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Abstract: Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their
subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits
their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in
practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex
engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of
a specific system design by means of analyzing association relations along different system attributes and synthesizing the information
entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo
simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail.
The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A
prototype system is established, and two case studies have been carried out. The case of an inverted pendulum system validates the
effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need
to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is
ideally suited for plan selection and performance analysis in system design.
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predict the impact of their design decisions on system
uncertainty.

For complex systems, the sheer number of highly
correlated variables makes the internal relations of a system
hard to understand and manage. Any unexpected
disturbance may cause a dramatic change to the system.
The more complex the system is, the larger the uncertainty
of the system is, as complexity significantly affects a
system’s chances of fulfilling its functional requirements’.
Being unaware of this inherent uncertainty in a system may
result in a fragile system. Because this uncertainty is caused
by the inherent characteristics of complex systems,
traditional modelling methods may not be suitable. We
propose a data driven uncertainty evaluation approach to
support complex engineering design by providing a
data-mining based uncertainty evaluation method to assist
design decision-making. The method is composed of three
main phases as shown in Fig. 1: data preparation, data
processing and result analysis. The data to be evaluated

1 Introduction

Today’s highly developed science and technology have
made engineered systems more complex than ever before.
This complexity extends the development cycle time and
increases the development cost. Systems engineers have
been developing effective system design techniques for
decades, such as the well-known Quality Function
Deployment (QFD)""!, Unified Program Planning (UPP)"?,
Axiomatic Design Method (ADM)™! and Design Structure
Matrix (DSM)™, to mention a few. One common feature of
these methods is the assumption of the interdependencies
between possible design parameters, components, or tasks
can be identified so that they can be either excluded (e.g.,
by applying the independence axiom in Axiomatic Design)
or managed (e.g., by using a design structure matrix). For
the situations where such interdependencies may not be
known to designers and other unintended interactions may

emerge, new methods are needed that can help designers
analyze the uncertainty of the system being designed and
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should be collected in a data warehouse in advance. The
data can be simulation data, experimental data, or any other
data that need to be evaluated. The main steps of the data
preparation phase include data transformation, which
transforms the unrecognizable data to standard form; data
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cleaning, which filters the outliers that will skew the result;
and data reduction, which will reduce the size to be
evaluated and increase the speed of the evaluation.

Data
Warehouse

e — i — e — e — e — e — e — e — o — —

| |
! | Data Transformation | |
! | Data Cleaning | |
| .
. Data Data Reduction | |
! Preparation I
| .
i |
i Dalta Data I
: Fusing Calculation |
| .
| |
' |
! Data i
| Processing ; :
Designer Engineer | . I
. Uncertainty Performance |1,
I Evaluation Evaluation I
A .
) | .
%) : @ |
%\ | i
| Evaluation .
i Result Indicator |
I Analysis I

Fig. 1. A data-driven uncertainty evaluation approach

By combining different arithmetical operations and data
handling methods, the data processing phase can generate
the uncertainty metric and other performance indicators. In
the phase of result analysis, the evaluation results are given
to designers and engineers. The output at the end of the
evaluation will result in system requirements for the
subsequent detailed design phase. It is acknowledged that
at regular intervals within the design process it is necessary
for the state of the design solution to be evaluated'®, which
will provide guidance for further design or iterations.
Designers can adjust the system according to the evaluation
results.

In this paper, we focus on the “uncertainty evaluation”
box in Fig. 1 and introduce general data driven uncertainty
metrics to fulfil the need of rapid uncertainty evaluation in
complex engineered systems. The remainder of this paper is
organized as follows. In section 2, the related work is
briefly reviewed. Section 3 proposes a novel data
processing method to measure system uncertainty, and
section 4 describes a Monte Carlo simulation based
uncertainty value normalization. Two case studies are
discussed in section 5, and conclusions and future work are
presented in section 6.

2 Related Work

Much research has been done in the areas of complex

systems, data-mining and uncertainty quantification. The
fields of study have been motivated by two modern trends:
an increase in the complexity of engineered systems, and an
increase in data sensing, storage, and processing
capabilities. In this section, we briefly survey the studies of
complex systems, data mining, and uncertainty
quantification within the context of engineering design,
with a motivation and theoretical base in complexity
theory.

