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Engineering knowledge is an important asset of industrial companies. The present
research focuses on design activity knowledge and it attempts to develop effective
ways to capture this operational knowledge from the design events monitored
during the design process. A design activity is defined as a sequence of meaningful
design operations carried out by designers to advance the design from its current
state to the new state. The paper proposes a design activity knowledge acquisition
(DAKA) framework that extracts designers’ design activity knowledge from the
computer-aided design (CAD) operation event data obtained through commercial
CAD systems. DAKA is composed of a product model roadmap for capturing
the trajectory of designers’ design moves and a function-based design operation-
mining algorithm for extracting meaningful design operations from CAD event
databases. DAKA has been evaluated through case studies using real CAD
operation event data as well as computer-generated synthetic data. In this paper,
the details of the DAKA framework are described and a case example involving
automotive door design is presented to demonstrate the effectiveness of the
proposed approach.

Keywords: Knowledge acquisition; Design activity; Design operations;
Data-mining; Product model

1. Introduction

Engineering design is knowledge-intensive. Designers must be experienced enough to
understand the design problem, have sufficient domain knowledge to find solutions
and possess expertise to know what design decisions to make and which design
operations to take. In the current engineering practice where computer-aided design
(CAD) tools are widely used, although extensive knowledge is applied during the
design process, neither the knowledge applied nor the ways to apply the knowledge
is left in a sharable form after the design is completed. The only result is the CAD
drawings that describe only the static features of the designed product.

Not being able to capture design activity knowledge — i.e. what design
operations were carried out, which part of the design requires more effort and careful
thinking, etc. — during design leads to difficulties for design management, design
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training and design efficiency. In the old days when drawings were produced by using
papers and pencils rather than computers, a design manager could walk to a
drawing table and tell whether there were problems, and which part of the design had
problems, by identifying the places of the drawing that had repeating erasing
traces. Working on a large drawing table, as many automotive designers did in
the past, made it easier for the designers to collaborate and make sure their designs
work together properly at the end. Furthermore, new designers could learn about
design process by observing designers’ design activities of drawing, erasing and
talking.

As design problems become more complex, design can hardly be accomplished
without using CAD tools. While applying CAD tools increases the quality and
efficiency of design for complex design problems, the individual-oriented and result-
driven nature of CAD tools has made CAD-based design a ‘hidden process’ that
cannot be observed. Efforts have been made to record CAD operation events as the
history of design process. However, the vast amount of CAD event data alone
cannot provide any understandable and useful design process knowledge. Computer
tools can be provided to allow designers to record their design knowledge explicitly,
but this approach is not desirable because: it takes designers’ time away from design,
it interrupts designers’ normal thinking process, and it is often impossible for
designers to articulate their tacit knowledge explicitly. There is a need for
technologies that can acquire design knowledge without direct involvement from
the designers.

Design knowledge ranges from design product knowledge and design rationale
knowledge to design activity knowledge and design process (or workflow)
knowledge. While researchers in engineering and artificial intelligence have focused
their knowledge acquisition research on documented domain knowledge (Bradshaw
et al. 1997), research on capturing design activity knowledge received little attention,
partly because design activity knowledge is often domain-specific and it is difficult
to develop a generally useful approach.

The research on design rationale has explored various directions (Moran and
Carroll 1996) including argumentation-based design rationale such as the Issue-
Based Information System (IBIS) (Kunz and Rittel 1970), action-based design
rationale (Lakin e al. 1989), and model-based design rationale such as the Active
Design Document (ADD) system (Garcia and Howard 1992). Recently, many
pursued the integration of the record of design rationale with the history of the
evolution of the design artefact (Banares-Alcantara and King 1997, Shipman and
McCall 1997, Liang et al. 1999, Shah et al. 2000). In the field of design rationale, the
research focus is on capturing why a specific design feature was designed the way it is,
rather than how it was designed. Moreover, most extent design rationale capture
systems require designers to record reasons during the design process.

Some researchers attempted to capture design process knowledge as part of
design rationale. Ganeshan ez al. (1994) proposed a framework to model design as
selections from predefined transformation rules. When a rule is selected, the choice is
recorded along with rationale associated with that rule. In their approach, designers’
activities are constrained and they are translated into the predefined rules
beforehand. Myers et al. (1999) proposed a framework to capture design rationale
from a general CAD database. They developed an experimental system, the
Rationale Construction Framework (RCF), which automatically acquires rationale
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information from the detailed design process. In RCF, they regarded design history
as a conglomerate of detailed design rationales and focused on capturing many
partly isolated design rationales in detail. In RCF, simple pattern matching is
executed to detect design procedure using general predefined rules called design
metaphors and qualitative reasoning is used to capture design rationale. Focusing on
capturing know-how knowledge and design procedure features, rather than know-
why knowledge, Ishino and Jin (2001, 2002) proposed a Grammar and Extended
Dynamic Programming Approach (GEDP). The core idea of GEDP was to model
a design process as a series of meaningful clusters of design events, called design
operations. In this approach, designers’ activities were constrained and translated
into design operations using the predefined classification rules called grammar rules
and EDP rules. All methods mentioned above were useful to reach their goals,
respectively. However, they all needed predefined rules used for classification of
recorded events. Therefore, these methods are limited by high cost of creating
predefined rules.

