
Evolutionary computational synthesis
of self-organizing systems

JAMES HUMANN, NEWSHA KHANI, AND YAN JIN
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA

(RECEIVED April 9, 2013; ACCEPTED February 20, 2014)

Abstract

A computational approach for the design of self-organizing systems is proposed that employs a genetic algorithm to effi-
ciently explore the vast space of possible configurations of a given system description. To generate the description of the
system, a two-field based model is proposed in which agents are assigned parameterized responses to two “fields,” a task
field encompassing environmental features and task objects, and a social field arising from agent interactions. The aggregate
effect of these two fields, sensed by agents individually, governs the behavior of each agent, while the system-level behavior
emerges from the actions of and interactions among the agents. Task requirements together with performance preferences
are used to compose system fitness functions for evolving functional and efficient self-organizing mechanisms. Case studies
on the evolutionary synthesis of self-organizing systems are presented and discussed. These case studies focus on achieving
system-level behavior with minimal explicit coordination among agents. Agents were able to collectively display flocking,
exploration, and foraging through self-organization. The proposed two-field model was able to capture important features of
self-organizing systems, and the genetic algorithm was able to generate self-organizing mechanisms by which agents could
form task-based structures to fulfill functional requirements.
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1. INTRODUCTION

Engineered systems are becoming increasingly complex be-
cause of the rising expectations of customers, the increasing
specialization of engineering knowledge, and a push toward
deployment in hostile environments. In this paper, we focus
on the desire for adaptive systems, which display features
such as robustness, flexibility, and resilience. These types
of adaptive capabilities are necessary in systems that are faced
with changing task requirements or unknown environments.
For example, a system designed for lunar exploration can
be very different from a robot designed to repeatedly assem-
ble body panels of an automobile. The latter is assumed to ex-
ist under supervision in a well-regulated factory, and its inputs
can be prescribed, but the former may need to act autono-
mously when communication with its home base is not feasi-
ble, and it must be able to overcome many unpredictable ob-
stacles.

By Ashby’s (1958) law of requisite variety, adaptability
can only be found in systems that have many possible states.

Thus, adaptability is born of complexity, but traditional tech-
niques for engineering synthesis are not well suited for the de-
sign of complex systems. Self-organization has been sug-
gested as a strategy for the design of complex systems, and
in this paper we propose an approach to the synthesis of cel-
lular self-organizing (CSO) systems that relies on field-based
behavior regulation (FBR), multiagent simulation, and a ge-
netic algorithm (GA) to deal with the combinatorial problem
of synthesizing agent parameters.

Self-organization is the spontaneous emergence of global
structure and order arising from lower-level components
with no global control. A self-organizing system is a distrib-
uted system composed of agents with no global knowledge.
Typically, these agents interact with only their closest neigh-
bors and immediate environment. The interactions among
agents lead to the emergence of some distinct pattern or be-
havior at the system level. Self-organization is evident in
many types of systems. Physical, biological, and social sys-
tems have been shown to be complex and self-organized.
Compared to traditionally engineered systems, self-organiz-
ing systems are far more common, but they are not as well un-
derstood (Doursat, 2011). Self-organization has been studied
extensively as a naturally occurring phenomenon, but less
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effort has been focused on researching self-organization as an
intentional design mechanism. Self-organization can be used
as an approach to developing systems that must perform in
dynamic environments or fulfill changing requirements, for
example, biomedical applications, extraterrestrial environ-
ments (Payton et al., 2001), and military and search and res-
cue situations. As the mechanical slowly merges with the nat-
ural (Kelly, 1994; Bentley, 2001), the ability to purchase a
swarm of small, cheap, insectlike robots with some of the
capabilities envisioned by many self-organization researchers
(Rubenstein et al., 2012) is becoming more likely, and there is
a greater need for understanding how to develop proper be-
havioral rules for them.

In our previous work, CSO systems have been proposed as
a way to embed self-organization into engineered systems to
solve tasks adaptively (Zouein et al., 2010; Chen & Jin,
2011). The aim was to design systems that show adaptability:
flexibility in the face of changing design requirements, ro-
bustness when encountering unfamiliar environments, and re-
silience to the failure or malfunction of a portion of the sys-
tem. The agents of a CSO system are simple robots called
mechanical cells (mCells). Various systems have been de-
scribed as “cellular” in the literature. The cells can be station-
ary, as in cellular automata, or mobile, as in Beni (1988) and
Bai and Bree (2012). The metaphor is used to convey the idea
that these agents are simple and mostly interchangeable, with
their real value arising from their interactions and self-orga-
nized ability to work together. The mCells in our research
are mobile and able to sense each other and their environment
within a local radius of detection. They have the ability to
make decisions with simple calculations. The mCells do
not have a unique identification and do not send messages
to individuals, but communicate (if they communicate at
all) via one-to-many signaling.

Each mCell has a set of instructions governing its response
to environmental stimuli. Zouein et al. (2010) demonstrated a
self-organized shape reconfiguration using the CSO assump-
tions and a “design DNA” (dDNA). A dDNA is composed of
common information shared by mCells and a set of behav-
ioral instructions for the cells to follow. Inspired by gene reg-
ulation and dynamical systems, Chen and Jin (2011) intro-
duced an FBR strategy for the control of such systems.
Rather than explicitly interact with one another, mCells cal-
culate a field of local environmental influences. The behavior
of the mCell will then depend on which areas of the field at-
tract it, based on the location’s field value. The generality of
dDNA and FBR can be exploited to create a diverse range of
systems (Chiang, 2012). The current CSO framework, how-
ever, relies on a set of ad hoc methods to develop self-orga-
nizing mechanisms. To further advance the research, there
is a strong need for a systematic and computational approach
for CSO system synthesis.

GAs are nature-inspired stochastic optimization algorithms
(Goldberg, 1989; Holland, 1992) that operate on a population
of solution candidates. Candidates are described by a ge-
nome, which is usually a binary string. GAs use the operators

of selection, crossover, and mutation to “evolve” the popula-
tion through many generations until it produces suitable can-
didate genomes. GAs can efficiently search large optimiza-
tion spaces, and their population-based approach can keep
them from getting trapped in local optima. Because the
CSO systems are composed of mCells characterized by
dDNA, the GA provides a natural way to evolve and synthe-
size CSO systems. In this paper we present our evolutionary
computational approach to the synthesis of CSO systems.

In the rest of the paper, we first review the related work in
Section 2 and then introduce a two-field (i.e., task field and
social field) model of CSO systems in Section 3. Based on
this model, in Section 4, a GA-based evolutionary computing
approach is developed to support the synthesis of CSO sys-
tems. Three simulation-based case studies are presented and
discussed extensively in Section 5. Section 6 draws conclu-
sions and points to future research directions.