Complex systems have many parts whose interactions
cause difficulty in analysis. These interactions can stem
from dependencies based on geometry, function, or transfer
of energy and material”. Complexity can also present in
different forms during design, relating to the design
problem, the design process, or the designed artifact™.
Complexity can cause problems such as uncertainty and
unclear or nonlinear relationships between a system’s
inputs and outputs'”’. The consequence of complexity is not
just subjective difficultly perceived by designers, but
increased design effort and cost, as SINHA, et al'”! link a
quantitative measure of structural complexity (based on the
connectivity matrix of component interactions) to
real-world consequences such as increased assembly time
in experimental subjects and tentatively propose a
nonlinear dependence of system development budget on
system complexity. Another complexity quantification
theory and its derivative software, OntoSpace, can quantify
complexity by working with unfiltered data and applying a
holistic quantitative score to the health of a system or
company!''?. Designers have used several strategies to
overcome the uncertainty caused by complexity.
Uncertainty-based robust design optimization is widely
used to reduce the effects of uncertainty during design!'*'%.
CHALUPNIK, et al™!, compared different “ilities”, such as
flexibility and reliability that can make a system insensitive
to uncertainty.

Engineers already have a long history of exploiting
structured and well-organized data. Knowledge bases exist
to aid designers in quickly retrieving relevant data as their
design work progresses. Researchers introduced a failure
mode knowledge base that connects with functional
descriptions to aid in failure mode and effects analysis in
early design phases!'”. Similar research has built a
repository of successful designs focused on their function,
behavior, and structure'”); a biologically-inspired design
aid!"™; and even preliminary steps toward the automated
synthesis of functional systems based on a data set of
functions and linkage constraints!'”. The effort that goes
into building these knowledge bases is often quite extensive,
and could be considered more as an academic pursuit than a
profitable business operation.

As a next step, data mining can be used to gather
knowledge from data sets that are much easier to generate,
but also less organized. Data is information in its rawest
form. It can only be classified as information or knowledge
once it has been cognitively filtered®”. With the increasing
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power of computers, the increasing affordability of data
storage, and the increasing connectivity and ubiquity of
sensors comes the ability to generate vast amounts of data,
and there are calls to transform this data into a competitive
advantage®'). Data can be generated in-situ by products or
through simulation. Some legacy data may already exist on
company servers but is unused”?. To interpret vast data
stores automatically, many firms turn to data mining.
KUSIAK, et al® outline areas of product and
manufacturing system design for data mining applications
in design such as pattern recognition and prediction of
customer behavior. ROMANOWSKI, et al*! apply data
mining to support variant design activities. KIM, et al'**),
present a data-mining-aided optimal design method which
is able to find a competitive design solution with a
relatively computational cost. The potential
applications are so great that, for modern complex systems,
data generation and mining should be included in
considerations of a product’s total lifecycle*.

Uncertainties found in complex engineered systems can
be results of both parametric and structural uncertainties.
They can also be aleatoric or epistemic uncertainties. From
a design point of view, structural uncertainty and epistemic
uncertainty are potentially risky and can be the sources of
system failures. They should therefore be avoided or
reduced. Researchers in the area of uncertainty
quantification (UQ) have proposed various methods for
assessing and managing uncertainties including forward
uncertainty propagation®’ % sensitivity analysis®'>?,
response surface tools™>>* and dimensional reduction
tools?®*). These stochastic data analysis methods have been
very useful in assessing and modeling uncertainty based on
limited availability of data. When modeling capability is
limited and the amount of available data is large, a
data-mining based approach is more effective. Recently,
data-mining techniques have started to play an important
role in uncertainty quantification*.

As technology progresses, the expectations placed on
designers will only increase, and they will be faced with
designing systems that are more and more complex. This
complexity is manifest in uncertainty about system
performance, increased design effort, and difficulty in
manufacturing. A simultaneous increase in the capabilities
of data collection and analysis, however, is providing
resources that engineers can use to overcome complexity
and uncertainty. Through the application of data mining,
engineers can make use of abundant data to gain
knowledge about their systems, and increase their
confidence in their performance. Our research aims to
provide a data-mining based uncertainty evaluation tool for
engineers to understand the impact of their design decisions
on the uncertainty of the resulting system.