In addition, some of the industrial Case Based Reasoning (CBR) systems can also
be considered as capturing design process knowledge. Several recent publications
have addressed specific issues of applying CBR to design (Maher and Pu 1997). Goel
et al. (1997) directly addressed the representation of causal behaviour through the
use of structure—behaviour—function (SBF) models. SBF models are useful to
diagnose products. However, they focused on states of product models rather than
design activities.

In the field of data mining, various techniques and algorithms have been studied
to capture knowledge possessing high interestingness. The number of patterns
generated in a process is usually very large and only a few of the patterns are likely to
be of any interest to the domain expert analysing the data. To increase the utility,
relevance, and usefulness of the discovered patterns, techniques are required to
reduce the number of patterns that need to be considered. These techniques are
referred to as interestingness measures in a data-mining domain (Hilderman and
Hamilton 1999). To date, many techniques have been published such as Piatetsky-
Shapiro’s (1991) rule-interest function, Smyth and Goodman’s (1991) J-Measure,
Agrawal and Srikant’s (1994) itemset measures, and Gray and Orlowska’s (1998)
interestingness. There have also been many application studies of the techniques in
many fields such as marketing (Agrawal and Srikant 1994) and medical domains
(Matheus and Piatetsky-Shapiro 1996, Ohsaki et al. 2004). For example, Piatetsky-
Shapiro (1991) introduced his rule-interest function that was used to quantify the
correlation between two attributes arbitrarily chosen, and the obtained knowledge is
expressed as classification rules. And later Piatetsky-Shapiro and Matheus proposed
Key Findings Reporter (KEFIR), which can perform an automatic drill-down
through data and discover key findings in a database, and they tested it using
healthcare data (Matheus and Piatetsky-Shapiro 1996). Hilderman and Hamilton’s
(1999) survey paper summarized major studies on the interestingness measure.
Almost all such techniques focused on the correlation or deviation among attributes
or components, and the acquired knowledge was expressed as classification rules or
association rules. These techniques did not deal with the time series sequential
patterns of the components.

Data mining has been applied at various stages of product development
process, from marketing (Shaw et al. 2001) to design and manufacturing
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(Kusiak 2000, Braha 2001). Berry and Linoff (1997) presented many examples and
applications of data mining in marketing, sales, and customer support. Shaw et al.
(2001) proposed a systematic methodology that uses data mining and knowledge
management techniques to manage the marketing knowledge and support marketing
decisions. Létourneau et al. (1999) developed a data-mining-based approach to
support aircraft maintenance by predicting the problems of a variety of aircraft
components based on collected aircraft operation data. Kusiak and his colleagues
have led the research on data-mining technologies for developing and improving
manufacturing processes (Kusiak 2000a, 2000b, 2002, 2005, Agard and Kusiak
2004a, b, Da Cunha et al. 2005). Agard and Kusiak (2004a) developed a
data-mining-based technology to support design of product families that addresses
the issues of maintaining adequate product diversity and reducing the time and cost
of production. In addition, they also devised a model and an algorithm for the
selection of subassemblies based on the analysis of prior orders received from the
customers (Agard and Kusiak 2004b). Using the information extracted from
production history, Da Cunha et al. (2005) developed a data-mining approach to
determine the sequence of assemblies that minimize the risk of producing faulty
products. To support effective configurations for cellular manufacturing systems,
Chen (2003) developed a data-mining technique that can find association rules
among machines from the process database so that the occurrence of some machines
in a machine cell will cause the occurrence of other machines in the same cell.
Neaga and Harding (2005) took a knowledge-discovery and data-mining approach
to enterprise modelling and integration and suggested utilizing the existing reference
architectures, models and integrations for developing a common knowledge
enterprise model as novel combination of the previous ones.

The goal of the present research is to develop a generally applicable technology
that can acquire design activity knowledge without distracting designers from their
normal design processes. The paper takes a data-mining approach and attempts to
extract design activity knowledge from automatically recorded vast amount of CAD
event data.

The rest of the paper is organized as follows. Section 2 describes the DAKA
framework and a general knowledge application model that provide a basis for event
based design activity knowledge acquisition. Sections 3 and 4 describe DAKA’s two
core components: product model roadmap and knowledge acquisition algorithm,
respectively. Section 5 presents a case example; and concluding remarks are drawn
in section 6.

2. Design activity knowledge acquisition

To avoid requiring direct involvement of designers, our design activity
knowledge acquisition (DAKA) framework is composed of five major steps, as
shown in figure 1:

e Monitor designers’ design actions.
e Store the monitored event data of each designer into corresponding task
clusters, such as door design or instrument panel design.
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Figure 1. Design activity knowledge acquisition (DAKA) framework.

e Analyse data of each task cluster to mine design activities for the
corresponding design task.

e Refine the obtained design activities by checking their meanings.

e Distribute the design activity knowledge for reuse.

These five steps are continually reiterated, while the data and design activity
knowledge are updated.

