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Bayesian reliability analysis (BRA) technique has been actively used in reliability assess-
ment for engineered systems. However, there are two key controversies surrounding the
BRA: the reasonableness of the prior and the consistency among all data sets. These
issues have been debated in Bayesian analysis for many years. As we observed, they have
not been resolved satisfactorily. These controversies have seriously hindered the applica-
tions of BRA as a useful reliability analysis tool to support engineering design. In this pa-
per, a Bayesian reliability analysis methodology with a prior and data validation and
adjustment scheme (PDVAS) is developed to address these issues. As the part of the
PDVAS development, a consistency measure is first defined that judges the level of con-
sistency among all data sets including the prior. The consistency measure is then used to
adjust either the prior or the data or both to the extent that the prior and the data are
statistically consistent. This prior and data validation and adjustment scheme is devel-
oped for Binomial sampling with Beta prior, called Beta-Binomial Bayesian model. The
properties of the scheme are presented and discussed that provides some insights of
PDVAS. Various forms of the adjustment formulas are shown, and a selection framework
of a specific formula, based on engineering design and analysis knowledge, is estab-
lished. Several illustrative examples are presented, which show the reasonableness, effec-
tiveness, and usefulness of PDVAS. General discussion of the scheme is offered to
enhance the Bayesian reliability analysis in engineering design for reliability assessment.
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1 Introduction

Bayesian reliability analysis (BRA) technique has been actively
used in reliability assessment [1–4]. BRA follows a traditional
Bayesian approach, which assumes a sampling distribution for the
data being analyzed, assigns a probability distribution, called prior
distribution, to the sampling distribution parameters, then collects
test data to form the likelihood function, and updates the prior to
the posterior distribution with the Bayes’ formula that aggregates
the prior with the likelihood function [3,4]. It has been long
known that the reliability result obtained through BRA is very
sensitive to the assignment of the prior. The criticisms on the prior
assignment, and prior and data inconsistency have not stopped
since the Bayesian technique was introduced, as evidenced by
many literature articles [5,6]. Numerous researches have been
under way, which have addressed the initial prior assignment.
Several objective and noninformative prior generation methods
have been developed [7,8]. Examples of the approaches include
maximum entropy method [9], reference analysis technique [10],
and frequentist matching method [11–13].

After an initial prior is determined, the Bayesian then collects
test, experiment, or analysis data and derives the posterior distri-
bution using the Bayesian formula. This process is called Bayes-
ian updating. The Bayesian updating can be conducted repeatedly
as multiple data sets become available. The Bayesian updating

basically takes the prior and the experiment, test, or analysis data
and aggregates them in a weighted average manner. All this is
done procedurally, usually without considering how contradicting
and inconsistent the prior is with the data as well as among data
sets by the Bayesian analysis itself.

Figure 1 describes the traditional Bayesian analysis flow. After
a sampling distribution is specified in step 1 and an initial prior is
determined in step 2, the Bayesian then collects experiment data
to form likelihood function in step 3 and derives the posterior dis-
tribution in step 4 using the Bayesian formula given by Eq. (1). If
a repeated Bayesian updating is conducted, the posterior distribu-
tion derived from step 4 loops back in step 4R as a new prior input
to step 3, and the Bayesian formula [Eq. (1)] is used again to ag-
gregate this new prior with new likelihood data to arrive at an
updated posterior distribution. The posterior distribution is then
used as a statistical inference tool in engineering applications as
indicated in step 5.

fHjXðhjxÞ ¼
fH;Xðx; hÞ

fXðxÞ
¼

fXjHðxjhÞfHðhÞ
fXðxÞ

(1)

In Eq. (1), fHðhÞ is the prior density for the sampling distribution
parameter H, fX jHðxjhÞ is the likelihood function of the data
x given a H value as h; fHjXðhjxÞ is the posterior density of the
H; and fX(x) is the marginal density of the data.

If a prior distribution takes the same form of the distribution
function as the posterior distribution, the prior is called conjugate
prior. Mathematically, the prior, fHðhÞ in a conjugate Bayesian
model, has the same function form as the posterior, fHjXðhjxÞ. The
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examples of conjugate prior include Beta prior with Binomial
sampling, called Beta-Binomial Bayesian model, and normal prior
for the mean with normal sampling. For more conjugate prior dis-
cussions, see Refs. [3,4]. A conjugate Bayesian model has several
nice features. First, the derivation of the posterior is much easier.
Usually, a closed form formula exists that aggregates the prior
and the data to obtain the posterior. For example, for the Beta-
Binomial model with Binomial parameter p, if we assume p is
subject to Betaða;bÞ, and we obtain test data of F failures out of N
trials, the posterior distribution of p is then given by
Betaðaþ F;bþ N � FÞ. Second, for a repeated Bayesian updat-
ing with k (>1) data sets available, the final Bayesian updated
posterior is independent of the sequence of the updating taken on
the k data sets.

During an engineering design, especially at the conceptual
design stage, reliability analysis relies on various data sources,
including historical failure data from similar parts or systems,
expert opinions, engineering modeling and simulations, and
prototype or laboratory test results. Huang and Jin [14] provided a
comprehensive survey of reliability prediction data sources as
potential data inputs to BRA. Grantham Lough et al. [15,16] cor-
related the historical failure data to the functions of system being
studied during the functional design to assist risk assessment.
Wang and Jin [17] developed a functional design approach, which
utilized a Bayesian network technique with uniform distributions
as inputs to assess an individual function’s influence on the system
failure probability. Wang et al. [1] applied a repeated Bayesian
updating technique to a reliability assessment during a product
design and development cycle using evolving, insufficient, and
subjective data sets, which included a customer survey, response
surface physics model results, and clinic trial test data. Huang and
Jin [18] extended the traditional reliability stress–strength interfer-
ence theory to the conceptual design with the combination of a
team survey, historical similar function design data, physics
bounds of the design to define conceptual stress, and conceptual
strength for reliability quantification. However, none of the above
work has addressed the data inconsistency and data contradiction
issue. For some BRA applications, an obvious data inconsistency
may appear between the prior and the test data or among data sets
from various data sources. One extreme example is that the prior
states that the Binomial sampling parameter p is equal to 0.01
with probability 1, but the experiment data show five failures out
of ten trials. It is obvious that the data set “five out of ten” is very
unlikely to come from Binomial sampling with p¼ 0.01. A less
extreme example is that the prior states that the Binomial parame-
ter p is subject to the Beta(1,100) prior while the experiment data
shows one failure out of ten trials. For data samples such as this,
what Bayesian analysis produces is a weighted average of the
prior and the data set as the posterior, as illustrated in Fig. 2,
though the likelihood data and the prior hardly overlap as shown
in the figure. A data inconsistency example is when one data set
has 1 failure and 2 successes and the other has 1 failure and 50
successes. It is not likely that these two data sets are from the
same sampling distribution. Therefore, it is seriously questionable
whether these two data sets are combinable for the Bayesian anal-
ysis for the inference purpose. The aforementioned prior genera-
tion methods, namely maximum entropy method, reference prior

analysis, and frequentist matching, only address the generation of
the initial prior. As we surveyed Bayesian analysis literature, we
observed that there is little active research that addresses the prior
and data inconsistency, and the validation of the prior and the data
during a repeated Bayesian updating process. The research in Ref.
[19] is probably one of the few that discuss the data conflict.