low

3 Uncertainty Evaluation

Uncertainty is an inherent property of systems. It

characterizes the amount of “noise” in the information
flow!®”. This kind of noise is usually measured by entropy.
Data mining is the computational process of discovering
patterns in large data sets involving methods at the
intersection of artificial intelligence, machine learning,
statistics, and database systems. Classical data mining
methods can typically discover such knowledge as
association rules, clustering rules, classification rules, and
regression rules. As data handling tools are developed,
and processing speeds rise, the range of knowledge that
data mining can bring to us also extends. Here we propose
a novel data mining method which will assign an
uncertainty metric to an engineered system. The process of
uncertainty evaluation is summarized in Fig. 2, with details
given in the following sections.
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Fig. 2. Process of uncertainty evaluation

What we should prepare for the analysis is only data,
which can be simulation data or operational data. The
initial data should be organized in the structure of a
bivariate table. For given n samples with m attributes, the
set of the initial data can be represented as

al] alZ alm
a a a
21 22 2m
D=[4 4, = A4]= . ,
a a

nl n2 nm

where 4; is a specific attribute of data; a;; is the concrete
value corresponding to the attribute; it must be numeric.

3.1 Extracting modes

The first step is to organize valid modes. We choose
different attributes as a benchmark in turn, and analyze
each attribute’s relationship with another attribute by
scatterplot. For 3 attributes, we can get 6 scatterplots: 4,-A4,,
Ai-As, Ar-A1, A>-A3, A3-A; and As-A,. It can be seen that for
m attributes, we can get m(m—1) scatterplots. For
scatterplot 4;-4,, 4; is taken as X-axis and A, is taken as
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Y-axis. Across every axis, the lower bound is the minimum
value of its corresponding attribute, and the upper bound is
the maximum value.

The dataset we use contains continuous variables, and
set-mining techniques have been largely designed for
categorical or discrete data, so the common method of
dealing with these is to discretize them by breaking them
into ranges”™. The concept of evaluation precision is
introduced to ameliorate several problems associated with
the fact that almost all data values are different. Evaluation
precision indicates the granularity at which we deal with
the data, and the level of precision determines how many
intervals the data will be divided into. In light of the data
size, evaluation precision is usually 5 to 9, but no more
than 10. Higher evaluation precision may bring more
accurate results, but will also lead to higher computational
complexity.

The most popular methods of discretization are
equal-width, equal-frequency, K-means and maximal
entropy. Because the data from our example is continuous
data of one specific index, and it will not have sharp
discontinuities, here the equal-width method is used. The
example of scatterplot 4;-4, is shown above the arrow in
Fig. 3. The dataset is created artificially so that the
principle of the algorithm can be described clearly. In a real
application, this could be an example of an engine’s
temperature plotted vs power output. In Fig. 3 the
evaluation precision is set to 5, which forms 5 x5 grids.

)
DL sl
N\ )
ES B
DL4 R
DL3 *3"“
4, *‘:%%ﬁ
DL2 3
u:‘( s
DL1 g
o
DLI DL2 DL3 DL4 DL5

Al
) (28Q29) ® ©

DL5( 0 1 4 5 S

DL4] 0 3 13

4> DL3| 0 6 12 2 0

DL2| 1 12 3 1 0

DL1| 6 8 1 0 0

DL1 DIL2 DL3 DI4 DLS

4

Fig. 3. Scatterplot and mode of 4,-4,

After discretization, the precise original values are not
important anymore because within every grid-point they
are considered the same. So the scatterplot of 4,-4, can be

transformed to another form which is called “mode” as
shown below the arrow in Fig. 3. The numbers in mode
represent how many points are there in the grid-point. All
extracted modes need to be analyzed and we will mine
possible association patterns in them.

Because the process of discretization will not be entirely
accurate, whether a point belongs to a certain grid-point
cannot just be judged by its absolute position. If one point
is within a 5% data level length of the boundary, it belongs
to both grid-points. For grid-point {1, 1}, the two points in
grid-point {2, 1} near the boundary within 5% will be
considered to belong to {1, 1}, so the number in {1, 1} is 6.
The numbers in parentheses above modes represent the
total number of points in the data level they belong to.
Sometimes the number does not equal to the sum of its
lower numbers because of repeat counts in different
grid-points. To facilitate the analysis, the different regions
are named from data level (DL) 1 to 5 on both axes.

