
1

i
m
g
n
t
s
v
T
p
t

t
s
t
d
t
d
c
g
u
i
q
s
t
t

d
g
e
a
a
t
t
f
i
o

p
2
D
a
B

1

Downlo
Yan Jin
e-mail: yjin@usc.edu

Wei Li

Department of Aerospace and Mechanical
Engineering,

University of Southern California,
Los Angeles, CA 90089-1453

Design Concept Generation: A
Hierarchical Coevolutionary
Approach
As design problems become more complex and design lead time more pressing, designers
need effective support tools to expand their design space exploration. In this paper, a
hierarchical coevolutionary approach is proposed to support designers by automatically
generating design concepts based on the designers’ inputs. The approach adopts a zigzag
design process in which function structures and their corresponding solution principles
coevolve in parallel across different levels of an abstraction hierarchy. A grammar-based
approach is applied to decompose higher-level functions and generate an initial popula-
tion of function structures. From this initial population, a coevolutionary algorithm is
devised to coevolve more function structures and their corresponding solution principles.
A case study of designing a mechanical personal transporter is presented to demonstrate
the effectiveness and features of the proposed approach. �DOI: 10.1115/1.2757190�
Introduction
Conceptual design is a complex process and involves generat-

ng and selecting design concepts to satisfy given design require-
ents. Designers must find effective and efficient ways to fill the

ap between the design requirements and available solution tech-
ologies. A general approach to design complex mechanical sys-
ems is to break a complex design problem into more manageable
ubproblems, solve the less complex subproblems, and then de-
elop the overall design by synthesizing the subsolutions �1,2�.
his divide-and-conquer process usually involves multilayered
roblem and solution spaces in which various functions and solu-
ion principles are explored and design concepts generated.

To develop computer tools for supporting concept generation,
wo important issues must be addressed. First, the current under-
tanding of the design concept generation process is limited, and
his lack of understanding makes it difficult to apply any existing
esign process model directly to computer based concept genera-
ion. Extant design methods �1–4� prescribe how design should be
one, but provide little guidance for how to generate design con-
epts. The interest in cognitive models of conceptual design has
rown recently �5–7�, but it is still too early for these models to be
seful for building computational design tools. Another important
ssue related to providing conceptual design support is the lack of
uantitative information for evaluating design concepts. The de-
ign space is open, but the useful information for design evalua-
ion is very limited. This situation makes it difficult to form effec-
ive evaluation criteria for design concept generation.

Our research attempts to develop a computational tool to help
esigners effectively explore their design space by automatically
enerating design concepts based on the inputs from the design-
rs. In our proposed hierarchical coevolutionary design �HiCED�
pproach, a design concept is a conceptual realization of a product
nd is defined as a pair of a function structure, composed of mul-
iple functions and the energy, material and signal flows between
hem, and a set of means, called a means combination, that per-
orms the functions and transforms the flows. A function is an
dentified purposeful transformation of given input flow�s� into the
utput flow�s� and a means is a working principle �1� or a tech-

Contributed by the Design Theory and Methodology Committee of ASME for
ublication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received September 6,
006; final manuscript received December 16, 2006. Review conducted by Clive L.
ym. Paper presented at the ASME 2005 Design Engineering Technical Conferences

nd Computers and Information in Engineering Conference �DETC2005�, Long

each, CA, September 24–28, 2005.

012 / Vol. 129, OCTOBER 2007 Copyright ©

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
nology solution �8� that achieves a given function. A means is not
a physical component that usually does not have dimensional and
other physical specifications. A means is implementable if a spe-
cific physical component can be found to embody the means.
Since we do not assume the availability of the physical component
information, how to evaluate the generated design concepts is a
challenge for this research.

Built on the previous research �1,2,9–14�, our proposed HiCED
approach focuses on functions and means and views conceptual
design as a process of coevolution of both function structures and
means combinations across different levels of an abstraction hier-
archy. By coevolution, we mean that the function structures and
their corresponding means combinations evolve in parallel by us-
ing each other as their evaluation focus, i.e., function structures
are used to evaluate and select means, and the selected means in
turn are used in the evaluation criteria for further evolving func-
tion structures. This coevolutionary computational process model
for design concept generation was inspired by the zigzag design
process �2�, in which functions and corresponding means are de-
composed and structured in parallel. To make this hierarchical
coevolutionary process computable, we combine the zigzag de-
sign process with a grammar and evolutionary computing based
algorithm that continuously generates function structures and
searches for best matching means along the abstraction hierarchy,
from more abstract to more concrete levels, until “best” imple-
mentable design concepts are found. The evaluation of design
concepts is based on the fitness functions associated with the evo-
lutionary algorithm and is part of the design concept generation
process.

The basic components of HiCED are the following: �1� a func-
tion and means library, �2� a coevolutionary mechanism, and �3� a
number of fitness functions, as shown in Fig. 1. The function and
means library serves as a knowledge base of what can be specified
as functions, and what are the possible technologies or solutions
to achieve these functions. It provides a basis for decomposing
functions and coevolving function structures and their correspond-
ing means combinations. The richness of the library determines
the size of the design space. In our research, we expect that even-
tually an agent-based system can be developed to fuel the library
by collecting function and means information from designers’ de-
sign logs, and relevant databases and websites. Since the focus of
our current research is on the other two components, we created a
library for the purpose of testing.

The coevolutionary mechanism provides procedures for effec-

tive design concept generation and evaluation. As mentioned

2007 by ASME Transactions of the ASME

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



a
d
p
f
a
r
s
c
l

d
s
e
a
t
a
c
m
d
t
f
i
a

2
A
t
m

2

n
f

v
�
t
�
p
z
t
W
D
m
m
a
c
d
o
R
m

J

Downlo
bove, a zigzag process is adopted as the overall coevolutionary
esign process. In this process, a grammar-based approach is ap-
lied to decompose higher-level functions. At a given level of the
unction decomposition hierarchy, a genetic programming �GP�
nd genetic algorithm �GA� based coevolutionary design algo-
ithm is devised to evolve function structures and their corre-
ponding solution means. If the resulting corresponding means
ontain unimplementable ones, further decomposition and coevo-
ution are performed.

The fitness functions in HiCED can be derived from general
esign principles, design requirements and constraints, and de-
igners’ preferences. They serve as the evaluation criteria for
volving design concepts from one generation to another. There
re two categories of fitness functions: those for evaluating func-
ion structures and those for selecting means combinations. To
ddress the issue of the lack of quantitative information at the
onceptual design stage, the fitness functions are framed to utilize
aximum available information including the relations between

ifferent levels in the decomposition hierarchy, the function rela-
ions for means evaluation, and the means relations for evaluating
unction structures. This hierarchical and function-means coevolv-
ng mechanism for evaluation makes it possible for HiCED to
pply various types of available information.

In the rest of the paper, we first review the related work in Sec.
and then present the details of the HiCED framework in Sec. 3.
case example is presented in Sec. 4 to demonstrate the effec-

iveness of the proposed approach, and finally the concluding re-
arks are discussed in Sec. 5.

Related Work
Our research on HiCED draws up on two major research fields,

amely, engineering design and evolutionary computing. In the
ollowing, we review the related work in these two fields.