2. RELATED WORK

The computational design synthesis process described in this
paper draws inspiration from other studies on artificial self-
organizing systems, automated design, and the evolutionary
optimization of complex systems.

2.1. Artificial self-organizing systems

Artificial self-organizing systems are systems built by man
that display self-organizing behavior similar to natural sys-
tems. Artificial self-organizing systems can be built for re-
search, practical purposes, or simply enjoyment. Various sys-
tems such as robot swarms can be described as self-
organizing systems, and some examples are reviewed below.

Werfel (2012) demonstrated a promising application for
CSO systems: collective construction. Drawing inspiration
from social insects such as termites, which can build mounds
up to 8 m tall (Korb 2011), Werfel developed a system of
swarm robots that can build a prespecified two-dimensional
shape out of square bricks. Localization and gripping are
the main barriers to this type of construction, but Werfel intro-
duced simple remedies for both problems. Claytronics (Gold-
stein & Mowry, 2004) is an attempt to create millions of tiny
interacting robots with no moving parts that can use one an-
other as anchor points for locomotion and ultimately become
a new, three-dimensional medium for communication. Beck-
ers et al. (1994) describe a robotic gathering system, where ro-
bots move around an arena collecting pucks. Robots are more
likely to drop pucks in an area of high puck density. This
causes a positive feedback loop that results in a single group
of all available pucks.

In all of these cases, the agents fulfilling the task had very
little knowledge of the global-level functional requirement.
Communication with near neighbors was required in Claytron-
ics, but only indirect communication via the state of the task
completion was used in the gathering and collective construc-
tion tasks. The agents used were very simple, but with the
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proper selection of local interaction rules, useful emergent be-
havior was demonstrated.

2.2. Evolutionary optimization of complex systems

Computer optimization of complex problems is an active area
of research in mathematics, computer science, and artificial
intelligence. Optimization of such systems is difficult, be-
cause the link between the input parameters and the global
measured behavior is often unclear and nonlinear. In addi-
tion, the behavior of interest may be transient, emergent, or
otherwise hard to measure (Calvez & Hutzler, 2006). None-
theless, there are many successful demonstrations of evolu-
tionary optimization of complex systems in the literature.

Ueyama et al. (1992) used a GA to optimize a path-plan-
ning algorithm in a simulation of their distributed CEBOT ro-
botic swarm. Stonedahl and Wilensky (2010) used a GA to
develop flocking rules that would exhibit emergent behavior
such as cohesive flocking, V-formation, and volatility. GA
has been used to tune the update rules of cellular automata
in order to complete the “majority classification” task (Mitch-
ell et al., 1994; Crutchfield et al., 1996). The GA evolved in-
telligent update rules that allowed cellular automata cells to
distribute information about local densities to other remote
cells. GA’s close relative genetic programming was used in
(Van Berkel et al., 2012) to combine functional primitives
to recreate natural collective phenomena such as firefly syn-
chronization and ant foraging.

These examples show that, given a proper fitness function,
evolutionary approaches are a viable strategy for the optimi-
zation of complex and self-organizing systems. By applica-
tion of GAs, genetic programming, or other approaches, re-
searchers have been able to efficiently explore vast search
spaces and optimize systems that display complex behavior
and require the simultaneous tuning of many input variables.

2.3. Evolutionary and computational design

Automated approaches to traditional design can be aided by
processes that build up system functions from component
primitive functions. Given a set of primitives, and a grammar
for combining them, some of the design work can be done by
computers (Sridharan & Campbell, 2005), and GAs have
been used to automatically develop function–structure dia-
grams for routine designs (Jin & Li, 2007). These approaches
have found success in the computational synthesis of simple
designs. The complex interactions among the agents of self-
organizing systems make a function–structure approach to
their design very difficult to implement.

Our evolutionary optimization of CSO systems is most
similar to the concept of evolutionary embryogeny, which
has been used to evolve growth rules for vertical structures
that must support a horizontal load (Yogev et al., 2008). In
our approach, and in the embryogeny approach, the descrip-
tion of the system goes through a mapping process before
the structure of the system is determined. This mapping pro-

cess is the self-organized task completion in our CSO systems
and the growth process in artificial embryogeny. This indirect
mapping allows more complex structures to arise from sim-
pler descriptions, which can shorten the description required
and shrink the space of the search for a proper description
(Bentley, 1999). Unlike artificial embryogeny, we do not al-
low the cells of our system to grow and divide. Another subtle
but important difference is that in artificial embryogeny, the
self-organizing rules are executed at design time, specifying
the final geometric structure of the system, whereas in our
CSO systems, the rules themselves are the product of the de-
sign, and the system is allowed to self-assemble at run time.

In our research, we apply GA to evolve the self-organiza-
tion mechanisms. The challenge is to develop a generic self-
organization parametric model that is general enough to
characterize the rich self-organizing behavior of agents, and
constrained so that it will work within the GA framework
for computational synthesis. We introduce a two-field based
model below.

3. A TWO-FIELD MODEL OF
SELF-ORGANIZATION IN CSO SYSTEMS

A field in general is a mathematical abstraction of influence
acting in space. Physical fields such as gravitational, electric,
or magnetic fields are ubiquitous, and biology also considers
the influence of fields of chemicals. Variations in the concen-
trations of certain chemicals called morphogens create a field
that governs the development of living organisms (Haken,
1978), and mobile cells can follow chemical gradients in
search of agreeable environments in a process called chemo-
taxis. Drawing on the natural idea of fields, we introduce two
fields to govern self-organizing behavior.

3.1. Task field

The task field of a CSO system represents the agents’ percep-
tion of fixtures of the environment and objects involved in the
system’s tasks. Here we include terrain, laws of nature, re-
sponses to obstacles, and attraction of the system’s goal
(when applicable) as elements giving rise to the task field.
In the multiagent box-pushing example (Chen & Jin,
2011), the mCells do not communicate in any substantial
way, but act entirely based on the task field caused by attract-
ing and repelling forces in the environment. For an agent
i, and m objects to be approached and n objects to be
avoided in the field, the task field seen by the agent i can
be expressed as

tFieldi ¼ FLDT u1, u2, : : : , um, b1, b2, : : : , bnð Þ, (1)

where FLDT is a task field generation operator.
In some self-organizing systems, the agents interact with

the object of the tasks in such a way that updating its state
gives agents information on how to further update its state to-
ward the final goal; this is called stigmergy and is a way of
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using a changing task field to generate emergent behavior.
Stigmergy, or work-creating-work, can be thought of as a dy-
namic task field. Stigmergy in collective robotics can be used
for gathering tasks (Beckers et al., 1994; Song et al., 2012)
and has been shown to be the mechanism by which termites
organize to build their mounds (Korb, 2011). “Extended stig-
mergy” (Werfel & Nagpal, 2006) is a more extreme example,
where blocks in a building task are encoded with radiofre-
quency identification chips or other mechanisms for convey-
ing more precise messages from agent to agent. In each case
of stigmergic self-organization, the interactions among agents
were indirect and unsynchronized, meaning that there was a
possible delay between the time a message was sent and the
time it was received. Because the medium of signaling was
also the task object of interest, we can classify this self-or-
ganizing behavior as a response to a changing task field.