3.2 Analyzing modes

Here we analyze the correlation between different
attributes. We do this by applying a small disturbance on
the mode and analyzing the possible change due to the
disturbance. The strength of this disturbance should be
sufficient to make the value vary for one level (positive or
negative). If the disturbance is not big enough to change its
value, the attribute is considered unchanged and there is no
need to discuss. What we try to mine is some rules in a
form similar to the following:

X +AX - AY(AX =+1DL), (1)

Why must we analyze the situation in which an attribute
varies only one level? Because every attribute is continuous,
and even if it changes quickly, the change is continuous.
What does the rule represent? If a disturbance occurs on
one attribute, whether from internal or external factors, its
value must change. The rule indicates the reaction of
another attribute due to this variation. Furthermore, all the
rules in a system indicate the change brought on by
disturbances, and constitute the uncertainty of a system.

The extraction of this rule is similar to the mining
process of an association rule. The most important concepts
in association rules are confidence and support. Before
mining, a grid-point should be chosen as the source. The
definitions of confidence and support used in our analysis
are as follows.

Confidence: The proportion of all points on this data
level contained in the source grid-point.

Support: After being disturbed, the proportion of all
points on that data level contained in one grid-point.

The minimum threshold is set to:

min_conf = 2/ EP, min_sup = 2/ EP,

where EP is the evaluation precision.
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The average proportion of points in one grid-point on
one data level is 1/ EP , and the threshold here is twice as
much as the average value. This threshold value, set by the
designer, determines how many rules we can get. A higher
value can avoid many useless rules. For the evaluation
precision of 5, the value is 40%. When the source
grid-point reaches min conf, it can be used to mine
possible rules. If there are fewer than 3 points on one data
level, the grid-points on this level are all discarded, to avoid
mining trivial rules. When a certain grid-point reaches
min_sup for a rule, the rule is established. So it is obvious
that not every mode will yield a rule.

In Fig. 4, the grid-point {2, 2} is chosen as the source
grid-point, and the data count in it is 12. On data level 2,
the total count of data is 28. So the confidence is
12/28=42.9%. After a positive disturbance has been applied
to attribute 4, the value of 4, will jump from data level 2
to data level 3. All the possible grid-points that the attribute
may vary to on data level 3 are {3, 1}, {3, 3}, {3, 4} and {3,
5}, and their support levels are 3.4%, 41.4%, 44.8% and
6.9%. Grid-point {3, 2} is not taken into account because
even if it reaches min_sup, it means that the change 4, will
not affect A, as they are on the same data level. As {3, 3}
and {3, 4} both reach minimum support, we have reason to
believe that after some positive disturbance, attribute A, is
likely to vary to data level 3 or data level 4. In Fig. 4, a line
with an arrow is depicted to show the trend. So the
association rules on grid-point {2, 2} we mined can be
formulated as follows:

Rulel: X +AX - 1DL(AX =+1DL),
[support=41.4%, confidence=42.9%].
Rule2: X +AX - 2DL(AX =+1DL),

[support=44.8%, confidence=42.9%].
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Fig. 4. Positive disturbance of 4,-4,

If the evaluation precision is high, there will be more
rules which satisfy min_sup that can be mined. Only two
rules which can cover the maximum area will be accepted.

It is the same with negative disturbances. We apply a
negative disturbance to attribute 4;, and it varies from data
level 2 to data level 1. On data level 1, the support of
grid-point {1, 1} is 85.7%. So the association rule mined is:

Rule 3: X +AX — —1DL(AX =—1DL),

[support=85.7%, confidence=42.9%].

The complete rule is shown in Fig. 5. The mode contains
at least one rule, so it is called a valid mode.
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Fig. 5. Complete mode of 4,-4,

3.3 Computing uncertainty of a mode

Now we have the association rule in grid-point {2, 2}
with A4; as the benchmark. Let us focus on the subarea that
involves the association rule. This area is shown in Fig. 6.
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Fig. 6. Subarea of mode

In this area, the correlation between data is more obvious.
Next, information entropy is used to characterize the
strength of this correlation. Shannon’s information entropy
is applied here to describe how much information is carried
by the association rules or how strong the correlation is.
Information entropy is a measure of the uncertainty of a
random variable. Eq. (2) gives the expression of
information entropy:

H == p(x)logp(x,),

i=1

2

Just as in data mining, to get the rational information
entropy value, these values also need be discretized. Here,
an equidistant partition is used, and the region will be

divided into L\/ZJXL\/ZJ grids, where n is the data

count in the region. For the subarea shown in Fig. 6, the
points in this area is 56, which means the region will be
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divided into 7 x 7 grids as shown in Fig. 7.
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Fig. 7. Subarea of mode

The distribution of different grid-points is shown in
Table 1, which can be used to calculate the information
entropy. In Table 1, “points” means how many points are
contained in one grid-point, “probability” means the
probability that the grid-point will appear in Fig. 7, and
“numbers” means how many grid-points of this type are in
Fig. 7.