Design process study. The study on design processes has led to
arious practical process models and methods. Axiomatic design
2� is a general design approach that helps designers identify func-
ional requirements �FRs� and corresponding design parameters
DPs� through a zigzag design process and two axioms, i.e., inde-
endent axiom and information axiom. Our HiCED adopts the
igzag design process and treats design as hierarchical coevolu-
ion of both function structures and their corresponding means.

hile in axiomatic design, designers have to generate FRs and
Ps based on their experience; the grammar and coevolutionary
echanism of HiCED allows it to generate design concepts auto-
atically based on designers’ inputs. The systematic design �1�

pproach clearly identifies function structures and working prin-
iples for concept generation and applies morphology charts for
esign concept generation. Our HiCED uses the same definitions
f functions, function flows, and function structures introduced in
ef. �1� and applies a hierarchical coevolutionary computing
echanism to generate and manipulate these concepts.

Fig. 1 Components of HiCED
Grammar-based design. The grammar-based approach at-

ournal of Mechanical Design

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
tracted the attention of design researchers for its ability of design
exploration through a flexible expression of grammar rules �9,10�.
From the early shape grammars �15� to the more recent graph
grammars �10,11�, synthesis grammar has been adopted as a for-
mal definition of syntactic structure of mechanical systems. Some
researchers have introduced the grammars of function and ex-
plored their application together with form grammars in specific
engineering domains �16,17�. Our HiCED approach adopts the
grammar-based approach for decomposing functions. However,
unlike most existing grammar-based approaches, we use relatively
“lean” grammar rules to decompose higher-level functions and
generate the initial population of function structures. The further
creation of function structures from this initial population is car-
ried out through a GP and GA based coevolution process. This
approach does not require creating strict grammar rules and al-
lows generating more creative function structures. It, however,
adds burdens to design evaluation.

Function modeling, The research on functional representation
�18,19� provides a method to describe the contents of design and
helps designers achieve the repeated and meaningful results from
functional modeling. A standardized set function-related terminol-
ogy, called a functional basis, has been developed for design
knowledge capture and reuse. Based on the functional representa-
tion, Sridharan and Campbell �11� introduced an approach to
function structuring by combining the functional representation
and graph grammars. Our research also focuses on functions and
treats function structuring as an important process in conceptual
design. However, instead of being limited in functions, HiCED’s
coevolution approach also takes into consideration the means that
perform the functions. This dual-focus approach allows effective
evaluation of the function structures and the final design concepts.

Evolutionary and coevolutionary computing. Evolutionary
computing is inspired by the natural evolution process �20,21�.
The evolutionary computing approach solves a given problem by
evolving the best solution�s� from a population through reproduc-
tion, mutation, recombination, natural selection, and survival of
fitness. Recently, this approach has been taken to solve various
engineering problems including design optimization, configura-
tion design, and design automation �12,22–29�. While in evolu-
tionary computing, individual solutions are selected based on a
common fitness measure that does not depend on the state of the
other individuals in the population, in coevolutionary computing
individuals evolve within the context of other individuals either in
the same population or in another population �30,31�. In coopera-
tive coevolution, individuals of different species evolve separately
and they together form a solution for the problem. For evaluation,
each species is considered in turn in the context of other species.
Examples of cooperative coevolution include evolving robotic
soccer teams and evolving a group of predators. On the other
hand, in competitive coevolution, individual fitness is evaluated
relative to the others in the population, rather than through an
absolute fitness measure. In this case, a fitness increase in one
individual usually leads to a decreased fitness of another. In our
research, we adopt a cooperative coevolution process. In HiCED,
at each level of the abstraction hierarchy, two species, i.e., func-
tion structures and means combinations, coevolve in a shared de-
sign context until satisfied design concepts are found.

Coevolutionary design. The idea of design as coevolution be-
tween problems and solutions is not new �32�. Potter and De Jong
�33� proposed a coevolutionary process to evolved design solu-
tions by splitting a complex problem solving process into simpler
subevolutionary search processes that cooperate to produce an
overall solution. Information is implicitly communicated between
the subevolutionary processes through the use of a shared fitness
function. The problems that have been dealt with by this approach
are “homogeneous” in the sense that each subproblem is simply a
subset of a set of similar elements that have the same require-
ments of the composite structure. Maher and Poon �34� proposed

a coevolutionary design approach and provided a computational

OCTOBER 2007, Vol. 129 / 1013

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



m
t
b
t
s
r
d
t
n
c
i
t
T
p
a
c
R
p
o
a
s
n
u
s
l
i
b
t
h
t
e
d
s
c
t
t
i
h
l
g

3

c
r
a
u
e
d
d
d
m
a
t
m

p
t
d
t
t
t
s
p
s
t
i
o

1

Downlo
odel to evolve designs by exploring both the problem space and
he solution space. In this approach, the solutions are evaluated
ased on the problems and the problems are evaluated in the con-
ext of the evolved solutions. The coevolution in this approach is
ingle level and can be applied only to the design problems that
equire incremental improvement. Campbell et al. �13,14� intro-
uced an agent-based approach, called A-Design, to design syn-
hesis that employs a coevolutionary search process. In A-Design,
ot only the designs but also the design creators, i.e., the agents,
oevolve through an iterative search process. During each cycle of
teration, the agents modify the population of designs and are
hemselves modified based on the quality of designs they produce.
he coevolution in A-Design is based on a goal-directed search
rocess rather than through genetic operations such as mutation
nd crossover, meaning that rich knowledge is needed for the
oevolution process but design moves are more purposeful.
osenman and Saunders �35� proposed a hierarchical coevolution
rocess in which the solutions of the components at a lower level
f a decomposition hierarchy coevolve with the solutions of the
ssemblies at the immediately higher level. At a given level, the
olutions of a component are evaluated by both the intrinsic fit-
ess, which measures how well the solutions satisfy the criteria
nique to this component, and the extrinsic fitness, which mea-
ures how the solutions satisfy the higher-level, i.e., the assembly
evel, requirements. Our HiCED approach is different from theirs
n three ways. First, the abstraction hierarchy in HiCED is defined
y functional decomposition rather than component decomposi-
ion where the lower-level solutions are the components of the
igher-level assemblies. Furthermore, the functional decomposi-
ion in HiCED is controlled by a set of grammar rules not the
volution process. Second, while the search process in Ref. �35� is
epth first and mostly bottom up, HiCED takes a breadth first and
trict top-down process, mimicking the human zigzag design pro-
ess. Lastly, the coevolution in HiCED is between function struc-
ures and their corresponding means combinations rather than be-
ween two adjacent levels in the hierarchy, although the
nformation of the function structures and the means obtained at a
igher level is used for fitness measures at the immediately lower
evel. This function-means coevolution mechanism increases the
enerality of HiCED.

Hierarchical Coevolutionary Design Process
An effective and efficient computational process for design

oncept generation must be able to deal with complex and non-
outine design problems, promote creativity, and adapt to the
vailable design knowledge and design context information. Fig-
re 2 illustrates the overall design process of HiCED. This process
mploys a hierarchical strategy to divide-and-conquer complex
esign problems and a general function-means mapping scheme to
eal with nonroutine problems. By not requiring strict predefined
esign knowledge or rules and by applying context specific infor-
ation in solution evaluation through a cooperative coevolution

lgorithm, our proposed design process encourages “creativity” in
he sense that the latest available information of functions and

eans is utilized.
As shown in Fig. 2, there are three inputs to the HiCED design

rocess: a function and means library, design requirements, and a
op-level function. We assume that the library is continuously up-
ated so that the most up to date knowledge is acquired and ready
o be used by the HiCED. Both the design requirements and the
op-level function are design problem specific. HiCED requires
hat a designer develops a top-level function that can be under-
tood by the system. The design requirements influence the design
rocess in two ways, i.e., they affect the preferences of means
elections, and they are reflected in the fitness functions. After the
op-level function and the requirements are given, HiCED starts
ts design exploration process. The following is a brief description
f the major steps of this process.
Step 1: Grammar-based function decomposition. Based on the

014 / Vol. 129, OCTOBER 2007

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
grammar rules, the overall function is decomposed into lower-
level subfunctions that are more specific and form an initial func-
tion structure set. Unlike many other grammar-based design sys-
tems �e.g., Refs. �9–11�� that use grammar rules to generate a
space of function structures to choose from, the function decom-
position in HiCED creates an initial population of function struc-
tures at a given level. The creation of more, and possibly better,
function structures is carried out through a function-means coevo-
lution process. Because we do not expect the grammar rules to
cover all possible search spaces, the rules can be relatively lean
and, therefore, more general and easier to maintain. On the other
hand, the lean rules leave much work for the “function structur-
ing” step.