In the monitoring step, a wrapper module, which translates designers’ CAD
operations into numerical predefined codes, enables one to monitor designers’ design
events, such as adding an object, changing the value of a parameter, and deleting an
attribute or an object. The wrapper plugged into the CAD systems reports pairs of
designer’s design action and its corresponding resulting state of the design object in
real time. In the storing step, the data transmitted by the wrapper are stored in the
task clusters, characterized by design task IDs, of design event log database. In the
analysis step, data of the same task cluster in the design event log database are
analysed to extract preliminary design operations. In the refining step, the obtained
preliminary design activities knowledge is examined by human expert designers.
If needed the experts can modify or delete any of them. After the refinement, finally
the resulting design activity knowledge is registered in a design activity knowledge
database, which is called Design Activity DB in figure 1. Lastly, in the distribution
step, the obtained design activity knowledge can be delivered and shown at designers’
requests. As can be seen from figure 1, monitoring and storing are carried out at real
time during design, while analysing and refining are processed in a batch mode after
the complete event data become available.

To realize the DAKA framework described above, we need to model what are
design activities, design operations, and design events. We also need knowledge
acquisition algorithms that operate based on the model. In the following we first
introduce the concepts of knowledge application unit and product model roadmap,
and then present our function-based design operation-mining algorithm.
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2.1 Design knowledge application unit

In this research, we consider design knowledge in four different categories: design
rationale knowledge (i.e. reasons for making a specific design move), design activity
knowledge (i.e. steps or operations taken to make design moves), design product
knowledge (i.e. current and historical design product information), and design
process knowledge (i.e. the overall workflow for creating a design). In the following
section we introduce a general design knowledge application model to illustrate the
definitions of these four types of design knowledge.

Let Kr denote the set of total design rationale involved, Pd the set of possible
design product states (i.e. states of product model), and Av the set of design activities,
i.e. meaningful design operations. We introduce a concept called knowledge
application unit (KAU) to represent specific design moves.

Definition 1 ( Knowledge application unit): a knowledge application unit denoted by
u; € U is defined as:

U .= apply{Kri,Av,», Pdl} => Pd, — Pd,'_H,
where
Kri € Kr, Av; € Av, Pd; € Pd, Pd;y, € Pd.

By definition, a knowledge application unit, u;, is a unit of action that involves
application of rationale knowledge Kr;, specification of design activity 4v;, and, as a
result, the design move from product development state Pd; to state Pd;,, as shown
in figure 2.

Given a set of KAU U, let R denote the set of relations between the KAUs in U,
ie. VrreR, Ju;e U, ue U (1)) =>r — (u;, uy).

Definition 2 (Design process): a design process Pc is defined as:
Pc:={U,R} = {uy,uz, ..., upr, 11,72, .., TN},
where
ue U0 <i < M), and r; e R(0 <j=N).

The above definition of KAU has important implications. First, it separates design
rationale knowledge from the design activity knowledge. Every design move or
progress is made possible by a design activity and a design activity is carried out
under the guidance of specific rationale or reasons. Although it is usually difficult to
capture design rationale of a designer without the direct involvement of the designer,
it is possible to observe what the designer does and further capture or infer what are

Kr;

guide

A4
0 Av; Pd;,,

Figure 2. Knowledge application unit (KAU).
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the intended operations. We argue that capturing this type of design activity
knowledge is important for understanding the design behaviour of experienced
designers and for reasoning about their design rationales. Second, the KAU
definition indicates that in order to capture design activity knowledge and/or design
rationale knowledge one must keep tracking the changes of the design product states.
Matching design activities, product states and design rationale in terms of KAU
provides a convenient way to organize design information and knowledge. In our
research, the goal is to capture design activity knowledge based on the recorded
CAD events and product state changes. The following section elaborates the concept
of KAU to include design operations and events.

2.2 Design operations and events

In order to acquire design activity knowledge, we must first define what is design
activity knowledge. Generally speaking, design activity knowledge is related to ‘how
to move the design product from its current state to the next state’. In our research,
we view a design activity as composed of a sequence of design operations that reflect
meaningful design actions such as ‘decrease the weight of the object’ and ‘increase
the strength of the robot arm’. If we can capture the design operations carried out by
the experienced designers when they make a design move from one product state to
another, then we will have the activity knowledge of that specific KAU. If we can
capture all relevant KAUs of the overall design process of a relatively routine design,
then we can say that we have good knowledge of how to do that design. In order to
capture the change of product states and the operations carried out for making the
design moves, we introduce the following definitions.

Definition 3 (Design event): a design event, denoted by e;, associated with a
knowledge application unit #; is an observable happening that contributes to, but
does not directly cause, the product state transition from Pd; to Pd;, .

Design events are the most primitive design actions generated by designers while
operating a CAD system. Design events can be recognized by observing changes
of design variables and/or accesses to documents or databases. They usually do not
reflect designers’ intention. For example, ‘Change length A from 15 to 30’ or ‘See
document B’ are design events. Many CAD tools provide mechanisms to
automatically record design events.

Given the definitions of design activity and design event, we can define
operations as follows:

Definition 4 ( Design operation).: a design operation, denoted by op;, is defined as a
sequential pattern of design events {ey, e,, ...} that reflect a meaningful design action:

opi ‘= {ey,ea, ...},
where
for V op;, 3 Av;, op;, € Av;.

Operations are meaningful in the sense that they are carried out to create or edit an
attribute of the product being designed. For example, ‘Decrease the weight of the
object’ and ‘Increase the strength of the robot arm’ are both design operations.
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A design activity that moves design from one product state to another is composed
of a sequence of design operations that are meaningful with respect to the intended
design goals.