The above discussion brings an obvious need for a prior and
data validation and adjustment. If the prior is contradicting with
the data, the analyst has three choices: (1) accept the prior and the
data and perform Bayesian update as usual; (2) reject the prior
and the data; or (3) do something about the prior and the data to
continue the Bayesian process in a reasonable manner. For choice
1, the analyst may lead himself or herself to a misleading infer-
ence therefore inadequate design decision generated from the
Bayesian method. For choice 2, the analyst will have no data to
perform Bayesian analysis. For choice 3, the literature survey
indicates there is no existing theory and method for doing so. The
objective of this paper is to provide such a method to help address
choice 3. In Sec. 2, we present a modified Bayesian updating pro-
cess with an added step that validates the consistency among all
data set and adjusts the prior and the data accordingly if inconsis-
tencies arise. We provide the mathematical formulas for the prior
and data validation and adjustment scheme (PDVAS) for the
Beta-Binomial Bayesian model. In Sec. 3, we present and discuss
several properties of PDVAS, which provide some insights of
PDVAS. In Sec. 4, we discuss the selection of prior and data
adjustment formulas based on the engineering knowledge and
data available. In Sec. 5, we present various examples to illustrate
the PDVAS applications. We then summarize the paper in Sec. 6,
discuss the limitations of PDVAS, and future research
possibilities.

2 A PDVAS

2.1 Motivation. As we have pointed out, the traditional Bayes-
ian analysis has some shortcomings in dealing with data contradiction
and inconsistency. We believe that one of the key applications of the
Bayesian posterior is for inference modeling that predicts the sam-
pling distribution behavior to assist design decisions. Therefore, it is
very important for this inference model to be valid. Fundamentally,
our motivation is how we can go beyond the simple data aggregation
as the Bayesian procedure defines, evaluate data trusting and worthi-
ness, and adjust the data when evidence of inconsistency arises with
the engineering design knowledge at hand. The adjustment also needs
to balance retaining the knowledge in the data and reducing the data
inconsistency. This leads to the proposal of the modified Bayesian
analysis flow.

2.2 Modified Bayesian Analysis Flow. Figure 3 presents our
proposal of the modified Bayesian analysis process with an added
prior and data validation and adjustment step, which is step 4a. All
other steps are the same as the original Bayesian analysis flow as in

Fig. 1 Traditional Bayesian analysis flow

Fig. 2 Bayesian result as a weighted average of prior and data
set
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Fig. 1. We discuss the details of the step 4a in the rest of Sec. 2, Sec.
3, and Sec. 4.

2.3 Prior and Data Validation and Adjustment Formulas. For
step 4a of Fig. 3 for the Beta-Binomial model, we have a Binomial
distribution as the sampling distribution with the parameter p as
follows

pðX ¼ xjh ¼ pÞ ¼ N
x

� �
pxð1� pÞðN�xÞ

(2)

x¼ 0, 1, 2, …, N. p is assigned a Beta distribution with Beta
parameters a and b. Its density is

f ðpÞ ¼ pa�1ð1� pÞb�1

Betaða; bÞ (3)

In Eq. (3), 0 < p < 1 ; a > 0 and b > 0: Betaða; bÞ is a complete
Beta function given by

Ð 1

0
pa�1ð1� pÞb�1dp. The mean and the

standard deviation of the Binomial sampling distribution are

lBino ¼ Np (4)

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npð1� pÞ

p
(5)

respectively.
The mean and the standard deviation of the Beta(a,b) are

lBeta ¼
a

aþ b
(6)

and

rBeta ¼
ffiffiffiffiffiffi
ab
p

ðaþ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ 1
p (7)

respectively.
For a general Bayesian analysis, we have the following data:

Prior distribution is given by Beta(a,b), and k data sets (k � 1) are
given by (F1,S1), (F2,S2), …, (Fk,Sk). For the convenience of the
notation, we name F0 � a and S0 � b. So we have Bayesian data
sets: (F0,S0), (F1,S1), (F2,S2), …, (Fk,Sk). Recall Fi and Si repre-
sent number of failures and number of successes in the ith data
set, respectively. With the traditional Bayesian process, we obtain
the Beta posterior, named Beta(a�;b�). Using Eq. (1), we get

a� ¼
Xi¼k

i¼0

Fi (8)

and

b� ¼
Xi¼k

i¼0

Si (9)

Remember that a� and b� are calculated without evaluating the
data inconsistency and contradiction among (F0,S0), (F1,S1),
(F2,S2), …, (Fk,Sk). Now the question is how we assess the data
consistency and provide a measure of it. We define a consistency
statistic with a probability associated with a v2statistic as follows

v2
C ¼ ½

Xi¼k

i¼0

ðFi þ SiÞ�

Pi¼k

i¼0

F2
i

FiþSi

Pj¼k

j¼0

Fj

þ

Pi¼k

i¼0

S2
i

FiþSi

Pj¼k

j¼0

Sj

� 1

0
BBB@

1
CCCA (10)

The v2
C formula is originated from the v2 statistic of traditional hy-

pothesis testing for 2� (kþ 1) contingency table [20,21]. v2
C has a

degree of freedom k. Therefore, the consistency for the data sets
(F0,S0), (F1,S1), (F2,S2), …, (Fk,Sk) is defined as

C � Consistency ¼ Pðv2 > v2
CÞ (11)

where v2
C in Eq. (10) is a v2 random variable with a degree of free-

dom k.
The motivation of the consistency formulas defined by Eqs.

(10) and (11) is that F0 þ S0 (� aþ bÞ of the prior, per the Bayes-
ian process, represents the prior’s sample size, embedded in the
prior knowledge in processing the posterior distribution [4]. F0

ð� aÞ and S0 ð� bÞ approximately represent the number of fail-
ures and successes, respectively, afforded by the prior. The mean
of the prior is F0= F0 þ S0ð Þ. If the data are consistent, all the data
means, namely F1= F1 þ S1ð Þ, F2= F2 þ S2ð Þ, …, Fk= Fk þ Skð Þ
should not be very far away from F0= F0 þ S0ð Þ. As matter of fact,
the data sets of (F1,S1), (F2,S2), …, (Fk,Sk), according to a Bayes-
ian assumption, all should be generated from the Binomial sam-
pling with the parameter p, which is subject to a Beta prior with
mean F0= F0 þ S0ð Þ. Therefore, when the failure fraction,
Fi= Fi þ Sið Þ, i¼ 1, 2, …, k, of the data sets are equal to or close to
the failure fraction of the prior, F0= F0 þ S0ð Þ, we, to the maxi-
mum extent, believe that the data are consistent, and there is no
contradiction between the prior and the data sets. Conversely, if
one or more of the Fi= Fi þ Sið Þ are drastically different from
F0= F0 þ S0ð Þ, or some Fi= Fi þ Sið Þ is drastically different from
Fj

�
Fj þ Sj

� �
ði 6¼ jÞ, we have a reason to think that the data are

not consistent and the assumption that all data sets (F1,S1),
(F2,S2), …, (Fk,Sk) are generated from the same Binomial sam-
pling with p as the parameter is not adequate. Mathematically,
when F0= F0 þ S0ð Þ ¼ F1= F1 þ S1ð Þ ¼ � � � ¼ Fk= Fk þ Skð Þ, Eq.
(10) leads to v2

C¼ 0. Therefore, the consistency C by Eq. (11)¼ 1.
When some Fi= Fi þ Sið Þ is very much different from some
Fj

�
Fj þ Sj

� �
ði 6¼ jÞ, v2

C in Eq. (10) becomes very big. Therefore,
the consistency measure C by Eq. (11) is nearly zero.