3.2. Social field

In addition to task situations, an agent’s behavior can be af-
fected by other agents. The social field arises from agents’ in-
fluence on one another and forms another layer of informa-
tion for the system to use. Explicitly distinguishing between
task field and social field allows us to design needed social
structures for agents to complete their tasks in variable task
environments. To cope with a given task field, an agent can
explore and develop its social relations (i.e., agent–agent re-
lations), which should resolve possible conflicts and foster
cooperative interactions.

Researchers have used various communication strategies
among agents to explore social fields. In some systems (Rey-
nolds, 1987; Cucker & Smale, 2007; Chiang & Jin, 2011),
agents sense one another’s presence and react directly while
traveling mostly through empty space. Thus they have little
concern with a task field, and the social field dominates. Sig-
nals can also be used to build a social field. Communication
strategies such as “pherobots” (Payton et al., 2001) or hor-
mone-inspired robotics (Shen et al., 2002) can be described
as different ways of creating a social field. An extreme exam-
ple of a social field is given in Bai and Bree (2012). These au-
thors use genetic programming to evolve mathematical for-
mulas for field generation. Each agent in their simulation
propagates a field in its local vicinity according to a compli-
cated mathematical function, and senses the fields generated
by others. Agents then follow the gradients of the field to
form shapes.

In our research, an agent constructs its social field based on
its relations with observable neighboring agents. For agent i
with n observable neighboring agents, we have

sFieldi ¼ FLDs wi1, wi2, : : : , winð Þ, (2)

where FLDs is a social field generation operator and wi1, wi2,
. . . , win are agent i’s relations with other agents. If the social
relations can be captured simply by attraction, repulsion, and

state information, then we have

wij ¼
aj

rj

sj

8<
:

9=
;, (3)

where a, r, and s represent a neighbor’s attraction, repulsion,
and state, respectively.

In self-organizing systems, communication among agents is
often not one-to-one. Rather, agents create a field of influence
in their vicinity. The omission of one-to-one messaging makes
it possible to have a truly distributed and decentralized system,
where an individual agent does not even have a unique identi-
fication. This adds resilience to the system, because the failure
of one agent does not immediately imply failure of the system;
another identical agent can always take its place.

With limited sensory capabilities, no complete and static
field function can be generated for self-organizing systems,
because agents’ perception of field values changes with their
position (e.g., if a repelling object moves into or out of an
agent’s sensory range). This makes mathematical proofs of
stability difficult, so simulation is used to give statistical con-
fidence in system performance.

3.3. Cellular (agent) behavior

In a CSO system, the behavior of an individual mCell is de-
fined by a mapping process:

b ¼ SE, AEf g ! AN , (4)

where SE and AE are the mCell’s current sensory information
and actions, respectively, and AN is the mCell’s next chosen
action. The overall behavior of the system (BoS) is then

BoS ¼ B1, B2, : : : , Bnf g, (5)

where Bi represents the set of all possible behaviors fb1, b2, . . .g
of mCell i. A designer must develop a correct behavioral map-
ping such that the BoS fulfills the system’s functional require-
ments. An FBR has been proposed (Jin & Chen, 2012) for the
single task field models. In this research, we consider two
fields, task field and social field. Figure 1 illustrates our
field-based cellular behavior regulation in the two-field based
model context. Equation (6) is a two-field based FBR for
given function requirements (FR), environment (Env), and
agents (a1, . . . , an):

btþ1 ¼ FBRBS(FBRFT(FLDT(SNST(FRt, Envt))

� FLDS(SNSS(a1t , a2t , : : : , ant), state))), (6)

where SNST=S is the task/social field sensing operator;
FLDT=S is the task/social field generation operator; FBRFT

is the task to behavior field transformation regulator; FBRBS

is the behavior selection regulator; tField is FLDT(task
information), which is FLDT(SNST(FRt, Envt)): task field;
sField is FLDS(social information), which is FLDS(SNSS(a1t,
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a2t, . . . , ant), state): social field; bProfile is FBRFT(tField,
sField): behavior profile; and btþ1 is FBRBS(bProfile): se-
lected behavior for the action of the next step.

Every mCell makes this decision and acts in parallel in dis-
crete time steps. The behavior output process is a function of
the state of an mCell and its neighbors, the social field
(sField), the task field (tField), and the set of behavioral
primitives, where state can consist of internal state variables
known to a particular agent (e.g., memory, sensor values,
and contents) and external variables known to all agents
(e.g., location, speed, and color).

SNST and SNSS are sensing operators that identify an
mCell’s task environment and social environment, respec-
tively. The task field formation operator FLDT abstracts
task and environmental stimuli to create a mathematical
task field. At the same time, the mCell can also identify its
neighboring agents and form a social field through its social
field operator FLDS. Based on the information defined by the
two interacting fields, the mCell creates a behavioral profile
through the operator FBRFT. The resulting behavioral profile
is composed of a set of (behavior, preference) pairs. The final
step is behavior selection based on operator FBRBS.

The sField contains all social relationships affecting an
agent. The sField must contain both a topology and a policy.
The topology determines the allowable agent relationships
(i.e., which relationships have any meaningful effect). The
policy determines the strength of interactions between the
agents who fulfill one of the allowable relationships. In a gen-

eral heterogeneous system with M number of agent types, the
topology can be described as a matrix of relationships:

R ¼
r11 � � � r1M

..

. . .
. ..

.

rM1 � � � rMM

2
64

3
75, (7)

rk
ij ¼ trigger, p SEk , ck

� �� �
, (8)

where rij is the policy of an agent of type i toward an agent of
type j. The trigger is a condition that causes the relationship to
take effect. Here, p is a reaction to the external state of neigh-
boring mCell k and its communication, if any. In general, we
want these relationships to be anonymous and not determined
for any specific mCells, just for mCell types, so rij should be
the same for every agent k of type j. The matrix is not neces-
sarily full or symmetric.

The tField contains important objects, locations, and con-
straints in the system’s task and environment:

tField ¼ {TO, TL, EO, EL}

TO ¼ {to1, to2, : : : , top}

TL ¼ {tl1, tl2, : : : , tlq}

EO ¼ {eo1, eo2, : : : , eor}

EL ¼ {el1, el2, : : : , els},

Fig. 1. The two-field based model context field-based behavior regulation .
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where TO, TL, EO, and EL are task objects, task locations,
environmental objects, and environmental locations, respec-
tively. The address of a goal is an example of a tli, and a
set of obstacles is an example of the list of environmental ob-
jects.