Based on the above definitions, the problem of capturing design activity
knowledge can be decomposed into two sub-problems. First, we must be able to
identify product states and their transitions so that we can identify what are the
design activities that cause the transitions. Second, we must provide mechanisms to
extract sequential patterns of design events so that the design operations within each
design activity can be identified. In the following section, we introduce a product
model roadmap to represent product states and their transitions during design.

3. Product model roadmap

During design, the design product states change over time. To capture design activity
knowledge, we must first capture the changes of the product states. Since a product
state at a given time can be represented by the product model at that time, we
introduce a ‘product model roadmap’ to capture ‘where’ in the design space did
a designer ‘walk’ into and how did he/she ‘arrive’ at the final ‘destination’. Figure 3
illustrates such a product model roadmap.

A product model is composed of a set of objects of which each has various
attributes representing physical and conceptual features of the product being
designed. In DAKA, the product model roadmap is defined as a time-series tree of
product models in which a newly developed product model often becomes a child of
one of the existing leaf product models. A child product model can be derived from
its parent by creating or modifying one or more major features. Sometimes, a new
product model can become a new root. Figure 3 illustrates an example of the product
model roadmap, in which the designer created a new product model Pd; by adding
(or modifying) some features. After deciding Pds; would not lead to desired result, the
designer moved back to Pd, and started creating (or modifying) some other features
and moved the design to Pdj.

Creating a product model roadmap from monitored CAD event data involves
identifying formations of individual product models and then determining their
parent—child relations. One simple way to do this is to use file version management
system. For parametric design problems, however, a more sophisticated method is
needed for generating a product model roadmap since designers tend to change

Intermediate e v b
Product model e
» > »
Pd, » Pd, P E— Pd, lq----F Pdy Finally Selected

\ Product model
—» Move-to Pdg Pd, PdD

Ll
---9  Move-back-to

Figure 3. Design activity roadmap.
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product models without saving current CAD data. We developed the following
two-step approach:

Step 1: Identify formations of individual product models.

First, we introduce the concept of product model core to represent the current state
of a product model being developed. A product model core is an essential part of its
corresponding product model and is defined by a set of a few core parameters of the
product model. Adding or updating the parameters of the product model core
implies significant design moves.

Next, the formation, or birth, of a product model is judged as follows:

e An initial product model is generated from an empty or incomplete product
structure — i.e. a product model with parameters having null values — by
assigning non-null values to all the design parameters.

e A derived product model is created when a design change that causes changes
in the product model core is made on an initial or derived product model.

Based on these definitions, we can determine when a product model is formed by
monitoring the changes of the core parameters of the product model. For relatively
routine design problems such as automotive design, designers can identify what are
core parameters for given design products.

Step 2: Determine the parent—child relationship between product models.

To evaluate the relations between product models, we introduce the concept of virtual
distance between product models. The distance between two product models is
represented by the summation of a set of binary values resulting from the comparison
of their core parameters. If the values of the same parameter of the two product models
are different, then the binary value is 1; otherwise it is 0. When a newly derived product
model is formed, distances between the product model and all other existing product
models are calculated. After that, the product model that has the closest distance is
selected as the parent of the newly derived product model. In the product model tree
structure, a child product model is located and linked directly under its parent. If the
closest distance is bigger than the predefined threshold, the product model is then
considered to be independent of all other product models and has no parent.

Our goal is to capture design operations as design activity knowledge based on
the data of monitored design events and the information of product model roadmap.
We identify what were the important design operations and where they were applied
in the product model roadmap. Figure 4 illustrates the monitored design events and
the inferred design operations on the corresponding product model roadmaps of two
skilful designers who were working on the similar design tasks. From figure 4, it can
be seen that Opl, Op2 and Op3 are the important operations because they were
always performed before the formation of a new derived product model.

4. Function-based design operation mining
Generally, there are two ways to extract design operations from monitored design

events. The first is rule based, that is to define a set of rules that can be used to map
predefined sequential patterns of events into known design operations. Our previous
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work on GEDP to design knowledge acquisition (Ishino and Jin 2002) is an example
of this approach. Although rule based approach is relatively simple, it has two
limitations. One is that the predefined rules may not be complete to cover all
interesting operations. The second limitation is that the rules are often design task-
specific and it is difficult to reuse them for other design tasks. As a result, creating
specific rules for specific design tasks can be very costly.

The other general approach is function based, i.e. to define a few functions,
instead of many rules, and use the functions to determine whether a specific design
event sequential pattern is interesting enough to be considered as a design operation.
This approach is more general and data mining oriented since there is no need for
predefined design event patterns and rules, and previously unknown and potentially
useful sequential patterns can be discovered. As in the data mining domain, the term
interestingness is used here as a concept to represent how seriously interesting and
meaningful the detected patterns are. One of the most important aspects of
interestingness is frequency, i.e. how many times a pattern appears in the design
process. In design processes, however, it is not always true that the more frequently
a pattern appears, the more meaningful it is. We need a new measure to calculate
interestingness of event sequential patterns.

4.1 Interesting sequential pattern

To introduce a method that can be applied to design activity knowledge acquisition
for a wide range of design tasks, we formulate the problem of design activity capture
as follows. First, we introduce the following definitions:

E={ey, e, ...,e,} time series of all monitored design events, where 7 is the
total number of events,

Pd={Pd,, Pd,, ..., Pd,} time series of all identified product models, where m is
the total number of product models,

My ={ei;1,€i12,---,€ipn; event sequence monitored for developing Pd) after
finishing the formations of Pd,_;, where i and h are
arbitrarily chosen to let i+1 and i+ /h, respectively,
indicate the initial event number and the last event
number in the product model Pd; M, C E. For any
sub-event sequence X, if X C M), then we say that M,
contains X.