Step 2: Means selection. After the initial function structure set
is generated, for each unique function in the set, a group of fea-
sible means can be identified through a relatively simple search
algorithm. Adding these feasible means groups together, we have
a corresponding feasible means set. In HiCED, we assume that the
knowledge of matching between a function and its feasible means
is encoded in the function and means library. By organizing fea-
sible means into groups and restricting the means space to the
feasible means set, instead of the whole means library, we can
increase the efficiency of coevolving function structures and
means combinations in the next step.

Step 3: Function structuring and means combination selection.
Once the initial function structure set and their corresponding fea-
sible means set are generated, in this step, a cooperative coevolu-
tion algorithm is devised to evolve the best function structures and
their corresponding means combinations. The following is the co-
evolution process.

• First, a GP based algorithm is employed to evolve partially
feasible function structures. To ensure that the generated
function structures are feasible, a number of constraints are
associated with the genetic operations. To promote creativity
in the evolution process, on the other hand, the constraints
do not guarantee that all generated functional structures are
feasible, that is why the function structures generated here
are partially feasible. The final feasibility is maintained
through the fitness functions, as described in Sec. 3.4. It is

Fig. 2 The design process of HiCED
worth mentioning that in HiCED, any unique function can

Transactions of the ASME

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



o
a
t
a
n
t
c

i
t
m
p
t
t
I
a
p
t
a
s
a
t
s
t
r
c

i
p
s
G
d
p
r
O
c
p
t
H
f
s
g
p
d

J

Downlo
be used in a function structure multiple times to form dif-
ferent function structures. As a result, the number of func-
tions contained in a given function structure can be huge.
This “dimension growth” is managed by imposing “dimen-
sion control” in the fitness function, as described in Sec. 3.4.

• After new function structures are generated, their informa-
tion is used to evolve means combinations through a GA
based algorithm. During this process, for each function
structure, a GA based search is carried out to find best
means combinations from the corresponding feasible means
set. A bit string is used to model the space of feasible means.
Since the size of the feasible means space is changing for
different function structures, a dynamic modeling scheme is
devised for the GA algorithm.

• In the light of the identified means combinations, the system
goes back to further evolve better function structures by
taking into consideration the information of the correspond-
ing means combinations. The newly evolved function struc-
tures will then lead to generation of new means combina-
tions and the coevolution of function structures and their
corresponding means combinations continue until the satis-
factory design concepts are found.

Step 4: Design concept selection. Once the coevolution process
f the function structures and means combinations terminates with
set of function structure and means combination pairs, the sys-

em selects the best pairs whose fitness values are higher than an
llowable threshold. If the selected pairs contain means that are
ot implementable, then go to step 1. Human designers can par-
icipate in this selection process and select the final design
oncept�s�.

The HiCED computational design process described above was
nspired by the human zigzag design process �2�, also known as
he requirement-solution tree method and the function-means tree

ethod �8�, and coevolutionary computing. In the zigzag design
rocess, when designers attempt to decompose higher-level func-
ions, they first try to identify solution means at the same level and
hen use the information of the means to guide the decomposition.
t is conceivable that during this mapping �functions to means�
nd decomposing �higher-level functions into lower-level ones�
rocess, a designer must mentally develop function structures and
heir corresponding means so that the mapping and decomposing
re guided by these implicit function structures. Our process re-
embles this human design process. Our overall strategy is to use
relatively general and simple top-down grammar-based method

o generate the initial population of function structures and then
earch for better ones through the function-means coevolution. At
he core of this computational design process are the grammar
ules, the genetic representations of function structures and means
ombinations, and the fitness functions.

3.1 Grammar Rules. To decompose a higher-level function
nto lower-level ones, we employ a graph grammar-based ap-
roach. A number of grammar rules are introduced to generate
ubfunctions and their flow relations from a higher-level function.
rammar rules in a design synthesis system are the encoding of
esign knowledge. The advantage of using grammar rules is that
artial design knowledge can be relatively easily represented as
ules and the design moves are restricted to only the feasible ones.
n the other hand, grammar rules are mostly design domain spe-

ific, and it is usually difficult to manage the rules when the new
ossibilities arise and old ones obsolete. In order to take advan-
age of the power of grammar rules without losing generality, in
iCED, we use grammar rules to generate the initial population of

unction structures and leave the further development of function
tructures to the coevolution process. HiCED has two sets of
rammar rules: general decomposition rules that are generally ap-
licable and similar to those in Refs. �10,17�, and action-based

ecomposition rules that can be applied to more specific design

ournal of Mechanical Design

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
situations and more in line with the rules found in expert systems
�36� and those in Ref. �11�.

3.1.1 General Function Decomposition Rule Set. The general
function decomposition rule set is applied to function decomposi-
tion based on function flows. In HiCED, a function is represented
as

f = ��action��object�,�input_flows�,�output_flows��

where �action� denotes the operation to be performed, �object� the
object to be acted upon, and the attributes �input_flows� and �out-
put_flows� are flows of energy, material, and signal. The following
are the four rules in this rule set.

RULE 1. Function expansion rule.

Fi+1,j is an unsatisfactory function decomposition set for func-
tion f i at level i+1. j is the number of subfunctions in function set
Fi+1,j.

A major issue in applying this rule to function decomposition is
how to choose the next function f i+1,j+1 from the function library
and make the new function decomposition set Fi+1,j+1 better sat-
isfy the higher-level function f i. In HiCED, a greedy search algo-
rithm �37� is introduced to select the most compatible function
f i+1,j+1. First, we examine how many unmapped input flows �i.e.,
those that cannot find any feasible providing function� and un-
mapped output flows �i.e., those that cannot find any feasible re-
ceiving function� are there in the function set Fi+1,j, and then
choose a function f i+1,j+1 that can most effectively reduce the
number of unmapped input and output flows. The role of the
greedy search in HiCED is similar to the characteristic functions
in Ref. 10. Focusing on function flows makes the rule more
general.

RULE 2. Function reduction rule.

This rule removes function f i+1,j+1 from the original decompo-
sition set. One issue with the greedy search algorithm is that after
a function f i+1,j+1 is added into the decomposition set, the function
may introduce new unmapped input and/or output flows that can-
not be satisfied by any function in the function library. In this
case, we need to remove the function from the function decom-
position set and look for other functions for expansion.

RULE 3. Refinement-based expansion rule.

Following rule 1, only those functions that can reduce the num-
ber of unmapped input and/or output flows of the existing function
structure have the chance to be selected. Any other functions, such
as channel function �19� that has the same input and output flows,
are excluded. Rule 3 is employed to enhance function decompo-
sition by inserting a “refinement” function into the decomposition
set generated by rule 1.

RULE 4. Decomposition termination rule.