The consistency measure C, calculated by Eqs. (10) and (11),
represents the prior and data validation result. C is a value
between 0 and 1. When C¼ 1 or close to 1, we believe that the
data sets, (F0,S0), (F1,S1), (F2,S2), …, (Fk,Sk), are completely con-
sistent or nearly consistent. Thereby we will implement the
Bayesian updating unconditionally as we do in the traditional
Bayesian process. When C¼ 0 or close to 0, we believe that the
data sets, (F0,S0), (F1,S1), (F2,S2), …, (Fk,Sk), are completely
inconsistent or nearly inconsistent. Thereby we will seriously
challenge the assumption that all data sets, (F1,S1), (F2,S2), …,
(Fk,Sk), are generated from the same Binomial sampling with p as
the parameter.

Now the question is that what do we do when the consistency
measure C by Eq. (11) is between 0 and 1? We propose the fol-
lowing data adjustment algorithm as a part of the modified Bayes-
ian updating process. This is the substantiation of step 4a of the

Fig. 3 Modified Bayesian analysis flow with addition of prior
and data validation and adjustment step
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process presented in Fig. 3. Figure 4 shows the algorithm and Fig.
5 presents the data adjustment step details, where v2

C;m in Fig. 5 is
the v2 statistic by Eq. (10) using data sets (F0,S0), (F1,S1), …,
(Fi,Si), but excluding the data set (Fm,Sm). Therefore, v2

C;m has a
degree of freedom of i� 1. Cm is the consistency measure among
data sets (F0,S0), (F1,S1), …, (Fi,Si), excluding (Fm,Sm), therefore,
Cm ¼ Pðv2 > v2

C;mÞ. The data adjustment step (step 3) in Fig. 4
and the adjustment details (steps 3.1–3.3) in Fig. 5 basically detect
the inconsistency sources and adjust the data sets to make them
consistent. The targeted data set [(Fv,Sv) in steps 3.2 and 3.3] for
the data adjustment is the one with the biggest consistency value
after it is excluded from the consistency calculation; therefore, it
is identified as the source of inconsistency. It is noted in Fig. 4
that the data validation and adjustment starts from the second
Bayesian updating since for the first update, we only have the ini-
tial prior and the first data set, which do not provide us any direc-
tion on how we can adjust the data. Steps 2 and 3 in Fig. 4 are in
an iteration loop. Therefore, there is a convergence issue. We will
discuss this in Sec. 3 . Step 3.3 is to adjust the data set (Fv,Sv),
when it is found that it is the source of the inconsistency.

Next we discuss the data adjustment formula. We first define a
data adjustment as a mapping from the consistency measure to the
data adjustment score, denoted as SDA.

SDA ¼ f Consistencyð Þ (12)

The exact form of f function in Eq. (12) will be determined in Sec.
4. The SDA also takes values in the range of [0, 1]. We then apply
the SDA to the data set (Fv,Sv) in the following discounting manner

to obtain the discounted values of Fv and Sv, namely ~Fv and ~Sv,
respectively.

~Fv ¼ SDAFv and ~Sv ¼ SDASv (13)

So far, we have not defined the detailed f functional forms of SDA

yet. But we know SDA should satisfy the following conditions

SDA 0ð Þ ¼ f 0ð Þ ¼ 0 (14)

and

SDA 1ð Þ ¼ f 1ð Þ ¼ 1 (15)

and

SDA consistency2ð Þ � SDA consistency1ð Þ when

Consistency2 > Consistency1 monotone increaseð Þ (16)

Equations (13)–(16) basically state that when the consistency
measure is zero, we completely ignore the data set (Fv,Sv). When
the consistency measure is 1, we completely accept the data set
(Fv,Sv), which is what the traditional Bayesian updating process
does. The bigger the consistency measure, the less we discount
the data. Recall that step 1 of Fig. 4 asks for defining a threshold
value (Tc) of the consistency measure. The role and the interpreta-
tion of this threshold are similar to the concept of the significance
level in a traditional statistical hypothesis testing. But the rejec-
tion criterion in hypothesis testing is a step function, that is, when
the probability value (p-value) of observing a certain data sample
is below the significance level, the null hypotheses will be
rejected. In the context of PDVAS applications, we extend this
step function to a set of smooth curves, which can incorporate en-
gineering design and analysis knowledge for data adjustment. In
this section, we present general forms of SDA curves first. In Sec.
4, we will provide recommendations as to how a specific curve
can be selected based on available engineering knowledge and
data.

Figure 6 depicts various possibilities of SDA curves with
Tc¼ 0.05. For all the curves in the figure, SDA¼ 1 when the con-
sistency measure � 0.05. The curve A in the figure is very close
to taking all SDA values of 1 for any consistency measure. So if
adopted, it defaults to the traditional Bayesian updating process.
The curve G takes almost all SDA values of 0 for the consistency

Fig. 4 Bayesian updating prior and data adjustment algorithm

Fig. 5 Details of the data adjustment step Fig. 6 Potential candidate functions for SDA
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measures 	 0.05, which leads to the nearly complete rejection of
the data set (Fv,Sv), similar to the situation of a traditional hypoth-
esis testing with a significance level of 5% of rejecting a null hy-
pothesis. Section 4 will discuss the details how to select a Tc and
SDA curve.

3 Properties of PDVAS

PROPOSITION 1. For the data set (Fv,Sv) being adjusted in Eq.
(13), PDVAS does not change the mean of the data set, but
increases its standard deviation r.

The proof of Proposition 1 is given in Appendix. Proposition 1
reflects an important PDVAS strategy, that is, to maintain the
mean of the adjusted data set but increase the spread of the data
distribution. In other words, PDVAS takes the face value embed-
ded in the data regarding to the knowledge of central tendency but
discounts the value of the data set by increasing its variance. The
rationale of doing so is that when the prior or the data are col-
lected, usually the uncertainty associated with the variability is
much bigger than the one associated with the central tendency.
Therefore, the variability of the data is more doubtful than the
mean. PDVAS focuses on the adjustment of the variability to
achieve the data consistency.

PROPOSITION 2. At the ith Bayesian updating with the i sets of
data (F0,S0), (F1,S1), …, (Fi,Si) available, if ½Fv=ðFv þ SvÞ�
< ½
Pj¼i

j¼0;j6¼v Fj=ð
Pj¼i

j¼0;j 6¼v Fj þ
Pj¼i

j¼0;j6¼v SjÞ�, where 0 	 v 	 i, and
(Fv,Sv) is one of the i data sets, we then have

Fv

Fv þ Sv
<

Fv þ
Pj¼i

j¼0;j6¼v

Fj

Fv þ Sv þ
Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j 6¼v

Sj

	
~Fv þ

Pj¼i

j¼0;j6¼v

Fj

~Fv þ ~Sv þ
Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j 6¼v

Sj

�
SDAFv þ

Pj¼i

j¼0;j6¼v

Fj

SDAFv þ SDASv þ
Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

<

Pj¼i

j¼0;j6¼v

Fj

Pj¼i

j¼0;j 6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

(17)

Note if ½Fv=ðFv þ SvÞ� > ½
Pj¼i

j¼0;j6¼v Fj=ð
Pj¼i

j¼0;j6¼v Fj þ
Pj¼i

j¼0;j6¼v SjÞ�,
Eq. (17) still holds but with all inequality signs reversed.