Given a set of monitored design events E, the problem of design operation mining
can be formulated as two problems: (1) discovering interesting sub-sequences X1,
Xop2, ..., as design operations, and (2) locating positions of X,,;, X,,,..., on the
product model roadmap. Since the positions of event sequences on the product
model roadmap is known once the roadmap is built, problem (2) is solved. To solve
problem (1), we need to address two questions: what are interesting sub-sequences
and how can they be acquired. We focus on the first question first.

We consider the interestingness of a sequence of events X in terms of the
information the events carry about the operational intent of the designer. We assume
that there are two types of interestingness in a sequence X. One is how informative
the sequence is in itself, represented by the number of its component literals.
The other is how informative the sequence is in the design process as a whole,
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Figure 5. Examples of intrinsic interestingness functions.

represented as frequency of occurrence. We call the former intrinsic interestingness
and the latter extrinsic interestingness.

The intrinsic interestingness of a sub-sequence X can be defined by the number of
design events involved in X. We further assume that (1) the interestingness of any
design event is no less than zero, and (2) the more events involved in a sub-sequence
the more interesting the sub-sequence. We introduce an intrinsic interestingness
function f{x), where x represents the number of design events of X. Based on the
above two assumptions, f{x) should be a monotonic increasing function and always
satisfy the conditions in formulas (1) and (2):

0<"x <"xy = flx)) < flx) (1)
>0, fla)>0Afla—1)=0 2)

In formula (2), the integer « is the minimum length that represents the minimum
number of design events that X must contain for having non-zero interestingness.

In fact, a designer can determine any function satisfying the above conditions as
an intrinsic interestingness function of a given design task. Typical examples of such
functions are schematically depicted in figure 5. Figure 5(a) shows a linear intrinsic
interestingness function in which the informative interestingness increases in
proportion with the number of design events. In practice, however, it is conceivable
that the value tends to reach a ceiling and not increase any more after the number of
events goes over a limit. We call this limit maximum length. Graphs (b) and (c) in
figure 5 are other two different functions with ceilings.

Next, we define the extrinsic interestingness. Our interactions with engineering
designers indicated that important design operations appear more than once in
design processes. However, regarding the frequency of appearance of operations,
there were two different opinions. Some designers felt that more frequent
appearances mean it is more significant. Others voiced that the rarely appeared
operations were the most important ones. After summarizing the opinions of the
designers, we adopt the following assumption: a valuable sequential pattern always
appears more than once in design processes.

Based on this assumption, we introduce extrinsic interestingness function, g(»),
where y indicates how many times a sequence X appears in the design process. The
extrinsic interestingness function is expressed by equation (3), where Freg(X) is a
function of an event sequence X and indicates its number of appearances in the
design process. The extrinsic interestingness function is not always a monotonic
function, but needs to satisfy the condition in formula (4), which signifies the above
assumption. In formula (4), an integer B represents the largest number of appearance
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Figure 6. Examples of extrinsic interestingness functions.

when the extrinsic interestingness function gets zero-value. The integer f is called
a frequency threshold:

g(y) = g(Freq(X)) (3)
B=1, gB+1)>0ngB)=0AgB—1)=0A...Ag(1)=0 4)

A designer can determine a function satisfying the condition in formula (4) as an
extrinsic interestingness function of a certain design task based on his/her experience.
Typical extrinsic interesting functions are schematically depicted in figure 6. Graph
(a) in figure 6 indicates the case that the rare sequences have great value; graphs (b)
and (c¢) in figure 6 indicate the cases that more frequent means more interesting.

Finally, we integrate intrinsic and extrinsic interestingness into a comprehensive
whole, called interestingness, expressed by /(X), which indicates how seriously
interesting and meaningful the detected patterns are for design experts. Since the
interestingness should be zero-value when either the intrinsic interestingness or the
extrinsic interestingness is zero-value, we define the interestingness as multiplication
of the two, as shown in equation (5), where x represents the number of literals of
event sequence X, and y represents number of appearance of X. Given equation (5),
a design operation can be viewed as ‘a sequence of events that has a high value
of interestingness’:

1(X) = flx) x g(Freq(X)) = flx) x g(y) )

4.2 Design operation mining method

After defining what interesting patterns are, our next question is how can they be
acquired? To avoid requiring predefined templates, we take a generation-and-test
approach. The following are the steps of our method:

Step 1: Treat the chronicle sequence of monitored events as an applied field for
data mining.

Step 2: Pick up a j-tuple event sequence from the applied field and treat it as
a j-tuple template.

Step 3: Apply the template through the whole applied field to match the similar
patterns and identify the j-tuple event sequences with higher-than-threshold
interesting values as design operations.