For any function f j at the ith level, if each input flow of a

function f i+1,k in the function decomposition set Fi+1,m comes

OCTOBER 2007, Vol. 129 / 1015

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



f
o
F

a
t
o
f

i
b
i
p
d
�
�
�
s

t
t
n
f
�

s
c
t
f
t
�
�

a
g
m
r
s
w

F
g
t
s
f
c

t
m
f
a
b
o
c
c
a
b
i
t
e

s
c
t
t
f
t
a

1

Downlo
rom either an output of another function in Fi+1,m or f j, and each
utput flow of f i+1,k goes to either an input of another function in
i+1,m or f j, then the further decomposition for f j terminates.

3.1.2 Action-Based Function Decomposition Rules. The
ction-based decomposition rules decompose a higher-level func-
ion into lower-level ones based on the �action� and �object� part
f functions �36�, instead of �input-flows� and �output-flows�. The
ollowing three rules are defined in this rule set.

RULE 5. Action-based semantic expansion rule. In the engineer-
ng domain, it is often the case that a higher-level action acth can
e divided into a set of lower-level actions �actl1, actl2 , . . . , actln�
n the sense that the completion of the lower-level action set im-
lies the completion of the higher-level action. We call this type of
ecomposition semantic expansion. For example, in the function
transport��object�, the action �transport� can be expanded as
transport�→ ��support� , �move��. Therefore, the original function
transport��object� can be expanded �i.e., decomposed� into two
ubfunctions, �support��object� and �move��object�.

RULE 6. Action-based requiring rule. In some cases, the execu-
ion of a certain action requires the execution of some other ac-
ions. The original function can be decomposed by “including”
ew actions while keeping the original one. For example, the
unction �test��specimen� requires �load� �specimen� and
unload��specimen�.

RULE 7. Action and object based function decomposition rule
et. Sometimes, it is heuristically known that a certain function
an be decomposed into a number of other functions. The result of
his type of rule is that the original function is replaced by a new
unction set. In this case, not only the action but also the object in
he function is expanded or replaced. For example, the function
move��object� can be decomposed into �generate��ME�,
guide��ME�, and �stop��ME�.

Of these grammar rules, the general rules may lead to variety
nd novelty of the generated function structures by combining
reedy search and refinement-based expansion, but it requires
uch computational resource. On the other hand, the action-based

ules make the decomposition more efficient with the help of de-
igners’ experience. The drawback is that the search is done
ithin a limited space and innovative opportunities may be lost.

3.2 Genetic Modeling of Function Structures. As shown in
ig. 2, after an initial function set is generated through applying
rammar rules and their corresponding feasible means are found
hrough a search algorithm, the next step is to coevolve function
tructures and means combinations. In HiCED, we adopt a GP
ramework for modeling function structures and a GA for means
ombinations.

There has been research that uses GP to automate the genera-
ion of configurations of electrical circuits �27� or microelectronic

echanical system �29�. These configurations are similar to our
unction structures. However, the circuit configuration problems
re relatively simple in the sense that there are only a few building
locks, such as resistors, capacitors, and inductors, and one type
f wire connections to deal with. Function structures of mechani-
al systems involve a lot more function blocks and they can be
onnected by different functional flows, namely, energy, material,
nd signal �1�. In addition, after an electrical circuit is generated
y GP, all its parameters are determined; so designers can evaluate
ts performance. But for function structures in mechanical concep-
ual design, the available information is highly qualitative. Direct
valuation is almost impossible.

One of the main challenges in constructing a valid function
tructure by GP is how to create a transformation mechanism that
an map a graphlike function structure into a GP tree. As men-
ioned above, function structures can be complex. A unique func-
ion can be used multiple times in a function structure, and each
unction can connect to other functions by any number of three
ypes of flows. In order to convert a graphlike function structure to

treelike GP structure, we introduced a concept called proxy node

016 / Vol. 129, OCTOBER 2007

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
in our GP model. For example, function fA can have one or more
proxies, denoted as fA�, in a GP tree. The proxy nodes are con-
sidered as the same of their original nodes when they are con-
verted back to functional structures from a GP tree.

To model the topology of function structures, we introduce two
relationships, namely, Connect and Parallel. Connect indicates
that a function is linked to another by a function flow t, while
Parallel stands for a situation that two functions have no direct
connections. Figure 3 illustrates the two relationships.

In the HiCED GP algorithm, four GP functions are defined and
they are three Connect functions and one Parallel function.

Connect-E�fA , fB ,e�: connect fA to fB by energy flows e.
Connect-M�fA , fB ,m�: connect fA to fB by material flows m.
Connect-I�fA , fB ,s�: connect fA to fB by information flows s.
Parallel �fA , fB� : fA and fB are not connected with each other.
In a GP tree, internal nodes are GP functions, and terminals are

the functions of a given function decomposition set or their
proxies.

Figure 4 illustrates an example of a function structure �Fig.
4�a�� and its representations in terms of a GP tree �Fig. 4�b�� and
a GP function �Fig. 4�c��.

3.3 Genetic Modeling of Means. While the evolution of
function structures is GP based, a GA approach is taken for evolv-
ing means combinations since the topological information is al-
ready captured by the function structures. In this algorithm, the
means are encoded into strings of binary bits. To ensure that the
genetic operations yield feasible means for each function, the
length of bits for each means of a given function’s feasible means
set is dynamically determined by the total number of the feasible
means in that set. For a given function decomposition set
�f1 , . . . , fn� with corresponding feasible means sets �M1 , . . . ,Mn�,
the means combinations can be modeled as the chromosome, as
shown in Fig. 5.

The evolution of means in GA is determined by three genetic
operations, namely, reproduction, crossover, and mutation �20�.
Reproduction simply copies a parent into a child. For crossover,
we use a single-point crossover operator to recombine the selected
individuals of current population. Mutation is single bit based.

3.4 Fitness Functions for Function Structuring. How can
we evaluate the fitness of a given function structure is a major

Fig. 3 Topological relationships in function
Fig. 4 A chromosome model of function structure

Transactions of the ASME

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



c
m
fi
t

n
t
g
t
b
�
f
m
o
f
t
d
c
c
g
e
s

t
i
o
t
�
fl
t

s
f
m

t
m
r

F

F
s

J

Downlo
hallenge in our research because there is little quantitative infor-
ation available. In this research, we introduce two groups of
tness measures for evaluating function structures: one evaluates

he feasibility and other the desirability.
As mentioned above, while we impose constraints on the ge-

etic operations so that most flow connections of the child func-
ion structures generated are feasible ones, the constraints do not
uarantee the feasibility of all generated function structures. Un-
ested function structures may be generated whose feasibility is to
e evaluated. This shift of feasibility treatment from “up front”
i.e., generate only the feasible ones� to “back end” �i.e., select the
easible ones� has important implications. First, it resembles hu-
an trial-and-error design process. Human designers, when devel-

ping designs for original design problems, often try different new
unctions and their connections, lay them out, and then evaluate
heir feasibilities. At the conceptual design stage, finding feasible
esigns through trial-and-error is a major part of the design pro-
ess. Second, by not being overly restricted in the generation pro-
ess, the system can explore a wider space and has the potential of
enerating “creative” solutions. However, the process may be less
fficient since certain amount of computation is devoted to infea-
ible solutions.