The proof of Proposition 2 is given in Appendix. Proposition 2
indicates that when PDVAS detects a data inconsistency with the
data set (Fv,Sv) as the source of the inconsistency, it adjusts
(Fv,Sv) to reduce its weight in the posterior distribution such that
the posterior mean is moving away from the mean of the data set

(Fv,Sv) toward the mean of
Pj¼i

j¼0;j6¼v Fj;
Pj¼i

j¼0;j6¼v Sj

� 	
. Under the

extreme case that SDA is zero or close to zero, (Fv,Sv) is com-
pletely or nearly completely ignored, and the posterior mean is the

mean of
Pj¼i

j¼0;j 6¼v Fj;
Pj¼i

j¼0;j6¼v Sj

� 	
.

PROPOSITION 3. For the data sets (F0,S0), (F1,S1), …, (Fi,Si),
there always exists a set of SDA values such that steps 2 and 3 of
Fig. 4 will converge.

The proof of Proposition 3 is given in Appendix. Proposition 3
confirms that there is always a data adjustment solution for
PDVAS when a data inconsistency is detected and that steps 2 and

3 of Fig. 4 will not fall into a dead loop. In reality, steps 2 and 3
often take as few as one or two iterations as the illustrative exam-
ples will show in Sec. 5.

PROPOSITION 4. For no-failure situation, that is, in (F0,S0),
(F1,S1), …, (Fk,Sk), all Fi = 0 except F0, v2

C by Eq. (10), after sub-
stituting F0 by ~F0 ¼ SDAF0 and S0 by ~S0 ¼ SDAS0, is a monotone
increase function of SDA, v2

C � F0= F0 þ S0ð Þ
Pi¼k

i¼1 Si and
v2

C ! F0= F0 þ S0ð Þ
Pi¼k

i¼1 Si when SDA! 0.
The proof of Proposition 4 is given in Appendix. Proposition 4

addresses a special data situation, in which there is no failure in
the data. Therefore, there is no evidence of data inconsistency
among (F1,S1), …, (FkSk), since all data means¼Fj=(Fj þ Sj)¼ 0
(j¼ 1,2, …,k). For the same reason, the failure ratio of the data
cannot be compared with the prior data. If we attempt to adjust
(F0,S0), the proposition states that the v2

C has a lower bound limit.
Therefore, the data adjustment does not make v2

C go to zero even
SDA¼ 0. Thereby the prior and data validation and adjustment
cannot be performed meaningfully. PDVAS will not make any
data adjustment under “no-failure” situation. PDVAS will default
to the traditional Bayesian result under no-failure situation.

PROPOSITION 5. The final posterior in a repeated Bayesian updat-
ing with multidata sets using PDVAS is update sequence
dependent.

Proposition 5 indicates that PDVAS loses the nice feature of
the updating sequence independence possessed by the conjugate
prior Bayesian process. To prove the proposition, we only need to
provide a counterexample illustrating the posterior distribution
from PDVAS will vary from different updating sequences in a
multiple Bayesian updating process. This example will be given
in Sec. 5 (example 4).

4 Selection of Data Adjustment Formulas

In Sec. 2, we discussed some general forms of the formulas
being applied to data adjustment when PDVAS detects a data
inconsistency. Proposition 3 in Sec. 3 indicates that we can always
find a data adjustment solution to make the data consistent. How-
ever, the intention of PDVAS is to discount the data as less as pos-
sible, especially being careful not to throw out good data. There-
fore, the selection of SDA value and its function is essentially
important. If SDA is too small (close to 0), we tend to disregard
good data, which defeats the original intention of the Bayesian
analysis. If SDA is too big (close to 1), we accept the data blindly,
which may ignore possible data inconsistency and lead to a mis-
leading inference. In this section, we first provide a family of SDA

functions and then recommend some criteria for selecting a spe-
cific one for general engineering applications.

4.1 A Family of SDA Curves. We select the incomplete Beta
function within the range [0, Tc] to represent the SDA functions.
Here Tc is the threshold value defined in step 1 of Fig. 4. When the
consistency measure C, calculated by Eq. (11), meets C � Tc, we
accept all the data as is without any adjustment. When the C values
fall within (0, Tc), we calculate SDA using an incomplete Beta func-
tion as follows

SDA ¼ f ðCÞ ¼

0 if C 	 0

1
Tc

Ð C=Tc

0

u
Tcð Þ

m�1
1� u

Tcð Þn�1

Betaðm;nÞ du if 0 < C < Tc

1 if Tc 	 C

8>><
>>:

(18)

Beta(m,n) in Eq. (18) is a complete Beta function given byÐ 1

0
um�1ð1� uÞn�1du. The rationale of selecting the incomplete

Beta function for SDA is its versatility in its shapes and the easy
interpretation of the parameters m and n in Eq. (18) related to the
engineering knowledge. To illustrate the merit of the Beta func-
tion, we present an example of a set of Beta curves in Fig. 7 with
Tc¼ 0.05. All the curves have the saddle points (the second
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derivative¼ 0) near m=(mþ n)0.05¼ 0.0125 on the x-axis. As m
and n get bigger, the curves get steeper around the saddle point,
approaching the situation either PDVAS completely rejects the
data or completely accepts the data depending on whether C is
bigger than or smaller than 0.0125. It is recognized from a proba-
bility theory that the consistency measure C by itself is a random
variable with Uniform(0,1) as its distribution, since it is a value
from the accumulative probability function of the v2 random vari-
able by Eq. (11). Therefore, when C falls within (0, 0.05), it uni-
formly takes a value between 0 and 0.05. The family of the curves
in Fig. 7 basically state that there is on the average one out of four
or 25% (= 0.0125=0.05) chance to significantly reject the data. At
the extreme case that we are certainly one out of four times that
the data are bad, we completely reject the data when C< 0.0125.
However, in reality we make the statement “one out of four” with
uncertainty, so we only reject the data partially, which is quanti-
fied by the SDA values on various curves. Now the question is how
we select Tc, m, and n for the SDA function for a PDVAS
implementation?

4.2 Selection of Tc, m, and n

4.2.1 Tc Selection. Tc represents a screening criterion, which
is conceptually similar to the significance level or a value in a tra-
ditional statistical hypothesis testing. The a value is always set to
be small (	0.1) to avoid unacceptable false positive in the hypoth-
esis testing. From an engineering design point view, when we use
Bayesian analysis to aggregate the data to predict reliability, data
often come from various sources; therefore, big uncertainty can be
expected. While we want data inconsistency to be detected, we do
not want to go through the data adjustment step when the evidence
of data inconsistency is not strong. Therefore, we recommend
using Tc value of 0.05 as a standard value for the inconsistency
screening. For the case that we want to closely mimic the tradi-

tional Bayesian analysis without concerning too much about data
inconsistency, we can use a value of 0.01 or smaller. The Tc value
of zero defaults PDVAS to the traditional Bayesian process.
Thereby, we consider the traditional Bayesian process is just a
special case of PDVAS.