Table 1. Probability distribution of the subarea
Parameter Typel Type2 Type3 Type4 TypeS5S Type6b
Points 1 2 3 4 6 7
Probability  0.0179  0.0357 0.0536 0.0714 0.1071  0.125

Numbers 6 3 3 4 2 1

So the information entropy of this area is

H,, =—(6x0.0179x1log0.0179 +
3%0.0357x10g 0.0357 +3x0.0536x log 0.053 6 +
4x0.0714x10g0.0714+2x0.1071x1og 0.107 1 +

1%0.125x log 0.125) = 2.751.

Here the base of the logarithm is e, and the unit of
entropy is nat. Because the entropy is generated by
choosing grid-point {2, 2} as the source, we mark it with
H,,. The smaller the entropy is, the stronger the relevance
is, meaning that the uncertainty of this mode is smaller.

For one scatterplot, every grid-point can be chosen as the
source grid-point. So what we should notice is that different
subarea containing different rules may have the same
information entropy, but they will not perform the same
role in a system. The confidence of a grid-point
corresponds to the probability that a system may go into
that state, so the confidence value we have determined is
used to balance its role. Hence the weighted uncertainty of
a mode equals:

EP  EP

U(4,.4,) =Y Y confidence(i, j) + H, . (3)

=l j=1

3.4 Computing uncertainty of a system

As previously mentioned, for one variable, at most (m—1)
modes can be mined. So the uncertainty caused by one
attribute is the sum of its uncertainty with different modes.
Every variable can be chosen as a disturbance source to
analyze possible relevance, so the uncertainty of the whole
system is

U= Z Z U(4,4)=

x=1 y=ly#x

mom EP  EP (4)
Z z (ZZconﬁdence i,))+H, ‘MA\,A‘ j’

x=1 y=ly#x i=l  j=1

where M, | indicates that the calculation is in the mode

consisting of 4, and 4,.

4 Uncertainty Normalization

The metrics proposed in section 3 give us a quantitative
description of the system uncertainty, but it is obvious that
different systems contain different association patterns, the
same system in different phases may follow different
patterns, and even the same pattern probably involves
different data sizes, which will result in different
uncertainty values with no direct comparability. How to
compare the uncertainty values under different situations
becomes the next problem that must be solved.

For different modes, the uncertainty is measured by
information entropy, so there should be a maximum and
minimum information entropy that a mode can reach. Since
the uncertainty of a system is the combination of different
modes, there will also be a maximum and minimum
uncertainty for the system. After getting the maximum,
minimum and current uncertainty of a system, a
normalization representation can be used to give a standard
value to compare uncertainties in different situations. Now
we try to analyze the maximum and minimum values.

As shown in Fig. 6, the area in a mode that involves the
association rules can be determined. For two variables, a
linear relation is the simplest pattern, and our assumption is
that this could be used to determine the minimum value of
uncertainty; the relation full of noise is the complicated
model, which could be used to determine the maximum
value. The following analysis is based on this thought. For
this area, the horizontal length is 3 levels (denoted by L,),
and the vertical length is 4 levels (denoted by L,).

Here, Monte Carlo simulation is introduced to obtain the
extrema. For the situation with minimum information
entropy, all points are distributed over the linear area with a
perfect linear correlation. In fact, it is hard to estimate the
true distribution, so we introduce a distribution with added
noise. The normal distribution is an extremely important
concept in statistics, and is often used in the natural and
social sciences for real-valued random variables whose
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distributions are not known™. So a normal distribution is
used here to simulate the mode with minimum entropy, and
the same number of points is used.

For the distribution of X, u is set to L,/2, which means
the average value is the center point of the area. o is set to
L,/4. So the probability density function is:

(&)

After getting the X simulation value, the ordinate Y can
be found by the linear relation:

L
= o x. 6)

The simulation result is shown in Fig.8.
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Fig. 8. Scatterplot with minimum possible entropy

This mode can be used to get the minimum possible
entropy. As the same number of points is used, the partition
of this area for the calculation of information entropy is
also the same as the original status, and it will not affect the
result. The result of the calculation is

HY ==Y p(x, y)logp(x,,y,) =1.935.

i=1

The mode with maximum entropy is more complex than
the minimum situation. The mode with the maximum
possible entropy should have the following characteristics:
first, the mode should contain at least one supported
association relationship; it cannot only be noise. Second,

the mode should be as chaotic as possible, which will affect
the identification of the mode.