Generally speaking, social field manipulation is associated
with a self-organized structure of the system. The fulfillment
of the task requirements often depends on the structure of the
system. Organization theory claims that organizations form
structures that are dependent on their task and environment
(Thompson, 1967). This suggests that better system function-
ality can be achieved through the self-organized emergence
of complementary social structure and behavior, and we pro-
pose the use of a social field and task field to generate this.

4. EVOLUTIONARY SYNTHESIS OF CSO
SYSTEMS

Because self-organizing systems are usually complex, con-
vergence proofs and analysis of them by the application of
continuous formulas is nearly impossible, so multiagent sim-
ulations are a popular approach to study the behavior of
these systems. In addition to applying simulations in a trial-
and-error fashion for analyzing system behavior, combining
simulations with powerful computational optimization tech-
niques can help generate design directions for complex sys-
tems development.

We propose an evolutionary approach to the synthesis of
CSO systems to ameliorate the design difficulties inherent
in their complexity. Figure 2 illustrates the iterative nature
of this approach. The approach corresponds to the traditional
view of design in the following ways: function is recast as task
in our model, and form becomes a description, or model, of
the self-organizing system. Because we do not have analytical
tools as powerful as traditional engineering analysis, we do
not have a directly analogous component in our model for be-
havior. Instead, we use multiagent simulations to generate the
system and simulate its behavior, and a fitness function to
evaluate its performance. A GA is employed to iteratively
synthesize the description of the system. Figure 2 illustrates

an example of how our FBR model can be mapped into a
GA environment for evolutionary synthesis.

For the purposes of this research, we are concerned with
the three stages in the right half of Figure 2: namely, the de-
scription of the self-organizing system, evaluation of the sys-
tem’s ability to fulfill its task requirements, and the GA that
evolves the former according to the latter. We treat the hard-
ware of the agents in the self-organizing system as given. We
assume that the task can be simulated using multiagent simu-
lations with enough fidelity to draw conclusions about its
emergent behavior. The design effort is then focused on the
description, or the model, of the self-organizing system and
the GA (together with the evaluation) used to evolve that de-
scription.

To achieve desired system behavior, we focus on designing
the interactions among agents and reactions to objects in the
mCells’ task. Narrowing the design focus to interaction rules
may still not simplify the design process enough, because the
number of interactions among agents can grow nonlinearly
with the types and numbers of agents in the system. To
deal with the large number of interactions, we apply GA be-
cause GAs can efficiently search a large space and have
shown encouraging results in similar applications (Ueyama
et al., 1992; Trianni, 2008; Stonedahl & Wilensky, 2010;
Humann & Jin, 2013). The description of the system should
then be parameterized as much as possible to mesh with the
GA. If the mCells are designed to respond to their governing
fields according to parameterized weights of desired behav-
iors, as shown in Figure 3, then these parameters become
the design variables that the GA acts on, and our approach al-
lows a fast synthesize-simulate loop with an optimization
algorithm to be used instead of the traditional synthesize-
analyze loop.

5. CASE STUDIES IN COMPUTATIONAL CSO
SYNTHESIS

To evaluate our evolutionary approach to the design of CSO
systems, we carried out three case studies. The case studies
correspond to three different system FRs: flocking, explora-
tion, and foraging. Flocking is the ability for initially dis-
persed mCells to come together and move as a group. Ex-
ploration entails uncovering a certain percentage of the
available field in a specified amount of time by sending at
least one mCell to each distinct area. Foraging requires find-
ing a food source located far from the home base and return-
ing food from the source back to home. Flocking and explora-
tion use identical sField relationships, and nearly disregard
the tField; the mCells move through a space with no distinct
tField objects, but the size and shape of the arena do have
some effect. Foraging uses more complicated sField relation-
ships and a stronger tField. The foraging agents not only react
to one another’s position and location but also are allowed to
sense and broadcast state information. The tField in foraging
consists of a food source and a home beacon. These features
can attract or repel mCells according to their state.Fig. 2. The model of the cellular self-organizing design process.
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To link the dDNA and the evaluation of the system’s task
completion, we use NetLogo software to model task comple-
tion and a separate program to control NetLogo and perform
the GA operations. NetLogo (Wilensky, 1998a) is an agent-
based modeling program. The NetLogo world consists of tur-
tles (agents) moving over patches in the environment. The
agents can be programmed with particular behaviors, and
when many are placed into a single simulation, their emergent
global behavior can be studied. NetLogo has a controlling ap-
plication programming interface through which the agent
simulation environment is linked to our GA Java program.

The GA program initially seeds a random population of
genomes, which are a numeric encoding of the dDNA design
parameters. Then, for each genome, it initializes a NetLogo
simulation and sets the variables according to the dDNA. These
variables represent the relative weights from the parametric
behavioral model that agents use when calculating their local
field values. NetLogo then runs the simulation for a specified
number of time steps and reports the results to the GA. Fi-
nally, the GA interprets the global results according to a fit-
ness function and applies the GA operators of selection,
crossover, and mutation in order to create the next generation
of genomes. This process is repeated until the final generation
is reached.

5.1. COARM behavioral model

An in-depth description of flocking capabilities in a CSO sys-
tem is given in (Chiang, 2012), where various relative weights
given to flocking behaviors at the local level result in standard
flocking, spreading, obstacle avoidance, or searching activity
at the system level. This paper’s flocking simulation was
inspired by the work of Reynolds (1987) and Wilensky
(1998b). The flocking mCells represent small robots moving
on a two-dimensional surface in a torroidal (wrapped) world.
Each mCell has a limited sensory range and very little mem-
ory. At each time step, an mCell will sense the positions and
heading of all the other mCells within its radius of vision and
react according to a set of predefined rules. These rules take
the form of five competing desired step vectors. The five
mCell behaviors are defined as

1. cohesion: step toward the center of mass of neighboring
agents

2. avoidance: step away from agents that are too close
3. alignment: step in the direction that neighboring agents

are headed
4. randomness: step in a random direction
5. momentum: step in the same direction as the last time

step

The acronym COARM is used to refer to these behaviors
(Chiang & Jin, 2011). An agent calculates the cohesion,
avoidance, and alignment directions according to its locally
sensed sField. Because this is a homogeneous system, the
sField description includes only one type of relationship
r11, whose trigger is proximity (within three mCell diame-
ters). Essentially, the mCell is responding to attraction (C)
and nonlinear repulsion (O), and tries to match velocity (A)
for each other cell in its neighborhood. The relevant state vari-
ables are the output of a random number generator for the ran-
domness behavior, and an mCell’s last step, which creates the
momentum behavior. There are no tField objects:

btþ1 ¼ FBRBS FBRFT FLDS SNSS a11ð Þð Þð Þ, Stateð Þ: (9)

Figure 4 displays the spatial coordinates that an mCell’s
SNS operators obtain. The field transformation operator
will assign a field value to every point within its stepsize
limit. The field transformation functions are given in the fol-
lowing equations, based on sField and state, respectively:

FLDs r, u, fð Þ ¼ �r þ�1
r
þ kvk cos u� fð Þ, (10)

FLD r, u, fð Þ ¼ kv0k cos fð Þ þ step� cos RA� fð Þ, (11)

Fig. 3. Mapping field-based regulation to a binary chromosome (i.e., design DNA) in a genetic algorithm.