4.2.2 m,n Selection. As we mentioned in Sec. 4.1, the ratio of
m=(mþ n) approximately represents our knowledge and judgment
based on engineering knowledge on the possible percentage of
inconsistent data. While keeping m=(mþ n) unchanged, the more
we can pinpoint the source of data inconsistency with certainty,
the bigger the m and n we can assign to. As one of our early
research papers surveyed [14], reliability data for a Bayesian anal-
ysis can come from the following four sources: (1) statistical fre-
quency method (SF); (2) similarity and comparative assessment
(SCA); (3) physics based modeling and simulation (PBMS); and
(4) expert elicitation (EE). Usually, SF data, which are generated
from field or laboratory simulated operating environment, have
the smallest modeling uncertainty for the reason that fitted statisti-
cal inference model partially addresses the sampling modeling
uncertainty. Uncertainty in other three data sources (SCA, PBMS,
and EE) can vary widely but data from EE probably have the big-
gest modeling uncertainty since they are purely based on expert
judgment. With the above assessment, we use Table 1 as the
selection frame work for m and n, which also serves as an illustra-
tive example.

Column (1) in Table 1 classifies the data source categories. We
use our research result in Ref. [14] to divide all possible data sour-
ces into four categories (SF, SCA, PBMS, and EE). Users of
PDVAS can create their own data source categories. Column (2)
is the engineering judgment of the analyst based on their knowl-
edge on the design and analysis for what the average percentage
of the inconsistent data can be. Column (3) is to assess the uncer-
tainty of column (2), which asks approximately how many times
the analyst has experienced the data inconsistency instances in the
past. By the Beta function definition represented by Eq. (18), the
number of inconsistency data instances equates to the parameter
m value. So column (4)¼ column (3). n in Eq. (18) represents the
estimated number of good data instances the analyst experienced
in the past. So, n value in column (5) is back-calculated using Eq.
(19). Column (6) completely defines the SDA Beta function used
in Eq. (18). Figure 8 creates the SDA Beta curves based on the data
from Table 1.

m

mþ n
¼ columnð2Þ (19)

Figure 8 indicates that we rarely reject SF data in a dramatic man-
ner shown in curve (1). This is in line with our recognition that SF
data often is the most reliable data source. Comparing curve (2)
[Beta(2,2)] and curve 3 [Beta(1,1)], both of them partially dis-
count the data in a prorated fashion. Curve (3) is strictly liner.
Curve (2) discounts the data less when C> 0.025 and discounts
more when C< 0.025 than curve (3) does. This is because we are
more confident on Beta(2,2) than on Beta(1,1), which, by deriva-
tion, indicates we have experienced more bad data instances in
Beta(2,2) situation than in Beta(1,1). For curve (4) in the figure,
we discount the majority of the data (more than 50%) when C falls
below 0.035 (70% of 0.05).

Fig. 7 A family of beta curves as potential SDA functions

Table 1 m and n selection framework with an example

(2) (3)
(1)
Datacategory

Estimated percentage
of inconsistent data (%)

Number of analyst’s
experiences on bad data

(4)
M

(5)
n

(6)
SDA Beta function in Eq. (18)

SF 5 1 1 19 Beta(1,19)
SCA 50 2 2 2 Beta(2,2)
PBMS 50 1 1 1 Beta(1,1)
EE 70 3 3 1.29 Beta(3,1.29)
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It is recognized that the data categories are created with subjec-
tivity, the above approach is only considered to be a framework.
Users of PDVAS can create their own data categories and assign
m and n with their own knowledge and judgment. We recommend,
for a quick analysis or for the situations that not much information
is available about the data sources, the user use the linear curve
(Beta(1,1)) as the SDA function as Fig. 9 shows, which basically
discounts the data in a linearly prorated manner when C 	 Tc

without assessing the fraction of possible bad data. In many of our
PDVAS simulation runs, this approach is proven to be reasonable.

5 Case Examples

In this section, various examples are presented to illustrate
PDVAS applications. The results from examples 1 to 4 are
obtained through Monte Carlo simulations that assume certain
Bayesian prior and data sampling distributions. Examples 1–3
show the effectiveness of PDVAS that detects data inconsistencies
and adjusts the data accordingly. Example 4 shows the updating
sequence dependency of PDVAS. Example 5 is to apply PDVAS
to a rocket engine reliability analysis with various data sources.

Example 1. We assume the initial prior distribution is
Beta(1,99), but the sampling distributions all come from Binomial

with p¼ 0.10. Intuitively, there is a data inconsistency between
the prior and the data sets because the mean of prior is
1=(1þ 99)¼ 0.01 while sampling mean is p¼ 0.10. We run 20
Bayesian updates following the process outlined in Fig. 3. The
results are obtained through a computer simulation using the
PDVAS algorithm presented in Figs. 4 and 5. We use Tc¼ 0.05
and the linear curve for SDA as in Fig. 9 to execute PDVAS. Fig-
ure 10 presents the mean comparison. Line (1) in the figure is the
true sampling mean (normalized to p¼ 0.1). Curve (2) is the
Monte Carlo simulated average means from 10,000 Monte Carlo
runs using PDVAS. Curve (3) is the average means of traditional
Bayesian updated posteriors. This example illustrates that the
PDVAS is effective in correcting the data for the case that an ini-
tial prior is too optimistic. The figure also indicates that all three
curves tend to converge together eventually when i (number of
updates) goes to infinity. However, PDVAS mean is much closer
to the true sampling mean for the small number of updates. There-
fore, PDVAS is very useful for the practical situations with small
number of Bayesian updates conducted. Figure 11 presents the
variance comparisons, which also indicates that PDVAS predicts
the posterior variance much closer to the true sampling variance
than the traditional Bayesian process does. This is because the tra-
ditional Bayesian blindly takes the initial prior Beta(1,99) as a
part of the posterior updating, which significantly increases total
sample size in the final posterior distribution, therefore underesti-
mates the variance.

Fig. 8 SDA curves for the data in Table 1

Fig. 9 Linear SDA curve

Fig. 10 Mean comparisons of PDVAS and traditional Bayesian
for example 1

Fig. 11 Variance comparisons of PDVAS and traditional Bayes-
ian for example 1
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Example 2. Similar to example 1, we assume the sampling dis-
tribution is a Binomial with p¼ 0.10. Initial prior is the noninfor-
mative prior Beta(0.5,0.5). However, in this example, we insert a
data inconsistency anomaly by randomly generating 10% of the
data sampling with Beta(3,97) as the sampling distribution. Notice
Beta(3,97) has a much smaller mean [3=(3þ 97)¼ 0.03] than the
Binomial sampling mean p¼ 0.10. We want to test, in a simulated
practical application, whether PDVAS can detect the data incon-
sistency as a multiple Bayesian updating is executed to incorpo-
rate newly obtained data. Again we use Tc¼ 0.05 and the linear
SDA curve. Figures 12 and 13 present the mean and variance

Fig. 12 Mean comparisons of PDVAS and traditional Bayesian
for example 2

Fig. 13 Variance comparisons of PDVAS and traditional Bayes-
ian for example 2

Fig. 14 Mean comparisons of PDVAS and traditional Bayesian
for example 3

Fig. 15 Variance comparisons of PDVAS and traditional Bayes-
ian for example 3

Fig. 16 Means of PDVAS posteriors from 100 different update
sequences

Fig. 17 Variances of PDVAS posteriors from 100 different
update sequences
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comparisons, respectively. The results from the figures show that
PDVAS is superior to the tradition Bayesian since both means and
variances of PDVAS posteriors are closer to the true sampling
mean and variance than the tradition Bayesian posteriors after
three updates. It is interesting to notice that both PDVAS and tra-
ditional Bayesian means and variances diverge from the true sam-
pling mean and variance. This is because there is always 10% of
the sampling data with Beta(3,97) as their distribution with a
smaller mean and variance than the sampling mean and variance.
PDVAS for this case, even though better than the traditional
Bayesian process, is not detecting all data inconsistency, which is
intentional in the design of PDVAS that is to avoid overcorrecting
of the data.