To satisfy the first demand, the distribution of X is still
based on a linear relation, but unlike the previous situation,
the linear relation is based on the rules we mined before.
For the mode we have been analyzing, the linear
relationship is shown in Fig.9 with a blue line.

DILA

DL3
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DLI1

DLI

DL2
A,

DL3
Fig. 9. Diagram of linear relation

A uniform distribution is applied to it (the entropy of a
uniform distribution is bigger than the normal distribution).
It should be noted that the distribution of X as uniform,
does not mean that every interval between all points is
equal. The distribution is dependent on simulation results.
The probability function of X is

f(x):i,0<x<LX. (7
L

x

To satisfy the second demand, a normal distribution is
applied to generate the deviation from the linear
approximation. Here yzis set to 0, which means that the
aver e is on the linear area; o is set to
12(L7+L /(L /L), which will ensure that the
deviation degree is not too excessive. Another uniform
distribution is not suitable here because it will make the
mode totally chaotic and no more rules will be found. As
this normal distribution is perpendicular to the linear area,

the transformation of distance to coordinate is more
complicated:

x=x"+dsin| arctan—= |, (8)
L

x

L
y =y' —dcos| arctan—= |. )
L

X

For one simple linear relation, the scatter simulation with
500 points to test our hypothesis is shown in Fig.10. It can
be seen in Fig. 10 that the points are mainly distributed in
the linear area, and some noise is shown around the linear
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area, which will not affect the identification of a wvalid
mode.

4,

Fig. 10. Linear relation with maximum entropy

For the mode we have been focusing on, the simulation
result is shown in Fig. 11.
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A,

DL3

Fig. 11.  Scatterplot with maximum possible entropy

As the number of points is small, the mode is not as clear
as the relation shown in Fig. 10. The maximum possible
information entropy via our simulation is

H) = —Z p(x,, y)logp(x,, y,) =3.108.

i=1

For the question we are concerned with, we use H™,
H™" and H, and can get a normalized value:

H _ Hmin

H= —.
Hmax _Hmm

(10)

For this mode, the normalized value is

A, , = 0.664.

For the evaluation of a system, the normalized
uncertainty is based on the total maximum and minimum
uncertainty:

U™ = Z i (iiconﬁdence @) H M,, j,(ll)
x=1 y=l,yzx \_i=l j=1
) m m EP  EP )
u™ = z Z (ZZconﬁdence @) H M, , j (12)
x=1 p=lyzx \ =l j=I1

So the normalized uncertainty of a system is

U _ Umin

U= —
Umax _ Umm

(13)

5 Case Studies

In this section, two case studies are discussed. The case
of an inverted pendulum system is introduced to verify the
effectiveness of the proposed approach, and a case of oil
sump design is used to show its value in practice. The
proposed approach is coded in C++ and runs on a Core i7
3.40 GHz PC.

5.1 Aninverted pendulum

An inverted pendulum system consists of a pendulum, a
lightweight bar, a base and a spring. The base will execute
simple harmonic motion. The system is shown in Fig. 12.
The inverted pendulum is a classic example of an
inherently unstable system'*”, and its nature, “sensitive
dependence on initial conditions,” causes it to exhibit great
uncertainty when running, and makes it suitable to verify
our theory.

Fig. 12. An inverted pendulum system

The Duffing Equation derived from this system is

d’x dx R
~+0——x+x = f cosar,
dt dt

(14)

where ¢ is a dimensionless damping coefficient, @ is
dimensionless angular frequency and f'is the dimensionless
amplitude of the driving force. Different initial conditions
with slight dissimilarity are specified to observe their
results. 3 different initial conditions are
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0.1 0.1 1 1 0.78
dx
|:x,—,f,a),5:|: 0.1 0.14+0.001 1 1 0.78].
dr
0.1 0.1-0.001 1 1 0.78

Next the system is simulated in Matlab. The data
recorded by Matlab are shown in Table 2, and the plot is
shown in Fig. 13. The time and pendulum angle in both
Table 2 and Fig 13 are dimensionless.