Fig. 4. A mechanical cell and neighbor frames of reference.
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where v0 is an mCell’s current velocity (last step), RA is an
angle output by a random number generator, step is the mag-
nitude of the random behavior, f is the angle from an mCell’s
current heading, v is a neighbor’s velocity, u is a neighbor’s
current heading relative to the mCell, and r is the scalar dis-
tance from the neighbor. Note that terms involving r are mea-
sured from the neighbor’s position, and terms involving
angles are measured with the mCell at the origin with a head-
ing of 0 degrees.

The social field policies are applied to every neighbor in an
mCell’s radius of detection, and all terms from Equations (10)
and (11) are added together in a parameterized sum to per-
form the FBRFT operation:

FLD(r, u, f) ¼ c��1
N

XN

i[h

ri þ o��1
N

XN

i[h

1
ri

þ A� 1
N

XN

i[h

kvik cos (u� f)þ R� step

� cos (RA� f)þM � kvok cos (f); (12)

where the COARM acronym returns, this time to represent the
parameters in the field transformation equation. This equation
maps each point in the plane to a preference value, creating the
necessary (behavior, preference) set for behavior selection.
The behavior selection is to simply move to the location within
the maximum stepping distance with the highest preference.
We allow the GA to change the relative weights of the
COARM parameters, which will change the behavior of each
mCell and consequently the emergent behavior of the system.

5.2. Flocking

To evolve flocking, an initial population of 15 candidate ge-
nomes was generated. The genomes consist of 40-bit binary
strings, which can be parsed as five 8-bit, binary numbers.
Each binary number sets the relative weight of a COARM pa-
rameter, and the parameters varied from 0.02 to 50. After
mapping the genome to COARM parameter values, a simula-
tion with these parameters was created in NetLogo. In the sim-
ulation, 30 mCells were initially placed on the field and al-
lowed to run for 250 time steps.

The normalized total momentum of the system at the end of
the run is used as the fitness function. This will have a value
of 1.00 if all agents are moving in the same direction with
maximum step size, and an expected value of 0.00 if agents
are moving in random directions.

M
Q
¼
XN

i¼ 1
v
Q

i, (13)

fitness ¼ kM
Q
k

N
, (14)

where N is the total number of mCells. Fitness scaling (Sad-
jadi, 2004) was used so that the best candidate in any genera-
tion had a fitness 30% greater than the average of all candi-

dates in that generation. The best candidate at each
generation was cloned to the next generation, and the remain-
ing candidates were stochastically selected, with replacement,
for single-point crossover with probability proportional to
their fitness, until the next generation of 15 candidates was
full. All nonclones were allowed to mutate, with a probability
of 1% per bit of genome. This process was repeated for 40
generations. A full GA run required 11–14 min on a laptop
computer with an Intel 2.2-GHz dual core processor and 4
GB of RAM.

Unrestricted, the GA will quickly maximize the relative
weight of the alignment behavior for this fitness function.
Figure 5 displays the evolution of the average parameter val-
ues among the 15 genomes at each generation. The relative
weight of randomness was fixed at 1.00 because it was pri-
marily the ratios of weights that mattered, not the absolute
magnitude. The figure clearly shows a population takeover
by systems with large alignment parameters.

Figure 6 displays the progression of fitness across genera-
tions for the same GA, where the fitness of the best candidate
at each generation and the average of all candidates at each
generation are plotted separately.

This optimization strategy seemed obvious, because the
alignment behavior causes agents to match their heading
with their neighbors. Given enough time, it seems intuitive
that a system of agents focused on local alignment will even-
tually reach a state of global alignment, so in order to further
challenge the algorithm, a new flocking behavioral model
was established with the restriction that the relative weights
of alignment and randomness must be equal (set to 1 in this
instance). This makes the optimization much more difficult,
because randomness counteracts the tendency toward coher-
ent flocking that alignment builds. The results are given in
Figures 7 and 8.

These results showed more inconsistency when compared
to the unrestricted flocking example, but by the final genera-
tion, the best-of-generation candidates did display high fit-
ness values, indicating that they were moving as a group
with a single heading. The “strategy” found by the GA was
to make both alignment and randomness mostly irrelevant
by keeping the momentum weight very high. As long as the
cohesion and avoidance balanced each other (it was sufficient
that they differ by a factor of ,5), the momentum could act as
a system memory, allowing the alignment tendency to slowly
build up during the course of the simulation, while the ran-
domness effects cancelled themselves out.

5.3. Territory exploration

One of the goals in designing self-organizing systems is flexi-
bility, so we attempted to use the same hardware assumptions
and behavioral model as the flocking simulation to perform a
different task: exploration. The change in functionality is a re-
sult of the change in relative parameter values. Here, 11
mCells are initially placed in a line in the center of the world
and allowed to uncover white patches by moving near them
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and darkening them. A run lasted 200 time steps, and the fit-
ness of the run depended on how closely the system came to
matching the desired amount of exploration. The desired ex-
ploration amounts ranged from 0% to 100%. Because GAs
are stochastic, there is no guarantee that multiple runs will
converge to the same set of parameters. While the results
were mostly consistent in the flocking experiments, in the ex-
ploration experiments, qualitatively different behavioral strat-
egies for the same FR were often evolved in different GA runs.
These systems appear to work very differently, but their over-

all fitness scores are similar. Figures 9 through 12 show the be-
haviors evolved for 25% and 100% exploration, respectively.

It can be seen from these figures that two distinct success-
ful behavioral profiles were developed for each of 25% and
100% exploration. The high-avoidance, high-momentum
strategy for 100% exploration (Fig. 11) can be thought of
as the intuitive strategy. The high avoidance and high mo-
mentum cause the mCells to immediately spread out in differ-
ent directions and continue in straight lines until they come
near each other, when they diverge again. This causes the

Fig. 6. Flocking fitness evolution.

Fig. 5. Flocking average parameter values.
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mCells to independently explore most of the field without
wasting time by following one another and poring over trod-
den ground. The fanning and sweeping strategy of Figure 12
was actually more effective and relied on a novel combination
of flocking and expansion. With high alignment, and a proper
ratio between cohesion and avoidance, the mCells in this
simulation were able to spread to the width of the arena and
complete a full lap within the 200 time step limit, uncovering
almost 95% of the field.

