable. Uncertainty is an essential factor that a 
designer must account for when deciding among competing 
design options, given that all variants meet the original 
project requirements. During the design process of a system, 
if the modification of one factor makes the uncertainty 
index higher, it means the reliability of the system will be 
lowered, and the designers should be alert to this tradeoff 
and adjust the system accordingly. 

 

6  Conclusions 
 

(1) The uncertainty metrics proposed in this paper 
provide a new perspective to analyze and understand a 
system, and give us a quantitative index to describe the 
nature of its uncertainty, which is especially useful for 
developing complex engineered systems.  

(2) The analysis process of the proposed method is 
completely based on data, which decreases the requirement 
of detailed internal knowledge of a system. By means of 
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mining association relations along different system 
attributes, and quantifying the relations using information 
entropy, a quantitative uncertainty index can be obtained. 

(3) Monte Carlo method is introduced to simulate the 
possible uncertainty extrema under different situations, and 
a normalized uncertainty quantitative index is presented 
accordingly which enhances the usability of the proposed 
method. 

(4) The two case studies have demonstrated the 
effectiveness and practicality of the method. When faced 
with complex systems, design engineers can use this 
method to assess the uncertainty impact of their design 
decisions and increase their odds of fulfilling the system’s 
functional requirements. 

(5) Several steps can be taken to improve upon the basis 
established here. In this paper, the data distribution for the 
uncertainty extrema was based on hypothesis, but we plan 
to develop a more objective distribution to provide a 
precise estimation. We also plan to apply the metrics and 
approach to more practical case studies beyond the oil 
sump, and attempt to quantitatively determine a correlation 
between a system’s uncertainty and real-world design 
metrics such as design time, design cost, and product 
reliability. 
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