Table 2. Simulation data of inverted pendulum system
Time ¢ Angle 1 6, Angle 26, Angle 3 6,
0 0.1 0.1 0.1
0.01 0.101 051 0.101 041 0.101 061
0.02 0.102 203 0.102 183 0.102 223
0.03 0.103 456 0.103 427 0.103 486
0.04 0.104 809 0.104 77 0.104 849
0.05 0.106 262 0.106 213 0.106 311
0.06 0.107 813 0.107 754 0.107 872
99.96 0.285913 —1.211 11 0.299 434
99.97 0.289 848 —1.207 19 0.303 422
99.98 0.293 864 —1.203 16 0.307 491
99.99 0.297 96 —1.199 03 0.311 641
100 0.302 137 —1.19479 0.315 872
Pendulum anglel Pendulum angle2
5 Pendulum angle3
1.5
1
<05
5 0
205
-1
-1.5
0 10 20 30 40 50 60 70 80 90 100
Time ¢
Fig. 13. Pendulum angle curve of inverted pendulum system

It can be seen from Fig. 13 and Table 2, at the initial time,
the pendulum angles of all 3 motions are nearly identical.
After 50, differences begin to appear. As time goes on, the
differences become increasingly obvious. This extreme
sensitivity to initial conditions for deterministic equations
is usually considered chaos*'). We treat the system as two
separate systems according to the time period, and divide it
into two parts: the first 50 and the last 50.

Thus we are in essence measuring the output of two
separate systems. Because only one attribute can be
measured in the system, 3 angle data under different initial
conditions are regarded as three different attributes, and their
correlation is analyzed by the proposed method. For this
system of about 5000 data points each, the evaluation
precision is set to 7. All the evaluation results are as follows.

Uncertainty of first 50:

U™ =248.882, U™ =216.326,
U™ =393.024, U =18.42%.

Uncertainty of last 50:

U™ =183.634, Ui =117.409,
U™ =207.591, U = 73.43%.

From the evaluation results, it is obvious that the
uncertainty value of the last 50 is bigger than the
uncertainty of the first 50, which indicates the uncertainty
brought on by a transition into chaos. By linking rising
uncertainty, measured by our quantitative metric, to a
known example of a system transitioning into chaos, this
case study verifies the validity of the uncertainty metrics
successfully.

5.2 An oil sump design

In order to evaluate its actual role in practice, an oil
sump design is taken as an empirical case. As an important
part of diesel engines, an oil sump is used to store lubricant
and seal the engine, and also helps in heat dissipation.

The model of the oil sump is created in HyperMesh. Two
plans are put forward and modeled separately. Most of the
dimensions are the same for both plans, and the parameters
that vary between plans are shown in Table 3. These
parameters are explained by the labels in Fig. 14 and Fig. 15.

Table3. Parameters in two designs
Parameter Plan 1 (mm) Plan 2 (mm)
Back_Reinforcing 6.0 5.0
Bottom R 54 4.0
Front_Reinforcingl 5.0 5.0
Front_Reinforcing2 6.0 5.0
Left Reinforcingl 2.0 5.0
Left_Reinforcing2 2.0 5.0
Left Reinforcing3 2.0 5.0
Left Reinforcing4 2.0 5.0
Right Reinforcingl 2.0 5.0
Right Reinforcing2 2.0 5.0
Right Reinforcing3 2.0 5.0
Side_Wall_R 4.1 4.0
Upper R 12.0 8.0

Upper R

SideWall R

Bottom R

Fig. 14. Top-view parameters of oil sump
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Lefi Reinforcing 1 Front Reingforcing |

Front

Left_Reinforcing 2 Reingforcing 2

Left Reinforcing 3

Left
_Reinforcing_ 4

Right
Reingforeing 1

Right Reingforcing 2

Right_Reingforcing_3

Back_Reingforcing

Fig. 15. Bottom-view parameters of oil sump

For the oil sump design, there are many important
performance metrics such as rigidity, strength and modal
shape. Here its dynamic characteristics are considered by
analyzing resonance in a frequency domain. At a resonance
point, intense vibration responses will occur. The vibration
response can be reduced by changing the structure to avoid
a resonance point, or by improving rigidity. Next the two
plans are analyzed in Nastran. Nastran will output the
acceleration of different viewpoints on the oil sump as a
response to an oscillating disturbance. The movement of
the viewpoints will represent the overall vibration
performance, and the designer can analyze the performance
according to the data. The attributes are as follows:

Y acceleration of viewpoint #1 on bottom;

Y acceleration of viewpoint #2 on bottom;

Y acceleration of viewpoint #3 on bottom;

Y acceleration of viewpoint #4 on bottom;

Y acceleration of viewpoint #5 on bottom,;
X acceleration of viewpoint #1 on back wall;
X acceleration of viewpoint #2 on back wall;
X acceleration of viewpoint on front wall;

Z acceleration of viewpoint on right wall;

Z acceleration of viewpoint on left wall.