Example 3. All simulation set up in this example is the same as
in example 2 except the difference in 10% data inconsistency
anomaly. Instead of inserting 10% of sampling data with
Beta(3,97), we insert 10% of sampling data with Beta(30,70).
Mean comparison in Fig. 14 shows again the superiority of
PDVAS over the tradition Bayesian. Variance comparison in Fig.
15 shows PDVAS is worse (bigger variances which are further
away from the true sampling variance than the traditional Bayes-
ian variances). A detailed examination of the simulation data indi-
cates that the PDVAS algorithm defined in Figs. 3 and 4 does not
differentiate the bad data from the good well, increasing the var-
iance due to some of the good data being thrown out. Further
research is needed to improve the algorithm to deal with this prob-
lem, which will be discussed in Sec. 6.

Example 4. This example is to show that PDVAS is update
sequence dependent and to provide some ideas for how much

PDVAS posterior means and variances can vary from different
update sequences. The property of the update sequence independ-
ence is possessed as a nice feature by the traditional Bayesian pro-
cess with conjugate priors. It is lost in PDVAS traded with the
data inconsistency check and data adjustment with the intention to
produce more valid posterior. In this example, we use the nonin-
formative prior Beta(0.5,0.5) and assume the following ten data
sets are available for Bayesian updating: (2,12), (3,47),(3,38),
(7,45), (2,9),(6,57), (1,6), (2,13), (2,10), and (1,99). The first nine
data sets are randomly drawn from the Binomial sampling with
p¼ 0.10. The last data set represents a data inconsistency source,
which is from Beta(1,99). We randomly shuffled the 10 data sets
100 times and applied PDVAS to each of these 100 shuffles. Fig-
ure 16 shows that all 100 PDVAS posterior means (symbolized by
dark squares) are closer to the sampling mean (the upper line)
than to the traditional Bayesian posterior mean (the lower line),
which is a fixed value due to the update sequence independence.
Similar phenomenon is observed in Fig. 17 for the simulated var-
iances. The noticeable scatter of the means and variances in
PDVAS due to update sequence variations brings an open
research question whether it is necessary or possible to further
define the PDVAS algorithm to produce an optimized but unique
posterior with some predefined optimization criteria. We will dis-
cuss this in Sec. 6.

Example 5. This example is to apply PDVAS to a rocket engine
reliability analysis. Table 2 presents the data that are assumed to
be chronologically obtained as the design maturity evolves. The
Bayesian update is performed repeatedly as the new data sets
become available to support on-going design decisions.

Table 2 Rocket engine reliability data sets in example 5

Design stage Data category Number of failures Number of successes

Concept
exploration

Demonstrated reliability from heritage engine A 0 69
Demonstrated reliability from heritage engine B 0 13

Conceptual
design

Combination of SCA and PBMS Predicted 1 failure per
1000 engine hot fires

Embodiment
design

Laboratory test result 1 4

Development Subscale development test results 2 18
Full scale development test results 3 147

Certification Certification test results 0 120

Table 3 Traditional Bayesian and PDVAS comparisons in example 5

Design stage Data category
Number of

failures
Number of
successes

Traditional Bayesian
posterior PDVAS posterior

Initial prior Noninformative
Beta(0.5,0.5)

0.5 0.5

Concept
exploration

Demonstrated
reliability from

heritage engine A

0 69

Demonstrated
reliability from

heritage engine B

0 13 Beta(0.5,82.5)
Mean¼ 0.0060

Sd¼ 0.0084

Beta(0.5,82.5)
Mean¼ 0.0060

Sd¼ 0.0084
Conceptual
design

Combination of
SCA and PBMS

1 999 Beta(1.5,1081.5)
Mean¼ 0.0014

Sd¼ 0.0011

Beta(1.0,1081.0)
Mean¼ 0.0009

Sd¼ 0.0009
Embodiment
design

Laboratory test result 1 4 Beta(2.5,1085.5)
Mean¼ 0.0023

Sd¼ 0.0015

Beta(1.0,1081.0)
Mean¼ 0.0009

Sd¼ 0.0009
Development Subscale

development test
results

2 18 Beta(4.5,1103.5)
Mean¼ 0.0041

Sd¼ 0.0019

Beta(1.01,1081.09)
Mean¼ 0.0009

Sd¼ 0.0009
Full scale

development
test results

3 147 Beta(7.5,1250.5)
Mean¼ 0.0060

Sd¼ 0.0022

Beta(2.29,1144.42)
Mean¼ 0.0020

Sd¼ 0.0013
Certification Certification test

results
0 120 Beta(7.5,1370.5)

Mean¼ 0.0054
Sd¼ 0.0020

Beta(2.29,1264.42)
Mean¼ 0.0018

Sd¼ 0.0012
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For the SCA and PBMS combined data set, we interpret as 1 fail-
ure in 1000 trials so (F,S)¼ (1,999). If we apply the traditional
Bayesian analysis to the above data with a noninformative
priorBeta(0.5,0.5) as the initial prior, we get the final posterior
Beta(0.5þ 1þ 1þ 2þ 3,0.5þ 69þ 13þ 999þ 4þ 18þ 147þ 120)
: Beta(7.5,1370.5). This posterior has a mean of
7.5=(7.5þ 1370.5)¼ 0.0054, a standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7:5x1370:5=½ð7:5þ 1370:5Þ2ð7:5þ 1370:5þ 1Þ�
q

¼ 0.0020, and a

COV (coefficient variation, standard deviation=mean) of
0.0020=0.0054¼ 37%. Now we apply PDVAS to the same data.
Table 3 summarizes the traditional Bayesian and PDVAS
results in the chronologically manner. The final PDVAS posterior has
a mean of 2.29=(2.29þ 1264.42)¼ 0.0018, a standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:29x1264:42=½ð2:29þ 1264:42Þ2ð2:29þ 1264:42þ 1Þ�
q

¼ 0.0012

and a COV of 0.0012=0.0018¼ 67%. Comparing with the traditional
Bayesian, PDVAS posterior has a smaller mean (0.0018 versus
0.0054) but bigger COV (67% versus 37%). The mean reduction is
because PDVAS discounts several inconsistent data sets, which have
significant failure probability. The COV increase is because PDVAS
discounts the total data sample size (notice for

Betaða;bÞ; COV ¼
ffiffiffi
b
p � ffiffiffi

a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþbþ 1
p� �

). All these results are in

line with the engineering design and development practice that
addresses failures when they occur so the failure probability is reduced
but at the same time, redesign of the product or implementation of
some corrective actions may introduce new uncertainty and unknowns,
which leads to a bigger COV.