Step 4 Alter j and go to Step 2.
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1 Start:

2 Let j = minimum_length — 1

3 Iteration:

4 Letj=j+1

5 Ifj > maximum_length Then Go to End_Iteration

6 Else

7 Create a new j-template from the Applied Field 53 1) Create Template

8 If no more j-template, Then go to Iteration

9 Else

10 Calculate Intrinsic interestingness of the j-template using Intrinsic Interestingness Function
11 Get Frequency of the j-template through Pattern Matching 53 2) Execute Pattern Matching
12 If Frequency > frequency_threshold

13 Then

14 Calculate Extrinsic interestingness of the j-template using Extrinsic Intrst. Function

15 Calculate Interestingness of the j-template

16 Add the j-template to the OperationList

17 If Stop Condition is satisfied Then Go to End_Iteration 53 3) Check and Stop Search
18 Else Go to Iteration

19 End_Iteration

20 Determine operation sequence ;3 4) Determine operation sequence
21 End

Figure 7. Algorithm of function-based design operation mining.

The variable j is an integer between the minimum length and the maximum length
of the successive event sequence. It can be seen that any j-tuple event sequence can
be picked up as a template, but only the matched sequences with high enough
interestingness will be selected as design operations. The pseudo-code of the
algorithm is illustrated in figure 7.

To create an effective algorithm of pattern matching for design operation
identification, we introduce a practically important assumption: a design operation
often emerges with noise. To deal with noise in the design event data, we devised a
dynamic programming based method to perform pattern matching for measuring
Freq(X). For example, if the sequence [w, o, 1, d] is an original sequence where letters
are literals, then [w, o, a, r, d] and [w, r, 0, d] can be recognized as the same. The
details of our dynamic programming based pattern matching can be found in our
previous work (Ishino and Jin 2002).

There are three stop conditions (line 17 of figure 7): (1) when the number of
literals in templates (i.e. j of j-tuple templates) reaches the maximum length, if it
exists and the extrinsic interestingness function is monotonic; (2) if all j-tuple
templates get their frequency equal to or less than the frequency threshold; and (3) if
j of j-tuple template reaches the maximum literal length of the event set. These
conditions are implemented in DAKA as a priori heuristics (Agrawal and Srikant
1994).

As shown in figure 7, there are four major functions in our algorithm,
i.e. create a template, execute pattern matching, check and stop the search, and
determine the design operation sequences. To illustrate these functions, let us
consider the data in table 1 as a design process that consists of four product
model event sets. Five literals, or types of events, described by a, b, ¢, d, and e
are involved in this case. The maximum literal length in this design process is
seven. In this example, for simplicity, we do not use dynamic programming in
pattern matching.
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Table 1. Example data of a design process.

Product model Design events
Pd, M;=[b,c,a,c d, a
Pd, M,=]Ja, d, c, €]
Pd; M;s;=|[b, a, d, c, e, d, ]
Pd, My=]Je, c, a, c, a]
(a) (b)
6 6
~ s L = s
é 5 £ 5
§ 0 £
g 3t S o3t
.2 9
g 2r £ 2r
= =)
= 1r g o1F
0 + + 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of literals in X Frequency of X

Figure 8. Examples of intrinsic value function and extrinsic value function.

Table 2. Examples of a three-tuple template.

Template Frequency Place Intrinsic value Extrinsic value Interestingness
[a, d, c] 2 M5(1,3), M3(2,4) 2.0 2.0 4.0
[c, a, c] 2 M(2,4), M4(2,4) 2.0 2.0 4.0
[d, c, €] 2 M>(2,4), M5(3,5) 2.0 2.0 4.0

First, the intrinsic value function f{x) and the extrinsic value function g(x) are
determined as shown in figure 8, in which the lower length limit is 3, the upper length
limit is 4, and the frequency threshold is 1.

Next, while j-tuple templates generated, the frequency of each template is
investigated using pattern matching. In this example, the three-tuple templates
include [b, ¢, a], [c, a, c], etc. They are generated and kept sorted in their
lexicographic order. All three-tuple templates have the intrinsic value of 2.0
according to the intrinsic value function (figure 8(a)). The frequency of each three-
tuple template is identified using pattern matching, and it turns out that three
templates, [a, d, c], [c, a, c|, and [d, ¢, ¢], exceed the frequency threshold because they
all appear twice in the design process. Their extrinsic values are all 2.0 based on the
extrinsic value function (figure 8(b)). Therefore, these three templates are stored in
memory together with their interestingness and places of appearance in the design
process, as shown in table 2. After that, the stop condition is checked; if an upper
length limit exists and j in j-tuple templates reaches it, the iteration loop stops.
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Table 3. Example of a four-tuple template.

Template Frequency Place Intrinsic value Extrinsic value Interestingness

[a, d, c, €] 2 M(1,4), M3(2.5) 4.0 2.0 8.0

When j is 3, this stop condition is not satisfied. The same procedure is performed on
four-tuple templates, resulting in only one 4 template stored in memory, as shown in
table 3. When j is 4, the stop condition is satisfied and the iteration loop stops.

Finally, comes a finalizing process to determine operations. A template that has
the highest value of interestingness is first chosen as the most possible operation
sequence. At the same time, its places of appearance corresponding to where the
template appears in the design process are recorded as a consumed area. In this
example, the template [a, d, c, ¢] is selected as the first operation sequence, and its
places of appearance, one from the first literal to the fourth in M, and the other from
the second literal to the fifth in M3, are recorded as the consumed area. Then, other
templates that have the second highest value of interestingness are put in a candidate
set. In the example, all three templates in table 2 are put in the candidate set. Then, a
candidate template whose locations of appearance do not overlap with the consumed
area is chosen as the second operation sequence, and the places of the second
operation sequence are added to the consumed area. In the example, the sequence [c,
a, c] is selected as the second operation sequence, and its places, from the second
literal to the fourth in M, and from the second literal to the fourth in M, are added
to the consumed area. This process is repeated until the candidate templates run out.
In the example, no more candidates exist, and finally two sequences, [a, d, ¢, e¢] and
[c, a, c], are selected as operation sequences.