Following Ref. �1�, a feasible function structure must maintain
hree basic properties: �1� each input �or output� flow of a function
n a function structure should come from �or goes to� one or more
ther functions, or outside of the system; �2� a lower-level func-
ion structure should be consistent with its higher-level ones; and
3� the function structure should have the same input and output
ows as its top function. In HiCED, the following three consis-

ency fitness functions are introduced.
Function flow consistency (FC). For a function f i in a function

tructure Fs, all its input flows should come either from other
unctions or from the outside of the system. If a flow does not
eet this condition, it is called an unsatisfied flow. We have

f fFC = − 	
i

Fs

unsatisfied�f i�; unsatisfied�f i�

returns the number of unsatisfied flows of f i.

Hierarchical flow consistency (HC). When two functions f i and
f j are decomposed into lower-level functions Fi and Fj, respec-
ively, it is expected that the flow relations between f i and f j be
aintained. Therefore, relations �Fi ,Fj� should match

elations �f i , f j�. We have

f fHC = − 	
i

Fs

unmatch
relations �f i, f j� ,

relations �Fi,Fj�
� ; unmatch�Ri,Rj�

returns the number of unmatched flows between Ri,Rj .

Global flow consistency (GC). When a given function structure

ig. 5 A chromosome model of means for means combination
election
s is viewed as a single blackbox, then its input and output flows

ournal of Mechanical Design

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
must be consistent with those of the top-level blackbox function
f top. The number of unmatched flows is used as global flow fea-
sibility fitness measure.

f fGC = − unmatched�Fs, f top�; unmatched�Fs, f� returns the

number of unmatched flows of Fs compared with f .

Evaluating the desirability of a function structure is not easy
because there is not much quantitative information available. In
HiCED, we focus on dimension, variety, and desirable connec-
tions, and introduced function structure dimension �SD�, structure
function variety �SV�, and grammar rule usage �RU� as desirabil-
ity fitness functions. The SD fitness measure is used to keep the
dimension �i.e., total number of functions� in a desirable range.
For a given function structure, a higher level of variety may lead
to better functional performance, but a lower level of variety may
increase the robustness of the system. The fitness function struc-
ture function variety (FV) can be used to reflect this desirability. In
our current case study, higher function variety is considered more
desirable. When the initial population of function structures is
generated from the grammar-based decomposition, certain con-
nections are imposed between certain functions. It is desirable that
these functions are maintained through the evolution process. The
RU fitness function is used to control this desirability.

In addition to the structural properties described above, the de-
sirability of a function structure can be evaluated by whether the
desirable means combinations can be found to realize the function
structure. The function-means mapping (FM) fitness function is
introduced to assess this desirability. The following are the four
desirability fitness functions.

Function structure dimension (SD). For a given function struc-
ture Fs, let NT be the number of functions in Fs, NU the number of
unique functions in the current population, and ksd is a coefficient,
indicating some allowable level of duplication. The exponential
ratio is used to measure dimension desirability.

f fSD = �− 1 � eNT/NU if NT � ksd � NU

0 otherwise


Structure function variety (FV). For a given function structure
Fs, let NU-Fs be the number of unique functions in the function
structure Fs and NU the number of unique functions in the current
population. The different is used to measure function variety:

f fFV = − �NU − NU-Fs�

Grammar rule usage (RU). For two functions, f i and f j, in a
given function structure Fs, if flows between f i and
f j , flows�f i , f j�, are derived from certain grammar rules, rule-
_flows, it is more desirable that these flow relations are kept in
child function structures

f fRU = − 	
i,j

Fs

unmatch
 flows�f i, f j� ,

rule_flows
� ; unmatch�r1,r2�

returns 1 if r1,r2 are unmatch, 0 otherwise.

Function-means compatibility (FM). For two connected func-
tions f i and f j in a function structure Fs and their corresponding
means mi and mj, it is more desirable if connections between mi
and mj are compatible with those between f i and f j is true for
more �i , j� pairs

f fFM = − 	
i,j

Fs

incompatible
 flows�f i, f j� ,

flows�mi,mj�
� ; incompatible �r1,r2�

returns 1 if r1,r2 are incompatible, 0 otherwise.

Summarizing the above, we introduce the following overall fit-
ness function for function structure evaluation as the weighted

sum of the above fitness function components:

OCTOBER 2007, Vol. 129 / 1017

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



p
s

e
n
n
i
d
m
e
b
c
s
i
v
m
i

a
f
m
m
f

c
p
i

n
a
d

t
T
h

b
f
a
m
p
s
c
m
t
fi

i

1

Downlo
f fFS = wFCf fFC + wHCf fHC + wGCf fGC + wSDf fSD + wFVf fFV

+ wRUf fRU + wFMf fFM

We will discuss at length how these fitness functions may im-
act design concept generation, and how these weighting values
hould be distributed in a case study later.

3.5 Fitness Functions for Means Selection. HiCED co-
volves function structures and their corresponding means combi-
ations. To evaluate the fitness of a given means combination, we
eed to know whether the means in the combination are compat-
ble with each other and, given that they are compatible, how
esirable the means combination is. A thorough evaluation of
eans compatibility requires much information of the details of

ach means. In our current research, we evaluate the compatibility
y using the function structure information and assume that the
ompatibility is higher if the flow relations defined by the function
tructure are compatible with the flow relations that can be real-
zed by the corresponding means. Our coevolution approach pro-
ides a platform for using such function relations to evaluate
eans combination compatibilities. We thus introduce the follow-

ng measure to evaluate the means compatibility of a combination.
Means connection compatibility (MC). For any two means mi

nd mj in a given means combination Mc and their corresponding
unctions f i and f j in the corresponding function structure Fs, the
eans in Mc are more compatible if means connections between
i and mj compatible with those defined between f i and f j are true

or more �i , j� pairs

f fMC = − 	
i,j

Fs,Mc

incompatible
 flows�f i, f j�
flows�mi,mj�

� ; incompatible�r1,r2�

returns 1 if r1,r2 are not compatible, 0 otherwise,

Besides the compatibility of means in a means combination, we
an also evaluate the desirability by checking if the means can
rovide better performance and are more preferable. We therefore
ntroduce the following two fitness measures.

Means performance indicator (MP). For a given means combi-
ation Mc, let the selected design requirements be �q1 ,q2 , . . . �,
nd simple performance measures �p1 , p2 , . . . �. The smaller the
ifference, the more desirable the means combination is

f fMP = −�	
i

�qi − pi�2

Means preference indicator (MR). For a given means combina-
ion Mc, for each means mj in Mc, the assigned preference is pri.
he means combination is more desirable if the total preference is
igher

f fMR = − 	
i

Mc

�1 − pri� 0 � pr � 1

Although much parametric or geometric information may not
e obtainable at the conceptual design stage, certain simple per-
ormance measures, such as weight, cost, and grade level, can be
ssociated with various means. The MP uses these attributes and
easures the difference between these attributes and the stated

erformance requirements as performance fitness. In addition, de-
igners can assign preferences to individual means based on their
onfidence �38� on the means or on the frequency of use of the
eans in the similar design contexts. When preference informa-

ion is available, the MR function can be used as a desirability
tness measure.
The overall fitness function for evaluating a means combination

s a weighted sum of individual fitness functions expressed as
f fmeans = wMCf fMC + wMPf fMP + wMRf fMR

018 / Vol. 129, OCTOBER 2007

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
4 Case Study
The goal of our case study is to investigate �1� how the design

results correspond to different design scenarios or requirements,
�2� how design solutions are sensitive to the fitness functions, and
�3� how design solutions respond to genetic parameter settings.
For our case study, we chose to expand Ullman’s bicycle design
problem �38� to a problem of designing a self-powered personal
transporter. This expansion creates a bigger design space for
HiCED to generate different kinds of personal transporters.