6 Summary and Concluding Remarks

A Bayesian PDVAS was developed for the Beta-Binomial Bayes-
ian model to address the two controversial issues surrounding the
Bayesian reliability analysis, which are the reasonableness of the
prior and data consistency. PDVAS attempts to balance retaining the
knowledge in the data and reducing the data inconsistency. PDVAS
is also devised so that the traditional Bayesian becomes a special
case of it and is a default position if we do not have enough knowl-
edge to adjust the data. Several properties of PDVAS were presented
that provide insights about PDVAS data adjustment strategy,
PDVAS posterior’s convergence, and update sequence dependency.
The PDVAS adjustment formulas were related to the reliability data
categories from engineering design. A detailed data adjustment selec-
tion framework was provided to assist PDVAS implementation. Sev-
eral illustrative examples show the adequateness, effectiveness, and
usefulness of PDVAS for the presented application instances.
Designers can use PDVAS for data validation and adjustment, espe-
cially if suspecting data inconsistency exists. With PDVAS, Bayesian
reliability analysis will be more valid with less data inconsistency
and contradiction to better support engineering design decisions.

There are some limitations for PDVAS. One limitation is that
PDVAS aims at detecting and reducing data noise and disturbance
with the assumption that correct sampling data are from a single
sampling distribution. PDVAS is not for data comprising that
aggregates different sampling distributions in a weighted average
manner. Another limitation is the proper balance of the risk of
rejecting good data and the risk of failing to detect data inconsis-
tency. As one illustrative example (example 2 of Sec. 5) shows,
PDVAS may not be aggressive enough to detect the data inconsis-
tency. The mean of the PDVAS derived posterior in that example is
not converging to the true sampling mean, though it is still closer to
the true sampling mean, therefore, better than the mean of the tradi-
tional Bayesian. Another example (example 4 in Sec. 5) shows,
under certain data situations, PDVAS may throw away good data,
which leads to overestimating the sampling variance. The results of
these two cases indicate that a proper balance of the risk of rejecting
good data and the risk of failing to detect data inconsistency may
not be easily achieved. As discussed early, PDVAS is an update
sequence dependent; therefore, PDVAS applications on conjugated
prior data sets need to be cautioned for possible noticeably different
posteriors due to different update sequences.

There are further research opportunities for PDVAS. One imme-
diate interest is to extend the PDVAS approach and formulas devel-
oped in this paper for the Beta-Binomial model to general prior-
sampling distribution situations. Quick examinations of the PDVAS
algorithm presented by Figs. 4 and 5 in Sec. 2 and five propositions
presented in Sec. 3 indicate that they all can be easily generalized
to other prior-sampling distribution situations. The PDVAS consis-
tency measure (Eq. (11) in Sec. 2) and the data adjustment formulas
(Eqs. (18) and (19) in Sec. 4) will have to be developed for a spe-
cific prior and sampling distribution pair of interest.

Other research opportunities are as follows. Some details of the
PDVAS algorithm need to be refined to accommodate more versa-
tile data situations for balancing the two risks (the risk of rejecting
good data and the risk of failing to detect data inconsistency). The
selection criteria of the PDVAS screen threshold (Tc) needs to be
more rigorously established, which links to a data validity mea-
sure and data acceptance and rejection risks. Update sequence de-
pendency of PDVAS is unavoidable but the optimization of
PDVAS posteriors is worthwhile to explore that can lead to
uniqueness of the posterior. The PDVAS data categorization can
be more closely defined with engineering design and analysis data
as inputs. Finally, PDVAS may provide another criterion to assess
the adequacy of the initial prior assignment, which has been an
active research area for years in Bayesian analysis.

Appendix: The Proofs of the Propositions

PROPOSITION 1. For the data set (Fv,Sv) being adjusted in Eq.
(13), PDVAS does not change the mean of the data set but
increases its standard deviation r.

Proof. The mean of the data set (Fv,Sv) is Fv= Fv þ Svð Þ. The
mean of the adjusted data set ( ~Fv; ~SvÞ is ~Fv

�
~Fv þ ~Sv

� �
� SDAFv= SDAFv þ SDASvð Þ ¼ Fv= Fv þ Svð Þ per Eq. (13). For the
r (standard deviation) of ð ~Fv; ~SvÞ, denoted as ~rð ~Fv

~SvÞ, we use r for-
mula of the Beta distribution

~rBetað ~Fv;~SvÞ ¼
ffiffiffiffiffiffiffiffiffi
~Fv

~Sv

p
ð ~Fv þ ~SvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Fv þ ~Sv þ 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDAFvSDASv

p

ðSDAFv þ SDASvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDAFv þ SDASv þ 1
p

¼
ffiffiffiffiffiffiffiffiffi
FvSv

p

ðFv þ SvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDAðFv þ SvÞ þ 1

p >

ffiffiffiffiffiffiffiffiffi
FvSv

p

ðFv þ SvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFv þ SvÞ þ 1

p
:rðFv;SvÞ: standard deviation of the unadjusted data set (Fv,Sv)
for any SDA< 1.

PROPOSITION 2. At the ith Bayesian updating with the i sets of
data (F0,S0), (F1,S1), …, (Fi,Si) available, if

Fv= Fv þ Svð Þ½ � <
Pj¼i

j¼0;j6¼v Fj

. Pj¼i
j¼0;j 6¼v Fj þ

Pj¼i
j¼0;j6¼v Sj

� 	h i
,

where 0 	 v 	 i, and (Fv,Sv) is one of the i data sets, we then have

Fv

FvþSv
<

Fvþ
Pj¼i

j¼0;j6¼v

Fj

FvþSvþ
Pj¼i

j¼0;j6¼v

Fjþ
Pj¼i

j¼0;j6¼v

Sj

	
~Fvþ

Pj¼i

j¼0;j6¼v

Fj

~Fvþ ~Svþ
Pj¼i

j¼0;j6¼v

Fjþ
Pj¼i

j¼0;j6¼v

Sj

�
SDAFvþ

Pj¼i

j¼0;j 6¼v

Fj

SDAFvþSDASvþ
Pj¼i

j¼0;j6¼v

Fjþ
Pj¼i

j¼0;j 6¼v

Sj

<

Pj¼i

j¼0;j6¼v

Fj

Pj¼i

j¼0;j6¼v

Fjþ
Pj¼i

j¼0;j6¼v

Sj
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Proof. First, we show

Fv

Fv þ Sv
<

Fv þ
Pj¼i

j¼0;j6¼v

Fj

Fv þ Sv þ
Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

<

Pj¼i

j¼0;j6¼v

Fj

Pj¼i

j¼0;j 6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

:

(A1)

From ½Fv=ðFv þ SvÞ� < ½
Pj¼i

j¼0;j6¼v Fj=ð
Pj¼i

j¼0;j6¼v Fj þ
Pj¼i

j¼0;j6¼v SjÞ�,
we have ½Fvð

Pj¼i
j¼0;j6¼v Fj þ

Pj¼i
j¼0;j6¼v SjÞ� < ½ðFv þ SvÞ

Pj¼i
j¼0;j6¼v Fj�

Adding FvðFv þ SvÞ on both sides, we get

FvðFv þ SvÞ þ Fv

Xj¼i

j¼0;j6¼v

Fj þ
Xj¼i

j¼0;j6¼v

Sj

 !