5. Case example

To test the proposed approach for design activity knowledge acquisition, we chose
the ‘car front door design’ task presented by Araki (2000). In this design task a
designer has to design all of the geometric positions and sizes of the front door, the
lock and striker part, and the seal part, based on the information of the cross-section
of the car body depicted in figure 9. This design was built as a two-dimensional
parametric design using a commercial CAD system. A wrapper module was
developed and plugged into the CAD to monitor design events. The geometric model
of this design is also shown in figure 9. There are 28 parameters in total.

We prepared three design cases: a middle-sized car, a compact car and a luxury
car, and had a skilful designer design the cases in this order. There were common
constraints and requirements for all cases, as well as specific ones for individual
cases.

Constraints (symbols are defined in figure 9):

ab is on'ij, b=}, fg is on km, m=g, |mq| =4, where the notation of |mg| means the
length of segment mgq.
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Table 4. Case-specific requirements.

Case A Case B Case C
FL5+BLS 160 156 166
CL 12 9 13
PL1 8 6 8
PL2 5 4 5
BL1 75 70 79
BL2 7 5 9
BL3 12 11 12
BL4 47 45 50
BL5 30 28 30
BL6 39 35 39
BL7 44 40 44
BL10 69 64 72
Common requirements:
cd is on pn, eh is on pq, 9 <KLI1 <16, 8 <KL2< 14,

FL9 = FL1 - cos@sin®@ + FL2 - sin’ 6

where 6 = FA1 — 90.
+CL - cos?6 — KL2 - cos¥,

This equation in common requirements indicates the following: the radius of the
circular arc that has one endpoint at the centre of the front door hinge and the other
endpoint on the segment ij of the front door should be orthogonal with the segment
ij. The centre of the lock and striker part should be on the intersection of the radius
and the segment 7j.

Case-specific requirements:

Case specific requirements are shown in table 4.

5.1 Product model and monitored design events

This case study did not distinguish between the ‘product model” and ‘product model
core’ because it was not initially clear which parameters were more important than
the others. Therefore, all 28 parameters indicated in figure 9 were used to identify
product model roadmaps. It was assumed that when the same parameters were
manipulated the second time it is the start of a new product model. Furthermore,
only the parameter change events were monitored. Therefore, there are a total of 28
possible types of events involved in this case study.

A designer with sufficient task knowledge executed all three design cases A, B,
and C. In design case A, 74 design events were yiclded and 18 product models were
identified by analysing the states of the product model core. Similarly, 39 design
events and nine product models were detected in design case B, and 39 design events
and six product models were obtained in design case C. Table 5 shows a partial list of
the design events monitored during case B design. The product model roadmaps on
each design case are shown in figure 10.
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Table 5. Partial list of the captured design events.

Event ID Parameter FL1 FL2 FL3 FL4 FL5S FL6 FL7 FL8 FL9 FAl

1 FLI (94 51 145 130 17 116 22 24 110

8
12 FL2 94 49 145 8 130 17 116 22 24 110
13 BAI 94 49 145 8 130 17 116 22 24 110
14 KL1 94 49 145 8 130 17 116 22 24 110
15 FAl 94 49 145 8 130 17 116 22 24 105
16 FL2 94 494 145 8 130 17 116 22 24 105
17 KL2 94 494 145 8 130 17 116 22 24 105
18 KL1 94 494 145 8 130 17 116 22 24 105
19 FL3 94 494 140 8 130 17 116 22 24 105
20 FL5 94 494 140 8 125 17 116 22 24 105
21 FL5 94 494 140 8 128 17 116 22 24 105
22 BA1 94 494 140 8 128 17 116 22 24 105
23 BA1 94 494 140 8 128 17 116 22 24 105
24 FAl 94 494 140 8 128 17 116 22 24 107
25 FL1 81 494 140 8 128 17 116 22 24 107
26 BA1 81 494 140 8 128 17 116 22 24 107
27 FAl 81 494 140 8

128 17 116 22 24 104

Note: highlighted cells indicate the ‘parameter change’ events in the context of the other parameters.

Design Case A

Design Case B

Design Case C 1 50]

N4

Figure 10. Product model roadmap (front door design).
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Intrinsic Interestingness Extrinsic Interestingness

4.0 4.0

30 F 3.0k
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0.0 0.0 Lot

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Number of Elements Frequency

Figure 11. Intrinsic and extrinsic interestingness functions on front door design.

Table 6. Design operations acquired by DAKA in front door design.

ID  Sequence as operations Frequency Intrinsic value Extrinsic value Interestingness

Opl FLI1-FL2-FL9-KL2 5 3.0 3.0 9.0
Op2 FL2-FL9-BL9-BLS8 3 3.0 3.0 9.0
Op3 FL2-FL9-FL1 3 2.0 3.0 6.0
Op4 BAI-FAI-FLI 2 2.0 2.0 4.0
Op5 FL4-FL6-BAl 2 2.0 2.0 4.0
Op6 FL6-FLS8 2 1.0 2.0 2.0

Note: the parameter name in the operation sequence indicates the ‘parameter value modification’ event
on that parameter, e.g. ‘FL1” means ‘modifying FL1’s value’.