To get enough data to analyze the two plans completely,
every parameter in Table 3 fluctuates independently within
10% to get the simulation results. Some of the data
generated by plan 1 are shown in Table 4.

Table 4. Simulation data of plan 1

Y acc. on bottom Zacc.onright  Zacc. on left wall

Run Al/(mes™) wall 49/(m*s™?)  A10/(mes™)
1 6.2969 1493117 49.644 51
2 6.563 6 3127.138 864.195 6
3 62 257.988 62.283 02
4 6.478 7 1086.718 609.315 4
5 6.090 9 58.485 92 114.114 1

100 6.442 4 146.263 7 251.5922

The two plans both can meet the high-level design

requirements well, and therefore as an auxiliary index, our
uncertainty metric is introduced to evaluate them.

For this system of 100 data samples each, the evaluation
precision is set to 5. For plan 1, analyzed by the proposed
algorithm, 46 modes are extracted. In all the extracted
modes, there are 9 modes that take the X acceleration of
point #1 on the back wall as a source, and 11 modes that
take the X acceleration of point #2 on the back wall as a
source. Because the two attributes create the most
associations with others, they are the most important
attributes in the plan. After synthesizing all modes, we can
get the following results.

Uncertainty of plan 1:

U™ =37.7918, U™ =29.79838,
U™ =49.4398, U = 40.72%.

For plan 2, 63 modes are extracted. The most important
attributes in plan 2 are the Y acceleration of point #3 on the
bottom, which holds 10 modes, and the X acceleration of
the viewpoint on the front wall, which holds 8 modes. The
results are as follows.

Uncertainty of plan 2:

U™ =374165, U™ =262639,
U™ =44.059 2, U = 62.67%.

From the evaluation results, it is obvious that the
uncertainty value of plan 2 is larger than that of plan 1,
which means the oil sump designed according to plan 1 will
show higher stability. This also shows that the behavior
patterns of plan 2 are more chaotic than plan 1. While both
plans can meet the design requirements, for long operation,
the oil sump designed by plan 2 may cause more problems
such as fatigue or performance degradation.

In practical engineering, for two or more plans to be
compared, the plan with the lowest uncertainty value tends
to be more reliable. Uncertainty is an essential factor that a
designer must account for when deciding among competing
design options, given that all variants meet the original
project requirements. During the design process of a system,
if the modification of one factor makes the uncertainty
index higher, it means the reliability of the system will be
lowered, and the designers should be alert to this tradeoff
and adjust the system accordingly.

6 Conclusions

(1) The uncertainty metrics proposed in this paper
provide a new perspective to analyze and understand a
system, and give us a quantitative index to describe the
nature of its uncertainty, which is especially useful for
developing complex engineered systems.

(2) The analysis process of the proposed method is
completely based on data, which decreases the requirement
of detailed internal knowledge of a system. By means of
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mining association relations along different system
attributes, and quantifying the relations using information
entropy, a quantitative uncertainty index can be obtained.

(3) Monte Carlo method is introduced to simulate the
possible uncertainty extrema under different situations, and
a normalized uncertainty quantitative index is presented
accordingly which enhances the usability of the proposed
method.

(4) The two case studies have demonstrated the
effectiveness and practicality of the method. When faced
with complex systems, design engineers can use this
method to assess the uncertainty impact of their design
decisions and increase their odds of fulfilling the system’s
functional requirements.

(5) Several steps can be taken to improve upon the basis
established here. In this paper, the data distribution for the
uncertainty extrema was based on hypothesis, but we plan
to develop a more objective distribution to provide a
precise estimation. We also plan to apply the metrics and
approach to more practical case studies beyond the oil
sump, and attempt to quantitatively determine a correlation
between a system’s uncertainty and real-world design
metrics such as design time, design cost, and product
reliability.
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