< FvðFv þ SvÞ þ ðFv þ SvÞ
Xj¼i

j¼0;j6¼v

Fj:

So we have ½FvðFv þ Sv þ
Pj¼i

j¼0;j 6¼v Fj þ
Pj¼i

j¼0;j6¼v SjÞ� < ½ðFvþ
SvÞðFv þ

Pj¼i
j¼0;j6¼v FjÞ�.

Therefore, we have

Fv

Fv þ Sv
<

Fv þ
Pj¼i

j¼0;j6¼v

Fj

Fv þ Sv þ
Pj¼i

j¼0;j 6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

Similarly, we can show the right side inequality of (A1).
For proving

Fv

Fv þ Sv
<

SDAFv þ
Pj¼i

j¼0;j6¼v

Fj

SDAFv þ SDASv þ
Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j 6¼v

Sj

<

Pj¼i

j¼0;j6¼v

Fj

Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j 6¼v

Sj

(A2)

we have

SDAFv

SDAFv þ SDASv
� Fv

Fv þ Sv
<

Pj¼i

j¼0;j6¼v

Fj

Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

So, similar to the proof of (A1), we have

Fv

Fv þ Sv
� SDAFv

SDAFv þ SDASv

<

SDAFv þ
Pj¼i

j¼0;j6¼v

Fj

SDAFv þ SDASv þ
Pj¼i

j¼0;j 6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

<

Pj¼i

j¼0;j 6¼v

Fj

Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

:

Lastly, to prove

Fv þ
Pj¼i

j¼0;j6¼v

Fj

Fv þ Sv þ
Pj¼i

j¼0;j 6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

	
SDAFv þ

Pj¼i

j¼0;j 6¼v

Fj

SDAFv þ SDASv þ
Pj¼i

j¼0;j6¼v

Fj þ
Pj¼i

j¼0;j6¼v

Sj

(A3)

equivalently, we prove

Fv þ
Xj¼i

j¼0;j 6¼v

Fj

 !
SDAFv þ SDASv þ

Xj¼i

j¼0;j6¼v

Fj þ
Xj¼i

j¼0;j6¼v

Sj

 !

� Fv þ Sv þ
Xj¼i

j¼0;j6¼v

Fj þ
Xj¼i

j¼0;j 6¼v

Sj

 !
SDAFv þ

Xj¼i

j¼0;j 6¼v

Fj

 !
	 0

(A4)

Reorganizing the left-hand side (LHS) of (A4), we get

LHS ¼ ðSDA � 1Þ ðFv þ SvÞ
Xj¼i

j¼0;j6¼v

Fj � Fvð
Xj¼i

j¼0;j6¼v

Fj þ
Xj¼i

j¼0;j6¼v

SjÞ
" #

Since ½Fv=ðFv þ SvÞ� < ½
Pj¼i

j¼0;j6¼v Fj=:ð
Pj¼i

j¼0;j6¼v Fj þ
Pj¼i

j¼0;j6¼v SjÞ�

ðFv þ SvÞ
Xj¼i

j¼0;j6¼v

Fj � Fv

Xj¼i

j¼0;j6¼v

Fj þ
Xj¼i

j¼0;j6¼v

Sj

 !
> 0

Since SDA 	 1, SDA � 1 	 0: Therefore,

ðSDA � 1Þ ðFv þ SvÞ
Xj¼i

j¼0;j6¼v

Fj � Fvð
Xj¼i

j¼0;j6¼v

Fj þ
Xj¼i

j¼0;j6¼v

SjÞ
 !

	 0

This proved (A3).
PROPOSITION 3. There always exists a set of SDA values such that

steps 2 and 3 of Fig. 4 will converge.
Proof. At the ith Bayesian update, the consistency statistic, calcu-
lated by Eq. (10), is given by

v2
C ¼

Xj¼i

j¼0

ðFj þ SjÞ
" # Pj¼i

j¼0

F2
j

FjþSj

Pj¼i

j¼0

Fj

þ

Pj¼i

j¼0

S2
j

FjþSj

Pj¼i

j¼0

Sj

� 1

0
BBB@

1
CCCA

This is a v2 statistic with the degree of freedom of i. Under the
extreme case, we can have all data sets adjusted with the same
data adjustment score SDA. Then the adjusted v2

C value, named as
~v2

C, becomes

~v2
C ¼

Xj¼i

j¼0

ðSDAFj þ SDASjÞ
" # Pj¼i

j¼0

ðSDAFjÞ2
SDAFjþSDASj

Pj¼i

j¼0

SDAFj

þ

Pj¼i

j¼0

ðSDASjÞ2
SDAFjþSDASj

Pj¼i

j¼0

SDASj

� 1

0
BBB@

1
CCCA

¼ SDA½
Xj¼i

j¼0

ðFj þ SjÞ�

Pj¼i

j¼0

F2
j

FjþSj

Pj¼i

j¼0

Fj

þ

Pj¼i

j¼0

S2
j

FjþSj

Pj¼i

j¼0

Sj

� 1

0
BBB@

1
CCCA
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Therefore, we can always pick an SDA that is small enough such
that C ¼ Pðv2 > ~v2

CÞ � Tc.
PROPOSITION 4. For the no-failure situation, that is, in (F0,S0),

(F1,S1), …, (FkSk), all Fi = 0 except F0, v2
C by Eq. (10), after sub-

stituting F0 by ~F0 ¼ SDAF0 and S0 by ~S0 ¼ SDAS0, is a monotone
increase function of SDA, v2

C � f½F0=ðF0 þ S0Þ�
Pi¼k

i¼1 Sig and

v2
C ! f½F0=ðF0 þ S0Þ�

Pi¼k
i¼1 Sig when SDA! 0.

Proof. After substituting F0 by ~F0 ¼ SDAF0, S0 by ~S0 ¼ SDAS0,
and Fi by 0 for i � 1, Eq. (10) becomes

v2
C ¼ SDAF0 þ SDAS0 þ

Xi¼k

i¼1

Si

" # F0

Pi¼k

i¼1

Si

ðF0 þ S0ÞðSDAS0 þ
Pi¼k

i¼1

SiÞ

0
BBB@

1
CCCA

¼
F0 þ S0 þ

Pi¼k

i¼1

Si

SDA

S0 þ

Pi¼k

i¼1

Si

SDA

F0

F0 þ S0

Xi¼k

i¼1

Si

It can easily be proven that ½F0 þ S0 þ ð
Pi¼k

i¼1 Si =SDAÞ�=
½S0 þ ð

Pi¼k
i¼1 Si =SDAÞ� is a monotone increase function of SDA

from calculus. It is also easily seen that when SDA ! 0;
½F0 þ S0 þ ð

Pi¼k
i¼1 Si =SDAÞ�=½S0 þ ð

Pi¼k
i¼1 Si =SDAÞ� ! 1; which

leads to v2
C ! ðF0=F0 þ S0Þ

Pi¼k
i¼1 Si: Since v2

C is a monotone

increase function of SDA, therefore v2
C � ðF0=ðF0 þ S0ÞÞ

Pi¼k
i¼1 Si.
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