HiCED has been implemented using Java language in a Win-
dows XP environment. The function library was created based on
the function structures developed by the mechanical engineering
students in their design projects for a senior level design method-
ology course. The means in the means library were collected from
commonly used mechanical vehicles, such as bicycle, scooter, and
skating board. As an input to HiCED, we set the top-level function
to be �transport��X�.

Our system runs on a Pentium-4 2.2 GHz PC with 512M
memory. Initially there were 14 functions in function library and
41 means in means library. It takes about an hour for HiCED to
generate best solutions. Figure 6 shows an example of conver-
gence curves for function structuring and means selection.

4.1 Experiment Design. As shown in Fig. 7, our experiment
design has two independent variables, two dependent variables,
and two control variables. In this study, the independent variable
design problem has only one value, i.e., the top-level function
�transport��X�. For user requirements, we have three design cases
for testing how HiCED can generate different designs in response
to different user requirements: �1� design for low cost, �2� design
for lightweight, and �3� design for long travel range.

Two parameters were chosen as dependent variables, i.e., the
fitness of design and the program running time. In addition, we
also assess the design results manually by examining the design
concepts.

The first control variable in Fig. 7 is genetic parameter setting.
In our experimental study, we are interested in understanding how
the mutation rate can help or hinder the results. As will be dis-
cussed below, we changed the rate of mutation from 0% to 15%

Fig. 6 Examples of convergence curves for coevolutionary
design
Fig. 7 Experiment design

Transactions of the ASME

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



a

f
t
i
p
e

i
a

t
t
a
a
w
s

d
o
a

w
n
U
p
t
w
g

t
c
d
w

f

I

J

Downlo
nd gained interesting insights.
The main focus of our case study was to investigate how dif-

erent distributions of the weights of the fitness functions impact
he design results. Through this investigation, we hope to gain
nsights on what are important for design concept generation. We
ay specific attention to the function structure formation and
valuation.

4.2 Function and Means Library. The function definitions
n the HiCED function and means library are shown in Table 1
nd some means examples are illustrated in Table 2.

In Table 2, applicable functions are a set of functions for which
he means can be a carrier; high-level-consistent-means set con-
ains those means of which this means can be a subtype. The
pplicable-functions set can help map functions to desired means,
nd the high-level-consistent-means set can be used to determine
hether the corresponding function that this means is supposed to

atisfy is still decomposable.
In addition to the means in the library, the constraints that in-

icate certain relationships between a specific means and other
bjects, such as another means, are also defined. The following is
n example of such constraints:

c1 = �“steering wheel ” ,�guide��ME�; “ pedal brake ” ,

�stop��ME�; “ connect ” ,0


The expression indicates a relationship that means steering
heel, which satisfies function �guide��ME�, cannot directly con-
ect to means pedal brake, which fulfills function �stop��ME�.
sually the constraints are the knowledge derived from design
rinciples, expertise, and experience. Currently, we assume that
he knowledge is readily available. The next step of our research
ill investigate how to acquire the knowledge for design concept
eneration.

4.3 Analysis of Results. In this subsection, we first show,
hrough the personal transporter example, how HiCED performs
oevolution. After that, we discuss how the system responds to the
iffering user requirements, the changes of fitness function
eights, and the settings of genetic parameters.

4.3.1 Coevolution of Functions and Means. Coevolution of
unction structures and their means combinations is the key pro-

Table 1 Functions used in case study

D Function ID Function

f1
�transport��X� f8

�transmit��ME�
f2

�move��X� f9
�supply��E�

f3
�support��X� f10

�control��E�
f4

�generate��ME� f11
�input��E�

f5
�guide��ME� f12

�charge��E�
f6

�stop��ME� f13
�transmit��X�

f7
�secure��X� f14

�convert��E to ME�

Table 2 Sample mean

ID Means
Applicable
functions

¯ ¯ ¯

m2
pedal
drive

f2

m14
pedal
gear

f10

m20
pedal f13

m26
chain f12

¯ ¯ ¯
ournal of Mechanical Design

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
cess of HiCED. Figures 8�a� and 8�b� are two alternative function
structures generated by the GP algorithm at level 3 of the decom-
position hierarchy. Both of them are “equally good” if only func-
tional flow compatibility is considered for evaluation. When the
candidate means that implement the functions �stop��ME� and
�guide��ME�, shown in Fig. 8�c�, are taken into consideration,
however, the difference becomes obvious. Based on design expe-
rience, we know that it is not feasible to connect the means for
�guide��ME� to the means for �stop��ME� directly, as expressed in
the example constraint in Sec. 4.2. Once means are considered,
function structures are reevaluated based on the new means infor-
mation. The final result shows that alternative 1 is better than
alternative 2 because it does not require direct connection of
means between the two functions.

4.3.2 User’s Requirements. Three scenarios are used to test
how HiCED responds to different user requirements, i.e., “low
cost requirement,” “lightweight requirement,” and “long travel
range requirement.” “Long travel range” was translated to “choos-
ing the designs that require less power from the rider.” With re-
spect to the requirements of lightweight and low cost, the system
came up with the same function structure as shown in Fig. 9 but
different means combinations �Fig. 10�. As shown in Fig. 10, one
of the solutions was close to a skateboard and the other resembles
roller skate shoes. For the requirement of long travel range, the
system generated a different function structure �Fig. 11� and a
different means combination �Fig. 12�, similar to a bicycle design.

From Figs. 8–12, it can be seen that the design concepts gen-
erated by HiCED are highly conceptual in the sense that there is
little physical or embodiment information attached to the con-
cepts. The sketches shown in the figures are only one way to

sed in the case study

High-level
consistent

means
Weight
value

Cost
value

¯ ¯ ¯

� n/a n/a

m2
3 3

m2
1 1

m2
2 2

¯ ¯ ¯

Fig. 8 Two alternative function structures at level 3
s u
OCTOBER 2007, Vol. 129 / 1019

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



i
h
u
o
t
s
g
m
v
b
d

F
r

F
l

1

Downlo
nterpret the three design concepts. In our research on HiCED, we
ave strived to avoid requiring embodiment information and to
se general design knowledge as much as possible. The advantage
f this approach is that the system can generate design concepts in
he absence of specific embodiment information so that the de-
igners can quickly examine and evaluate the design concepts
enerated without having to provide detailed and specific embodi-
ent information; oftentimes, a designer may not be able to pro-

ide such information until a design concept is given. The draw-
ack of this approach is that the system generates more feasible
esign concepts than desirable ones, since there is no sufficient

ig. 9 Function structure regarding weight and cost
equirements

ig. 10 Solutions with requirements of low cost and
ightweight
Fig. 11 Function structure for long travel range requirement

020 / Vol. 129, OCTOBER 2007

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
information available for the system to “improve” a feasible or a
good design concept to make it better or more desirable.

4.3.3 Impact of Fitness Functions. Function structure genera-
tion and evaluation has been a focus of our research on HiCED
because a function structure is the basis of a design concept. As
described in Sec. 3.4, currently seven fitness function components
are identified for function structure evaluation. In this subsection,
we discuss how these different fitness function components deter-
mine the formation of function structures and influence the gen-
eration of final design concepts.

Our experiments were conducted in the following procedure.
First, we assign each fitness function component an equal medium
weight. Then, we test each fitness function component in two
situations while keeping all other component weights the same:
one with a smaller weight and the other with a bigger weight. By
comparing the solutions in different weighting cases, we can in-
vestigate how much the function structuring is sensitive to each of
the fitness components and develop a best weight distribution for
the fitness function. Figure 13 illustrates one such best distribu-
tion. The impact and implications of each fitness component can
be summarized as follows.