The 25% exploration task required a method of slowing
down the exploration so that the system was not penalized
for uncovering too much of the field (the mCells were forced

to run for the full 200 time steps regardless of their progress).
Figure 9 shows one successful strategy for halting exploration
at the correct percentage. In this configuration, the mCells are
assigned high avoidance and very low momentum. This
causes an initial expansion, but the trajectories are unsustain-
able because there is no momentum to carry the mCells for-
ward. Once they are out of one another’s sensory radius, their
randomness dominates because cohesion, avoidance, and
alignment are only active when there are neighbors nearby.
As a result, after the initial short expansion, the mCells tend
to stay in place and randomly move about a point, not uncov-
ering much new territory, so that by the end of the run, as a

Fig. 7. Flocking fitness with equal alignment and randomness.

Fig. 8. Flocking parameter values with equal alignment and randomness.
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system they have uncovered approximately 25% of the field.
Figure 10 shows a more novel behavioral strategy for 25% ex-
ploration that was evolved by some applications of the GA. In
this case, the mCells’ high alignment and cohesion tenden-
cies caused them to form single-file lines. After the initial for-
mation of the file, the swarm would extend out from its start-
ing point and uncover a narrow swath of new territory. This
system actually exploited the time limit as a resource, because
it was still exploring new territory up until the cutoff, but the
time required to initially form the structure and the slow rate
of discovery reliably led it to discover close to 25% of the
field just before the simulation stopped.

5.4. Foraging

Foraging is another task that can be performed by self-orga-
nizing systems. It is particularly interesting for us because,
in addition to coordinating movements relative to other
agents, agents in foraging must complete specific tasks of
moving food from sources to home. With this case study,
we intend to test how task requirements, such as moving
food, can be modeled and captured by our task fields
(tFields), and how such complex task fields can be coped
with by more sophisticated relations (sFields) among the
agents. Most foraging simulations are inspired by ants, which
communicate via pheromones. Artificial systems could ac-
complish the foraging task using electromagnetic signaling.
In our simulation, color signaling is assumed for the purpose
of on-screen visualization. Our mCells are allowed to change

color based on their current task and state. The parametric be-
havioral model is expanded so that mCells may have different
reactions to other mCells of diverse states, a purposeful intro-
duction of heterogeneity into the system.

The agents’ visible states include location, color, and head-
ing. The task object is the food, and the task goal is the home
base where food is to be returned. The sField relationships are
triggered by proximity within three mCell diameters. Food
can be sensed within this same neighborhood, and the direc-
tion toward home can be sensed at all times. This simulates
the situation where there is a central beacon (ants have the
large concentration of pheromones emanating from their

Fig. 9. High-avoidance, low-momentum for 25% exploration.

Fig. 10. High-alignment, high-cohesion for 25% exploration.

Fig. 11. High-avoidance for 100% exploration.

Fig. 12. High-alignment, high-momentum fan/sweep behavior for 100% ex-
ploration.
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nest) signaling to all agents simultaneously, but not control-
ling any individual’s actions. In a practical situation, the bea-
con could be broadcast from a boat at night in a search-and-
rescue mission, from a disposal zone in a beach cleanup
task, or from a silo in a harvesting system. The sField relation-
ships are the same as in Equation (10), and the field transfor-
mations of tField and state parameters are modeled as:

FLDT(r, u, f) ¼ step� (cos(RA� f)þ cos( f � f)

þ cos(h� f)), (15)

where f and h are the angles toward food (when sensed), and
home, respectively.

Because an individual mCell’s behavior must be different de-
pending on whether it is carrying food, mCell behaviors are
highly dependent on state. Because the mCells are allowed to
differentiate, the description of the sField and the decision struc-
ture must be more complex than in the flocking and exploration
tasks. Here, we assume that mCells will differentiate into two
types: those with food and those without. Because we rely on
the GA, it is feasible to define a large number of allowable rela-
tionships. We define the maximum number (4) based on the
number of distinct agent types (2). In larger systems, it may be
desirable to limit the interactions among different sets of agents.
In any case, if the social topology is too interconnected for the
task, we should expect the GA to minimize interaction magni-
tudes between agent types that should not be linked.

The policies defined for these relationships will be based
on the cohesion, avoidance, and alignment parameters of
the COARM model described earlier. Momentum is not
used, and randomness is treated separately because it does
not depend on agent interactions. Once an mCell has iden-
tified its neighbors and their type, it will apply the parameters
of its policy for each neighbor. The mCells generate their
tField by sensing the home beacon and food, and their reac-
tions are simple attraction or repulsion. The tField and sField
are added together by the mCells to form the behavioral pro-
file:

FBRFT(r, u, f) ¼ C � 1
N

XN

i[h

(�ri)þ O� 1
N

XN

i[h

�1
ri

þ A��1
N

XN

i[h

kvik cos(u� f)

þ step� (R� cos(RA� f)

þ F � cos(f � f)þ H � cos(h� f)), (16)

where the relevant parameters are applied based on the
mCell’s state. If necessary, the summations are carried out
twice with different parameters to account for a heteroge-
neous set of neighbors. Because the flocking behaviors are
normalized before addition, a large flock with no food will
have the same relative influence as a small flock with food
and vice versa. Behavior selection is to simply choose the lo-
cation within the maximum step size that has the highest field
value.

When an mCell moves onto a patch that contains food, it
extracts 5 units of food from the resource and changes its
color to green. If it carries food back to the home base, it de-
posits the food and changes back to brown, and the simulation
counts that toward the food-returned total. The fitness is then
calculated according to

fitness ¼ foodr þ
1
N

XN

i¼1
foodci , (17)

where the summation occurs over each mCell. Subscript r
represents the food returned to home before the time limit,
and subscript c represents the food being carried by the agents
at the time limit. The summation in this equation is used to
differentiate systems early in the GA, where only a few sys-
tems return any amount of food. The design gets “partial
credit” for at least finding food, and this behavior is even-
tually combined with other positive behaviors to create
more successful systems in later generations.

An initial population was randomly seeded as 50, 144-bit,
binary strings. Every 8 bits of the genome corresponds to one
of the 18 agent parameters of Table 1. With 18 parameters to
optimize, an exhaustive search would be very computation-
ally expensive. A naı̈ve parameter sweep, with just three
levels for each variable (e.g., low, medium, and high), would
require more than 3.8 million simulation runs. The use of an
optimization algorithm cuts this number down substantially
while still generating capable candidates. All of these GA ex-
periments used fewer than 10,000 repeated simulation runs.
The binary numbers were mapped to decimal numbers be-
tween 0.02 and 50 for cohesion, avoidance, and randomness.
Alignment and the tendency toward food and home varied
between –50 and 50. The best candidate of each generation
was cloned directly to the next generation, and the remaining
candidates were created using the same fitness scaling, selec-
tion, and crossover of the previous case studies. The mutation
probability was 0.5% per bit of genome for all nonclones. A

Table 1. Foraging simulation parameters

mCell State Neighbor State Cohesion Avoidance Alignment Randomness Home Food

Food Food C1 O1 A1 R1 H1 F1

No food C2 O2 A2

No food Food C3 O3 A3 R2 H2 F2

No food C4 O4 A4
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100-candidate, 50-generation (5000 total fitness evaluations)
GA run required approximately 14 h to complete.