5.2 Design operation mining

The intrinsic interestingness function and the extrinsic interestingness function we set
are shown in figure 11. These were determined based on hearing from the designer
who had accomplished these three design cases.

The design operation mining was applied to all three design cases together as
if one huge design process had included all 33 product models. The operation
identification process is the same as described in section 4.2 except that the dynamic
programming algorithm (Ishino and Jin 2002) was used for pattern matching.
Six sequential patterns were discovered as valuable design operations, as shown in
table 6.

6. Results

The acquired design operations were located on the product model roadmap of each
design case, as shown in figure 12.
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Design Case A @ Op3 @ @ @

Design Case B bP1 @ (bp3) 004 @ @

Op4
Op2 /7N (o)
bP5 bP bP7 bPs
\.9

7~
N
OpL,5 @

Design Case C

Op2.5. @ Op3 @ @
N

Figure 12. Emergence of the acquired design operations.

In order to examine how the acquired sequences of design events were qualified
to be practical design operations, table 6 and figure 12 were presented to the designer
who performed the designs. The designer evaluated the sequence ID 1, 2, 4 and 6 as
important design operations and provided the following comments:

e Operation Opl: this seemed to be executed to meet the common requirement
expressed by the following equation:

FL9 = FL1 - cos@sin® + FL2 -sin>6 + CL - cos? 6 — KL2 - cos b,
where 0 = FA1 — 90

This equation included FLI1, FL2, FL9, CL, KL2, and FA1l. The length
of CL was designated as a case-specific requirement, so that the rest of
the five parameters should be determined. Since FAI was an angle and
its change of even 1° affected other parameters much greater than the
other parameters did, the point here was that FA1l should be examined
and determined first and then FL1, FL2, FL9, and KL2 should be
adjusted to meet the requirement. Opl represented the natural order of
changing parameters, FL1, FL2, FL9, and KL2, from the large parameter
to the small parameter. Since the requirement was the most important
and difficult requirement, Opl tended to reappear in the early stage of
design process.
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e Operation Op2: this reflects the adjustment of the space between the front
door and the body for placing the lock and striker. After the requirement
mentioned above was satisfied, there often was not enough space left for the
lock and striker. The series of design events, changing the parameters FL2,
FL9, BL9, and BLS, was performed to solve this problem by changing the
vertical length of the front door and the body.

e Operation Op4: this was executed to adjust the horizontal space between the
front door and the body by changing angles, FA1 and BA1. This was a
radical change, since the change of these angles affected the requirement
mentioned above. Op4 might indicate that when it is necessary to change
either one of the BA1 and FA1 in the middle of design, the other one should
also be changed. Since the change of these angles affected the horizontal
length of the space between the front door and the body, the length of FL1
should be changed successively.

e Operation Op6: this was conducted to adjust the vertical space for the seal.
This was a small change for the design and was executed in the late stage
of the design.

It is interesting to note that the design operations acquired by DAKA can be used by
designers to recall the significant design operations they performed in their design
processes. This experiment showed that DAKA can approximate significant design
operations in practice.

7. Conclusions

Engineering knowledge is a key asset for industrial enterprises. This paper focused
on design activity knowledge and proposed a DAKA framework that acquires design
activity knowledge through mining-monitored CAD events. DAKA requires neither
designer involvement at the design stage nor predefined and task-specific rules for
the classification of design events. The key components of DAKA include a product
model roadmap that represents the trajectory that designers walked through in their
design process and an interestingness function-based design operation-mining
algorithm that identifies the most interesting design event sequential patterns as
design operations. The design activity knowledge acquired by DAKA reflects the
trajectory of designers’ approach to reach a final design product model and identifies
key design operations for specific design tasks.

The case study results shown in table 6 and figure 12 indicate the features of
design activity knowledge and the capabilities of the DAKA approach. The design
activity knowledge is usually tacit and can hardly be explicitly articulated. Although
the designer who performed the designs of the case study had reasons for performing
certain design operations, such as Opl, Op4 and Op6, it would still be hard for
the designer to articulate explicitly such knowledge before these operations were
explicitly represented in terms of event sequences and presented in front of the
designer. This approach of extracting operations from design events for under-
standing and improvement is similar to the business process intelligence approach
in which process execution logs are explored to identify and improve the process
execution quality (Grigori et al. 2004). The fact that DAKA does not require
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predefined rules or templates for identifying design operations is a big advantage.
Since design activity knowledge is tacit and not likely to be prespecifiable, applying
interestingness functions for mining design operations made it possible for DAKA to
acquire design operations. Although how to specify interestingness functions is still
a question, the present authors believe the experience can be built by testing various
types of functions for given design tasks. The case example described in section 5
required very little computation time for DAKA to generate the results shown in
table 6. To verify the scalability of the proposed approach, a test case was created
using computer-generated synthetic data in which about 5000 design parameters and
tens of thousands of design events were involved. The computation for this case took
3.77 hours on a Pentium IV, 2-GHz, computer. The authors’ current research
investigates how different interestingness functions affect design activity knowledge-
capturing by applying DAKA to more engineering case examples.
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