FC is a basic criterion for a valid function structure. Any input/
output flow of a function must be an output/input flow of another
function, or it must be inherited from the top-level function. Con-
sistent with our predictions, a big enough weight of FC is needed
for the system to maintain the feasibility of function structures.

Both HC and RU are related to applying the information of one
higher level to the evaluation of the current level function struc-
tures. A bigger HC weight contributes to the generation of feasible
function structures, and a bigger RU weight allows designers to
enforce certain desired functional relations. The hierarchy pro-
vides needed contextual information for the process of coevolu-
tion. When the weight of HC becomes much bigger than the oth-
ers, the system tends to exclude certain functions. We suspect that
the relative value difference of HC being bigger than FV, de-

Fig. 12 Means selection with long travel range requirement
Fig. 13 An effective distribution of fitness function weight

Transactions of the ASME

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



s

t
r
i
c
t
m
g
s

r
p
e
S
s
r
i

i
s
s
f
t
c
e
s

i
F
t
f
t
r
t
a
w

n
c
t
f
g
1
t
t
t

i
f
f
t
i
w
w
p
s

5

t
t
a
c
s
d
T
a

J

Downlo
cribed below, had an effect on this behavior.
GC is a criterion to determine whether function structure has

he same input and output flows with the top-level function. The
esults shown in Fig. 13 contradicted our hypothesis that GC is an
mportant factor. Changing the weight of GC did not have signifi-
ant impact on the results. This behavior can be interpreted as that
he FC and HC have already imposed strong feasibility require-

ents so that GC can usually be maintained. Furthermore, a big-
er weight of structure FV, discussed below, also made it easier to
atisfy global flow consistency.

SD limitation prevents function structures from being expanded
andomly. The experimental results are consistent with our hy-
otheses that feasible solutions can be generated only when an
ffective dimension control mechanism is applied. As indicated in
ec. 3.4, the SD fitness function follows an exponential expres-
ion, which is the result of our iterative sensitivity study. The
esulting size of the function structures was controllable by adjust-
ng the allowable ratio ksd.

The FV fitness function controls the heterogeneity of functions
n function structures. In our experiments, we consider function
tructures with higher variety more desirable. We did not expect to
ee that after increasing the weight of FV, not only more unique
unctions were included but also the system became less sensitive
o other feasibility related fitness functions, meaning that it be-
ame “easier” to generate feasible function structures. The side
ffect of bigger FV weight is that the computing time increases
ignificantly.

We expected the FM fitness function to play an important role
n generating good function structures. Changing the weight of
M, however, had only limited effect on the results. We speculate

hat this behavior is due to the limited number of functions in the
unction and means library. We had many more means than func-
ions in the library, so that it was not difficult to satisfy the FM
equirement. In comparison, generating feasible function struc-
ures with adequate structural dimension and function variety was
major “fight” of the HiCED design process. Our future research
ill test larger libraries with different function and means ratios.

4.3.4 Impact of Mutation. After setting all the fitness compo-
ent weights to their best values, as indicated in Fig. 13, we
hecked how the mutation fraction affects the generation of func-
ion structures. In our test, the mutation fraction was changed
rom 0% to 15%. We observed that few feasible solutions were
enerated when mutation fraction was less than 1%. From 1% to
0%, with the increase of mutation fraction, more feasible solu-
ions are produced. But, solutions became worse �compared with
he “best one” generated� when mutation percentage is greater
han 7%.

We expected that mutation could play a crucial role in generat-
ng new design concepts. But, the effective range of mutation
raction was higher than what we considered. We speculate the
ollowing. The highly conceptual search space of function struc-
ures is relatively “sparse.” In addition, the lack of evaluation
nformation makes the space “flat” �i.e., less ups and downs� as
ell. Without sufficient mutation, it is easy for the search to stay
ithin a limited number of potential solutions. Higher mutation
ercentage encourages “jumping” around to find more unexplored
olutions.

Concluding Remarks
As design problems become more complex and design lead

ime more pressing, designers need supporting tools to expand
heir exploration of the design space and to increase the number
nd quality of their design concepts. Our research takes a hierar-
hical coevolution approach to help designers explore design
pace and develop design concepts by automatically generating
esign concepts based on the inputs provided by the designers.
he approach adopts a zigzag design process. At a given level of

bstraction hierarchy, a set of grammar rules is applied to decom-

ournal of Mechanical Design

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
pose the higher-level functions and create an initial population of
function structures. A GA and GP based algorithm is devised to let
function structures and their corresponding means combinations
coevolve into design concepts. A HiCED prototype system was
developed and the case study results demonstrated the effective-
ness of the proposed approach and revealed how various fitness
function components and genetic parameters might impact the de-
sign concept generation process and results.

In many creative conceptual design situations, designers may
not have quantitative embodiment information to start with. Still,
they need to explore various possible design concepts with their
highly conceptual or qualitative knowledge about functions and
means. There two reasons for this. One is that the information is
not available and the other that applying the detailed embodiment
information is not desirable because the early commitment to use
such information may misguide the concept generation process. In
our research on HiCED, we do not assume the availability, or the
application, of the quantitative embodiment information. Defini-
tions of the functions and means in the library are highly concep-
tual and can be acquired relatively easily. The common strategy in
developing a system in this situation is to follow a top-down and
rule-based approach, since the semantics can be handled by the
rules. The drawback of this approach, however, is that the main-
tenance of the rules can become very difficult. To avoid this prob-
lem, we took a “lean” knowledge strategy by first using a few
grammar rules to decompose the functions and generate the initial
population of the function structures and then applying a genetic
coevolution process to evolve more function structures and their
means combinations. Identifying and balancing the fitness func-
tion components was a challenge in this research partly because of
the spars and flat features of conceptual search space. The case
study demonstrated the effectiveness of our strategy and the
HiCED system provides a test bed to further our research along
this line.

Our current HiCED system is limited by the small size of the
function and means library and the limited number of genetic
functions. It is conceivable that as the size of the libraries in-
creases and more genetic functions are introduced, the computa-
tion time will increase dramatically. Our current research aims to
improve the coevolutionary algorithm to deal with the scale-up
issue. Furthermore, the HiCED model of design concept genera-
tion provides a flexible computational environment for us to in-
vestigate how different fitness functions may impact the novelty,
variety, quantity, and quality �39,40� of design concept generation.
We are designing new sets of experiments to identify correlations
between the fitness functions, contents of the function and means
library, and the above mentioned design metrics. Lastly, develop-
ing efficient methods to create and enrich the function and means
library remains to be a research issue. We are currently exploring
an intelligent agent-based approach to address this issue in which
agents try to pick up useful functions and means from design logs,
databases, and various documents through data-mining and text-
mining techniques.

References
�1� Pahl, G., and Beitz, W., 1996, Engineering Design: A Systematic Approach,

Springer, New York.
�2� Suh, N. P., 1990, The Principles of Design, Oxford, New York.
�3� Akao, Y., 1995, Quality Function Deployment: Integrating Customer Require-

ments into Product Design, Productivity, Portland, OR.
�4� Tomiyama, T., 1995, “A Design Process Model That Unifies General Design

Theory and Empirical Findings,” ASME Proceedings of 1995 Design Engi-
neering Technical Conference, pp. 329–339.

�5� Cross, N., Christianns, H., and Dorst, K., 1997, Analysing Design Activity,
Wiley, New York.