It can be seen from Figure 13 that the GA showed continual
improvement in the best-of-generation fitness and average fit-
ness values. The best candidate of the first generation re-
turned 30 units of food (6 round trips), and the best of the final
generation returned 180 units of food (36 round trips). The
best fitness found in any generation was 205 in the 41st gen-
eration. Owing to the elitism component of the GA, this can-
didate was cloned to the next generation, but it was unable to
reliably reproduce such great results. It was eventually re-
placed, although its genes did propagate to future candidates.
Other GA runs produced qualitatively similar results, with no
obvious improvement in runs lasting longer than 50 genera-
tions. Because there were 18 variables to optimize, and the
populations showed considerable diversity, it is not illuminat-
ing to show a plot of the average parameter values across gen-
erations. Instead, we look at the randomly chosen parameters
of the best candidate of the first generation and compare them
to the evolved parameters of the last generation’s top candi-
date.

Table 2 shows the parameter values of the first generation’s
most successful candidate. The simulation screenshots in

Figure 14 illustrate the behavior of this system. This candi-
date’s behavior relied on a very high tendency toward home
when an agent had food (H1), and a very high tendency away
from home when an mCell did not have food (H2). This was
enough to place one or two mCells on a straight line between
the base and the food, allowing them to make about 6 round trips.
The high cohesion/avoidance ratio among the mCells without
food led to the ineffective grouping at the right edge of the field.

Table 3 shows the parameters that were evolved for the best
candidate in the final generation. Note the very large negative
alignment parameter between agents that both had no food
(A4). Generally, the mCells with food have a strong tendency
to align with one another, while the mCells without food have
a strong tendency to maintain opposite headings. The magni-
tudes of the interactions between agents of different states are
small.

The “strategy” evolved was to use the edges of the arena to
guide the agents toward the food, because the food was placed
in a corner opposite the home base. To accomplish this, the
mCells without food had negative alignment values toward
one another. This caused an initial shuffling period because
the group could not reach an equilibrium flocking heading.
Eventually the mCells spread far enough apart that their

Fig. 13. Foraging experiment fitness evolution.

Table 2. Foraging parameters for best candidate of first generation

mCell State Neighbor State Cohesion Avoidance Alignment Randomness Home Food

Food Food 0.189 0.208 20 0.492 30.7 27.07
No food 27.8 4.96 28.8

No food Food 0.0359 0.131 20.737 5.28 225.5 21.44
No food 2.23 0.0707 22.08
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negative home tendency dominated and drove them toward
the top and right edges of the field, with a few mCells ran-
domly finding the food area. The system eventually reached
a state where most mCells without food were on an edge,
but the negative alignment values ensured that they did not
get stuck. If a new mCell arrived at the edge near another,
one would have to change direction so that they could main-
tain opposite headings. This caused a chain reaction of
mCells bumping each other off the edge until one reached
the food, when its strong positive home tendency would
take over. After returning the food, an mCell’s negative
home tendency would cause it to move toward an edge again,
starting another chain reaction. This configuration persisted
until the 1000 step time limit, as shown in Figure 15, allowing
the system to return 180 units of food. In these lines of mCells
on the edge, we see the social field giving rise to task-based
structure that allowed the system to complete its FR.

5.5. Discussion

5.5.1. Effect of two-field based approach

We have shown that the interaction of two fields can lead to
emergent task completion in self-organizing systems. In the
flocking and exploration tasks, mCells relied entirely on
sField relations, and for the foraging task, both sField and
tField were important. Through evolutionary synthesis, the
GA was able to develop dDNA that corresponded to the
task environment, FR, and agent relations. In the exploration
task, the GA implicitly embedded knowledge about the size
of the field to be explored by selecting candidate systems
whose social relations would cause them to assume proper
shapes and sizes in order to uncover the correct amount of ter-

ritory. The foraging task saw the evolution of a strategy that
integrated task and social fields so that the mCells not only
formed the proper structure but also formed it in the proper
place. In this simulation, the agents formed lines along the
boundary of the arena to funnel one another toward the
food source. Here we see the tField creating an attractor at
the boundary of the arena, while the sField turns this aggrega-
tion of mCells into a path toward the goal.

5.5.2. Generational learning

These strategies are the result of generational learning
caused by the repeated trial-and-error of the GA. The GA
was shown to embed global knowledge into the mCell
dDNA. For example, in the exploration task (Fig. 12), the
global value of the field width was embedded in a cohe-
sion/avoidance ratio that allowed the mCells to spread to
that width or in a proper momentum weight, which caused
motion to die out after enough spreading. In the foraging
task, the location of the food relative to home was embedded
in the mCells’ home aversion (go right/up) and antialign-
ment (go up/right). When this information is embedded as
dDNA, it is not necessary that agents have any specific global
knowledge, only that they can recreate the proper structures
required through cooperative, iterative application of local
rules.

5.5.3. Validation and repeatability

These local rules were successfully tuned by a GA, but an
engineer must take a critical look at the results from any au-
tomated design algorithm, because computational synthesis
cannot yet replace the human designer entirely. Some results
may be spurious or optimized to the peculiarities of the fitness

Fig. 14. Foraging behavior for best candidate of first generation. Home is at bottom left, and the food is at top right.

Table 3. Foraging parameters for best candidate of final generation

mCell State Neighbor State Cohesion Avoidance Alignment Randomness Home Food

Food Food 0.102 0.94 21.2 0.0393 5.21 1.733
No food 0.0241 0.422 20.376

No food Food 0.148 1.2 20.783 5.44 25.21 9.59
No food 13.29 33.49 247
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function rather than the real-world task requirements. Design-
ers must be careful to ensure that the GA is truly optimizing
for the attributes that the system will need in the real world
because there is a danger that the GA will simply take advan-
tage of quirks in the initial condition or fitness function. For
example, the 200 time step limit in the exploration experiment
had a substantial effect on the evolved behavior. This limit
was at times a help or a hindrance. The limit was an obstacle
for the high-avoidance, high-momentum 100% exploration
strategy, because this system would only reliably uncover
about 85% of the field before it was stopped. It had little effect
on the high-avoidance, low-momentum 25% exploration
strategy, because these agents achieved 25% exploration
and then largely ceased to uncover new territory well before
the time limit hit. The time limit was actually exploited as a
resource by the high-cohesion, high-alignment 25% explora-
tion strategy, because these agents were continuously uncov-
ering new territory, but the time limit cut them off close to
the time they discovered the 25th percent of the field, keeping
them from discovering too much. All of the strategies evolved
performed well with an exact 200 time step limit, but the
high-cohesion, high-alignment 25% strategy would have per-
formed poorly if the limit were any greater or smaller. The de-
signer in this case must clarify whether the 200 time step limit
is a hard constraint or simply an estimation of the real-world
scenario.

Similarly, for 100% exploration, the fanning and sweeping
strategy was dependent on the width of the field and the initial
formation of the agents. If this initial formation can be repli-
cated in actual deployment, this strategy is probably the best,
but the more random strategy may be necessary if the initial for-
mation is not so regular. For this paper, we simply remind the
designer to consider these possible optimization pitfalls and
leave the determination of real versus spurious results to the de-
signer’s discretion, but as future work, we plan to build GAs
that can capture and save qualitatively distinct behavioral strat-
egies for later analysis and to eliminate possible loopholes for
the GA to exploit through more realistic world building.

In this paper, where only one set of results was presented
for a case study, repeated GA runs led to qualitatively repeat-
able results, with the same pattern of ratios among the var-
ious parameters being found by each GA, and the emergent
behavior appearing quite similar. The exact numbers would

vary slightly, because the GA is partially stochastic, and there
is some inherent stochasticity in the behavioral models and
simulation environment. This is a trade-off that must be
made when using any stochastic optimization method. The
GA’s results can also be affected by its own parameters,
such as fitness scaling and crossover percentage, which
were not varied in our study. Occasionally, meta-optimiza-
tions are used to set these values, but for our work, we set
them based on an informal pilot study.

Repeatability of any particular set of optimized agent pa-
rameters was not found to be an issue. This is because clones
and near clones of the best candidates are continually being
retested across generations. Thus, only the reliably successful
candidates survive to the final generation. This is a useful re-
sult from the use of evolutionary optimization, but it should
not be generalized or taken for granted. A designer of self-or-
ganizing systems will always need to carefully evaluate the re-
peatability of system behavior, whether empirically or
through mathematical proofs of convergence.

5.5.4. GA as design guide

At its worst, a GA will evolve a trivial set of parameters to
“deceive” the fitness function and offer no practical use, but
at its best, a GA can allow a designer to quickly search a design
space and even highlight errors in the original problem specif-
ication. In the foraging task, all the successful candidate solu-
tions evolved negative alignment behaviors between mCells
that did not have food. This meant that the mCells were actively
trying to set their heading to the opposite of their neighbors,
preventing any flocking. It could have been useful for the
mCells to flock together, but the negative alignment was used
to correct for a design error: the lack of boundary detection.

The mCells were not endowed with the ability to detect or
react to the boundary of the arena, so many would simply
move to an edge and stay there without doing any useful
work. The negative alignment helped to rescue some mCells
stuck on the edge, because if a new mCell reached the edge
close to another, one would immediately turn away from
the boundary so they could maintain opposite headings.
This gave an mCell a chance to move back toward the center
of the field. Some systems showed a chain reaction of this be-
havior, where this disturbance would slowly move along a
boundary until an mCell found food and changed its state.

Fig. 15. Foraging behavior for best candidate of final generation.

Evolutionary computational synthesis of self-organizing systems 273



Because the food was placed in the corner of the arena, the
most successful systems actually used this behavior to send
mCells along the edges to the food source, a strategy unantic-
ipated by the human designer of the simulation. Because the
GA evolved behavior that consumed so many resources to
overcome the boundary problem, a designer could use that
as evidence that basic boundary detection should be embed-
ded into the mCells.

6. CONCLUSIONS AND FUTURE WORK

The CSO system has been proposed as a bottom-up approach
to building complex systems. Developing a general behav-
ioral model of agents and a synthesis method has been a ma-
jor challenge in CSO research. In this paper, we propose a
two-field based model to characterize agents’ behavior. The
task field captures the task environment while the social field
arises from agent–agent relations. A GA-based computa-
tional synthesis method is presented that evolves effective
self-organizing mechanisms and behavioral rules for agents
based on the task and social fields. The case studies have
demonstrated the effectiveness of the proposed model and
the GA-based computational synthesis approach.

This research affects the field of engineering design in sev-
eral ways. The case studies provide several examples of inte-
grated simulation and optimization, which can be used in the
design of many systems. The field-based behavioral model
presented here can be applied to existing distributed systems
for simulation and analysis. For example, as passenger vehi-
cles gain the ability to locally communicate information
about their velocity and location (Rogers, 2014), a city’s
emergent traffic patterns could be modeled with high fidelity
using agents with field-based behavior. The framework is
meant to parallel traditional design from a biological perspec-
tive, by using a cell-based, bottom-up approach, rather than a
component-based, top-down approach. The design and de-
ployment of large-scale self-organizing systems is still a
long-term goal, and this research is not meant to compete
with traditional, top-down design in the short term or for sim-
ple products. It is meant to exist alongside conventional de-
sign to aid in the design of distributed and adaptable systems,
or for the modeling and analysis of existing complex systems.

Our ongoing and future work aims to address three issues.
First, there are many possible GA upgrades to produce superior
results (e.g., different methods of selection, mutation, and cross-
over; Goldberg, 2002). In addition, it is helpful for the GA to
maintain diversity within the pool of candidates so that qualita-
tively different behavioral strategies that give the same results are
preserved, rather than having a single strategy in a homogeneous
population at the end of a GA run. More advanced fitness func-
tions will be developed that consider design factors beyond per-
formance, such as cost and manufacturability.

Second, there is a potentially rich space to explore for para-
metric behavior models (PBMs). The PBM should allow for
much more than these specific flocking-based studies. Using
only the COARM model restricted our search space of all

possible behaviors. The PBM rests on a parametric descrip-
tion of field formation and agent–agent relationships. Cast
in this light, the conceptual design of CSO systems may be
thought of as a search through the PBM space for a minimal
set of mCell behaviors and relations. The GA then tunes the
parameters within this PBM. A regimented analysis of this
model may help designers of self-organizing systems to
make more deliberate decisions when performing global-to-
local mapping, rather than making intuitive guesses.

Third, the case studies show the flexibility of CSO systems
but do not explore robustness and resilience in depth. Further
case studies could be tailored to test for these capabilities by
rearranging the arena and randomly deactivating agents. Add-
ing these adversities in a way that is random but “fair” to the
mCells is challenging.

Building a physical swarm of self-organizing robots to test
the principles on real hardware, rather than just in simulation,
has been our ongoing work, and there is progress being made
along this line in our laboratory.
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