�6� Benami, O., and Jin, Y., 2002, “Cognitive Stimulation in Creative Conceptual
Design,” ASME Proceedings of 14th International Conference on Design
Theory and Methodology, Sept. 29–Oct. 2, Montreal, Canada, Paper No.
DETC2002/DTM-34023, pp. 1–13.

�7� Jin, Y., and Chusilp, P., 2006, “Stuty of Mental Iteration in Different Design
Situations,” Des. Stud., 27, pp. 25–55.
�8� Bracewell, R. H., 2002, Synthesis Based on Function—Means Trees: Scheme-

OCTOBER 2007, Vol. 129 / 1021

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



1

Downlo
builder, in Engineering Computational Design: Understanding, Approaches
and Tools, Springer, New York, pp. 199–212.

�9� Schmidt, L., and Cagan, J., 1995, “Recursive Annealing: A Computational
Model for Machine Design,” Res. Eng. Des., 7, pp. 102–125.

�10� Schmidt, L., and Cagan, J., 1997, “GGREADA: A Graph Grammar-Based
Machine Design Algorithm,” Res. Eng. Des., 9, pp. 195–213.

�11� Sridharan, P., and Campbell, M. I., 2004, “A Grammar for Function Structure,”
Proceedings of ASME 2004 Design Engineering Technical Conferences, Salt
Lake City, UT, Paper No. DETC2004-57130, pp. 1–15.

�12� Maher, M. L., 2001, “A Model of Co-Evolutionary Design,” Eng. Comput.,
16, pp. 195–208.

�13� Campbell, M. I., Cagan, J., and Kotovsky, K., 1999, “A-Design: An Agent-
Based Approach to Conceptual Design in a Dynamic Environment,” Res. Eng.
Des., 11, pp. 172–192.

�14� Campbell, M. I., Cagan, J., and Kotovsky, K., 2000, “Agent-Based Synthesis
of Electromechanical Design Configurations” ASME J. Mech. Des., 122, pp.
61–69.

�15� Stiny, G., 1980, “Introduction to Shape and Shape Grammars,” Environ.
Plann. B, 7, pp. 343–351.

�16� Li, X., and Schmidt, L., 2000, “Grammar-Based Designer Assistance Tool for
Epicyclic Gear Trains,” ASME J. Mech. Des., 126, pp. 895–902.

�17� Starling, A. C., and Shea, K., 2002, “A Clock Grammar: The Use of a Parallel
Grammar in Performance-Based Mechanical Synthesis,” ASME Proceedings,
Paper No. DETC’02/DTM-34026, pp. 1–10.

�18� Stone, R., and Wood, K., 2000, “Development of A Functional Basis for De-
sign,” J. Mech. Des., 122�4�, pp. 359–370.

�19� Hirtz, J. M., Stone, R. B., McAdams, D. A., Szykman, S., and Wood, K. L.,
2002, “A Functional Basis for Engineering Design: Reconciling and Evolving
Previous Efforts,” Res. Eng. Des., 13, pp. 65–82.

�20� Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley, Longman.

�21� Koza, J. R., 1992, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, The MIT Press, Cambridge.

�22� Fogel, L. J., Owens, A. J., and Walsh, M. J., 1996, Artificial Intelligence
Through Simulated Evolution, Wiley, New York.

�23� Parmee, I. C., 1997, “Evolutionary Computing for Conceptual and Detailed
Design,” Genetic Algorithms in Engineering and Computer Science, Wiley,
New York.

�24� Bentley, P. J., 1999, Evolutionary Design by Computers, Morgan Kaufmann,
San Francisco.

�25� Bonnie, R. M., and Malaga, R., 2000, “A Co-Evolutionary Approach to Strat-
egy Design for Decision Makers in Complex Negotiation Situation,” IEEE
Proceedings of the 33rd Hawaii International Conference on System Sciences,

pp. 1–9.

022 / Vol. 129, OCTOBER 2007

aded 10 Oct 2007 to 128.125.27.29. Redistribution subject to ASME
�26� Lee, C.-Y., Ma, L., and Antonsson, E. K., 2001, “Evolutionary and Adaptive
Synthesis Methods,” Formal Engineering Design Synthesis, Cambridge Uni-
versity Press, Cambridge, pp. 270–320.

�27� Koza, J. R., Bennett, F. H., Andre, D., and Keane, M. A., 1999, “Automated
Synthesis of Analog Electrical Circuits by Means of Genetic Programming,”
IEEE Trans. Evol. Comput., 1�2�, pp. 109–128.

�28� Vajna, S., and Clement, S., 2002, “Autogenetic Design Theory: An Approach
to Optimize Both the Design Process and the Product,” ASME Proceedings of
DETC02, ASME 2002 Design Engineering Technical Conferences, Montreal,
Canada, Paper No. DTEC2002/DAC-34038, pp. 1–7.

�29� Fan, Z., Seo, K., Hu, J., Rosenberg, R., and Goodman, E. D., 2003, “System-
Level Synthesis of MEMS via Genetic Programming and Bond Graphs,” Lect.
Notes Comput. Sci., 2724, pp. 205–206.

�30� Pollack, J., Blair, A., and Land, M., 1996, “Coevolution of a Backgammon
Player,” Artificial Life V: Proceedings of the Fifth Artificial Life Conference,
C. Langton and T. Shimohara, eds., Nara, Japan, MIT Press, Cambridge, pp.
92–100.

�31� Ahluwalia, M., Bull, L., and Fogarty, T. C., 1997, “Coevolving Functions in
Genetic Programming: A Comparison in ADF Selection Strategies,” Proceed-
ings of the Second Annual Conference on Genetic Programming, J. R. Koza,
K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, R. Riolo, eds., Morgan
Kaufmann, San Francisco, pp. 3–8.

�32� Kicinger, R., Arciszewski, T., and De Jong, K. A., 2005, “Evolutionary Com-
putation and Structural Design: A Survey of the State of the Art,” Comput.
Struct., 83, pp. 1943–1978.

�33� Potter, M. A., and De Jong, K. A., 2000, “Cooperative Coevolution: An Ar-
chitecture for Evolving Coadapted Subcomponents,” Evol. Comput., 8�1�, pp.
1–29.

�34� Maher, M. L., and Poon, J., 1996, “Modeling Design Exploration as Co-
Evolution,” Microcomput. Civ. Eng., 11�3�, pp. 195–210.

�35� Rosenman, M., and Saunders, R., 2003, “Self-Regulatory Hierarchical Coevo-
lution,” Artif. Intell. Eng. Des. Anal. Manuf., 17, pp. 273–285.

�36� Jin, Y., Kunz, J. C., Levitt, R. E., and Winstanly, G., 1992, “Design of Project
Plans From Fundamental Knowledge of Engineered Systems,” Working Notes:
AAAI Fall Symposium Series, pp. 149–154, AAAI Press.

�37� Li, W., 2006, “A Hierarchical Co-Evolutionary Approach to Conceptual De-
sign,” Ph.D. thesis, University of Southern California, Los Angles, CA.

�38� Ullman, D. G., 2003, The Mechanical Design Process, 3rd ed., McGraw-Hill,
New York.

�39� Shah, J. J., Vargas-Hernandez, N., and Smith, S. M., 2003, “Metrics for Mea-
suring Ideation Effectiveness,” Des. Stud., 24, pp. 111–134.

�40� Chusilp, P., and Jin, Y., 2006, “Impact of Mental Iteration on Conceptual
Design Performance,” ASME J. Mech. Des., 128, pp. 14–25.
Transactions of the ASME

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm


