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Abstract

Capturing engineering knowledge and managing it effectively is important for enterprises to stay competitive in today’s global market. In

our research, we focus on specific engineering knowledge, called design procedures, and attempt to develop effective ways to capture this

operational knowledge from the design events monitored during design process. We proposed a novel method called Information Value

based Mining for Sequential Pattern, or VMSP for short. VMSP does not require any predefined design-task-specific rules for classification of

design events. The basic idea of VMSP is to treat any list of monitored design events as a sequential pattern and search for most frequent and

informative sequential patterns. VMSP automatically generates candidate templates of sequential patterns, and then identify valuable

patterns as design operations based on the interestingness we set. The interestingness is a synthesized index of the two evaluation criteria:

One is intrinsic value representing how many design events constitute the template; and the other is extrinsic value indicating how often the

sequence appears in the design process. We have evaluated VMSP through two case studies using real CAD operation data recorded through

gear design and automotive door design processes, respectively. A case study using synthetic data was also carried out to test the scalability

of the proposed algorithm.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Knowledge management has recently attracted much

attention in various industries, including engineering design

and manufacturing [4,15]. Industrial design projects have

grown larger, and designing modern products such as cars

and aircrafts requires vast amount of information and

knowledge. Since designing different versions of products

with similar mechanisms is common in practice, capturing

design knowledge and sharing it among designers is

indispensable to maintain product quality and corporate

competence. It is especially useful to know how skillful

designers carried out designs in their ways. Analyzing
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know-how knowledge can provide designers with valuable

insights to effectively handle design tasks without diverting

too much of their design efforts.

Though the value of know-how knowledge has long been

recognized, capturing designers’ know-how without dis-

rupting their normal design processes is still a challenge.

Designers usually acquire practical know-how knowledge

from their design processes. Because design processes are

often ill structured, ad hoc and may vary greatly depending

on design contexts, designers often have to acquire their

know-how knowledge through an implicit learning process.

It is usually difficult for a designer to express it fully and

accurately.

In this paper we look into a specific type of know-how

knowledge, called design procedure knowledge. Design

procedure knowledge explains how a designer approaches a

design problem and achieves a final design: what operations

were carried out, how the operations were organized, what

iterations happened, and which alternatives were explored.

Our objective is to automatically capture design procedure

knowledge using commercial object-oriented CAD systems.
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The captured design procedure knowledge will help us to

understand how experienced designers carry out their

designs and guide other designers to do better design.

Moreover, the knowledge can be used for training of novice

designers so that they can quickly learn how to execute

prominent design.

In our previous research, we developed a Grammar and

Extended Dynamic Programming Approach (GEDP) for

design knowledge acquisition [12,13]. The core idea of

GEDP is to model a design process as a series of

meaningful clusters of design events, called design

operations. In this approach, designers’ activities are

captured as design events and translated into design

operations using a set of predefined classification rules,

called grammar rules and Extended Dynamic Programming

(EDP) rules. Although GEDP is a useful method to extract

design procedure knowledge from operation event data, it

has limitations. First, GEDP requires predefined rules,

which may be incomplete for covering all interesting

operations. Second, the rules are design task-specific and it

is difficult to reuse them for other design tasks. As a result,

creating specific rules for specific design tasks can be very

costly.

To overcome the limitations of GEDP, we propose a

novel method called Value-based Mining for Sequential

Pattern (VMSP). VMSP employs the same design process

model as GEDP does, but it has the advantage of not

requiring any predefined classification rules. The basic

idea of VMSP is to treat any list of design events as a

sequential pattern and search for most meaningful

sequential patterns. VMSP automatically generates tem-

plates as candidates of design operations. The candidate

templates are then evaluated, and only the meaningful

ones are recognized as a design operation. The mean-

ingfulness is defined by a user-defined interestingness,

discussed in Section 3.1. The interestingness is a term

generally used in data mining domain for representing

how much valuable a generated pattern is. The principle

of VMSP is so simple that it has the potential to be

applied to a wide range of design tasks. We have verified

VMSP through two case studies using practical CAD

data captured through real design processes. We also

tested scalability of the algorithm using a large set of

synthetic design process data.

This paper is organized as follows. Section 2

introduces the framework for design procedure capture

and explains several models developed in our previous

research and used as basis for this research. In Section 3

we introduce the Value-based Mining for Sequential

Pattern (VMSP) and describe its theoretical basis and

algorithms. Section 4 shows two case studies in which

the proposed method is applied; one is a 2D design of a

double-reduction gear system and the other is a 2D

design of the front door of a car. A case study using

synthetic design process data is also discussed in this
section. Section 5 discusses related work and Section 6

draws concluding remarks.
2. A framework for design procedure capture

Engineering design requires intensive and continuous

thinking. It is usually not desirable to interrupt designers’

normal design process. In our research, in order to avoid

disrupting designers’ design process, we first capture design

operation event data from the CAD system that designers

use, and then mine or infer the design procedures based on

the captured CAD operation events.

Our framework contains five phases as depicted in Fig. 1:

(1) monitor designers’ design actions, (2) store the

monitored event data of each designer into corresponding

task clusters, such as door design or instrument panel

design, (3) analyze data of each task cluster to mine design

procedures for the corresponding design task, (4) refine the

obtained design procedures by checking their meanings, and

(5) distribute the design procedures as design knowledge for

reuse. These five phases are continually reiterated, while the

data and procedure knowledge are updated.

In the monitoring phase, a wrapper module, which

translates designers’ CAD operations into numerical

predefined codes, enables us to monitor designers’ design

actions, such as adding an object, changing the value of a

parameter, and deleting an attribute or an object. The

wrapper plugged into the CAD systems reports pairs of

designer’s design action and its corresponding resulting

state of the design object in real time. In the storing phase,

the data transmitted by the wrapper are stored in the task

clusters, characterized by design task IDs, of design event

log database. In the analysis phase, data of the same task

cluster in the design event log database are analyzed to

extract preliminary design procedures. This phase is the

main part of our framework and its detailed mechanism is

described in Section 3. In the refining phase, the obtained

preliminary design procedures are examined by human

expert designers. If needed the experts can modify or delete

any of them. After the refinement, finally the remaining

design procedures are registered in a procedure knowledge

database, which is called Design Procedure DB in Fig. 1. As

an option, the procedure can be annotated with its procedure

features and reasons. Lastly, in the distribution phase,

obtained procedure knowledge can be delivered and shown

at designers’ requests. As can be seen from Fig. 1,

monitoring and storing are carried out at real time during

design, while analyzing and refining are processed in a batch

mode after the complete event data become available.

2.1. Design process model

As mentioned above, the core of capturing design

procedures is in the analysis phase. Since inferring design

procedures from primitive event data is a bottom-up
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Fig. 1. A design procedure capture system framework.
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approach, we need a general yet powerful model to

represent design processes and an effective reasoning

method for inference. We developed a three-layer design

process model to represent general design processes [13], as

schematically illustrated in Fig. 2.

The three-layer design process model represents generic

design processes based on three layers of information,

namely, Event Layer, Operation Layer, and Product Model

Layer. The Event Layer captures primitive design events

that are generated by designers while operating a CAD

system. Design events are observable changes of design

variables and accesses to documents. They do not reflect

intentions of designers. For example, ‘Change length A

from 15 to 30’ or ‘See document B,’ illustrated as ‘E’ in

Fig. 2, is an event that occurred at the Event Layer. The

Operation Layer represents higher-level design operations
next

E:   Event caused by a designer, e.g., “Change length A
Op: Meaningful Operation,  e.g. “Decrease weight,” “In
PM: Product Model (design prototype) representing des

In real design processes, a product model (e.g., PM1) i
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that reflect meaningful design actions. Elements at the

Operation Layer are design operations that can be generated

by reasoning based on multiple design events found at the

Event Layer. ‘Decrease the weight of the object’ and

‘Increase the strength of the arm’ illustrated as ‘Op’ in Fig. 2

are examples of design operations. The elements in the

Product Model Layer are design alternatives. Each product

model corresponds to a specific intermediate design

alternative illustrated as ‘PM’ in Fig. 2. The final design is

the product model that is finally chosen as the result of

design.

Based on our model of design processes, the goal of

designers can be considered as to create a final product

model. Before reaching the final product model, designers

explore the solution space by creating and evaluating

alternative product models. In each process of creating
,” “See document B” 
crease strength of the arm” 
ign alternatives 

s created by a sequence of operations (e.g., Op1, ...
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Time
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a product model, designers intentionally plan and perform

various design operations (‘Op’s). Although what the

performed design operations are and how they appear in a

design process cannot be observed directly, we can use the

observable events (‘E’s) as basis to reason about them.

We believe that the knowledge of ‘how to proceed with

design’ is reflected in the patterns of ‘how design operations

appear in the design process’. Knowing how and where the

design operations emerge in the design process can lead us

to knowing what the key operations are and how a design

was carried out. Our knowledge capture process has two

steps. First we identify the structure of design process as the

development history of product models. That is, we identify

how many product models are created in the design process

and how their parent–child relationships are formed.

Secondly, we discover where key design operations emerge

in the structured design process. The basis for the above

two-step process is the monitored CAD operation data and

their corresponding consequential states of the design

objects (i.e. elements of the product model) in the CAD

system.
2.2. Hierarchical structure of product models

As part of the design process model described above, we

introduce a hierarchical structure of product models that

represents the development trajectory of product models

during the process of design. A product model is composed

of a set of objects with various attributes representing

physical and conceptual feature of the product being

designed. The hierarchical structure is made by relation-

ships among product models. The relationships are

determined by comparing the features of product models

and acquiring the similarity among them. The hierarchical

structure is a time-series tree of product models in which a

newly developed product model becomes a child of one of

the existing leaf product models. A child product model can

be derived from its parent by major feature modifications or

additions. Of course, a newly developed product model does

not always become a child of an existing product model. It is

possible a new product model becomes a new root. We will

show how to make the structure later. Analyzing the parent–

child relationship between product models provides an

overall map or path of how product models were created,

explored, discarded, and finally adopted. Fig. 3 illustrates an

example of the product model hierarchy. In this example,
P1

Move-to
Move-back-to

Intermediate 
Product model

Finally Selected 
Product model

P2 P4

P3

P6

P5

P8P7 P9

Fig. 3. Hierarchical structure of product models.
the designer created a new product model P3 by modifying

or creating one or more key features. After realizing P3 will

not lead to desired result, the designer moved back to P2 and

started modifying or creating some other features which led

to P4.

Creating a hierarchical structure from monitored CAD

operation event data involves differentiating formations of

individual product models and then determining their

parent–child relationships. One simple way to do this is to

use file version management system. When designers save

their files into different versions, each version can be viewed

as a product model and the version tree can be viewed as the

product model structure.

For parametric design problems, however, one needs

more sophisticated procedures to generate a hierarchical

structure of product models since designers tend to change

product models without saving current CAD data. We

developed the following approach.
2.2.1. Differentiate formations of individual product models

First, the concept of product model core is introduced to

represent the current status of a product model being

developed. A product model core is an essential part of its

corresponding product model and is defined by a set of a few

key parameters of the product model. Updating the

parameter values of the product model core implies

significant progress in product model development.

Next, the formation, or birth, of a product model is

judged as follows: (i) an initial product model is generated

from an empty or incomplete product structure—i.e. a

product model with parameters having null values—by

assigning non-null values to all the design parameters, and

(ii) a derived product model is created when a design change

that causes changes in the product model core is made on an

initial or derived product model. Based on these definitions,

one can determine when a product model is formed by

monitoring the changes of the parameters of the product

model core.
2.2.2. Determine the parent–child relationship between

product models

To evaluate the relationship between product models, we

introduce the concept of virtual distance between product

models. The distance between two product models is

represented by the summation of a set of binary values

resulting from the comparison of their core parameters. If

the values of the same parameter of the two product models

are different, then the binary value is 1; otherwise it is 0.

When a new derived product model is formed, distances

between the product model and all other existing product

models are calculated. After that, the product model that has

the closest distance is selected as the parent of the newly

derived product model. In the product model tree structure,

a child product model is located and linked directly under its

parent. If the closest distance is bigger than the predefined
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P1

P2

P3
P4

P5 P6 P7

E2

E8E4E3

E5

E1

E9

E2 E6 E5 E1 E6 E9

E7

E2

E10 E11 E12 E13 E5 E12 E13

Designer A 

Op1

Op2

Designer B 

P1
P2 P3

P4 P5 P6

E8E4E3 E2 E6 E5 E9 E4 E8

E10

E3

E10 E11 E12 E5 E9 E4 E14

Op1

Op2 Op3

This figure illustrates two designers' design processes represented in our design process model. Product models are constructed
based on the object-oriented CAD data; design events are monitored through CAD tools, and design operations are inferred
based on our proposed algorithms described in the following section

Fig. 4. Capturing design procedures.
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threshold, the product model is then considered to be

independent of all other product models and has no parent.

2.3. Design operations

Our goal is to capture design operations as procedure

knowledge using the data of monitored design events and

the information of product models. We identify what were

the important design operations and where were they

conducted in the design process. For example, Fig. 4

illustrates the monitored event data and the inferred

operations of two skillful designers who were working on

the similar design tasks. From Fig. 4 it can be seen that Op1,

Op2 and Op3 are the important operations that were always

performed before the formation of a new derived product

model.
3. Value-based mining for sequential pattern (VMSP)

The previously unknown, potentially useful, interesting,

and understandable sequential patterns should be success-

fully discovered in a design event log database. This

objective is very similar to the one of data mining. In the

data mining domain the term interestingness is used as a

concept to represent how seriously interesting and mean-

ingful the detected patterns are. One of the most important

aspects of interestingness is frequency, i.e. how many times

a pattern appears in the design process. In many cases,

however, it is not always true that the more frequently a

pattern appears, the more meaningful it is. The design

process may contain a lot of undistinguished repeating steps

accompanied by early decisions in the design process. We

propose a novel measure to calculate interestingness of

sequential patterns generated. Next, we introduce a novel

method called Value-based Mining for Sequential Pattern

(VMSP) that includes the proposed interestingness measure.

VMSP should be able to overcome the limitations of GEDP
described in Section 1. VMSP is also based on the same

three-layer design process model described above. How-

ever, VMSP does not require predefined rules.
3.1. Valuable sequential pattern

To introduce a method that can be applied to procedure

acquisition for a wide range of design tasks, we formulate

the problem of procedure capture as follows.

Definitions.

EZ{e1,e2,.,en} time series of all monitored

design events; where n is total

number of events.

PZ{P1,P2,.,Pm} time series of all identified

product models, where m is

total number of product models.

MkZ{eiC1,eiC2,.,eiCh} the event sequence monitored for

developing Pk after finishing the

formations of PkK1, where i and

h are arbitrarily chosen to let iC
1 and iCh, respectively, indicate

the initial event number and the

last event number in the product

model Pk; Mk4E.

For any sub-event sequence X, if X4Mk, then we say that

Mk contains X.

Given a set of monitored design events E, the problem of

mining design procedures can be formulated as discovering

valuable sub-sequences Xop1,Xop2,. as design operations,

and locating positions of Xop1,Xop2,. in the product

model structure. The problem can be decomposed into

two sub problems: what are the valuable sub-sequences,

and how can they be acquired. We first focus on the former

one here.



Y. Ishino, Y. Jin / Advanced Engineering Informatics 20 (2006) 89–10794
The value of a sub-event sequence X should be estimated

from observations of E, P and Mk. We consider the value of

a sequence of events X in terms of the information the events

carry about the operational intent of the designer. We

assume that there are two types of values in a sequence X.

One is the inherent value of the sequence, that is, how

informative the sequence is in itself, represented by the

number of its component literals. The other type is how

informative the sequence is in the design process as a whole,

represented as how often it appears. We call the former

intrinsic value and the latter extrinsic value.

Firstly, we define the intrinsic value. Since we attempt to

develop a general way of capturing design procedures that

can be applied to various design tasks, we pay attention to the

generic and objective information that sequential patterns

emit. Therefore, the number of design events involved in a

sub-sequence X becomes the only information we can access

for formulating the intrinsic value. Here, we introduce an

axiom related to the value of a single design event.

Axiom. the value of any design event is no less than zero.

The value of each design event is vague and can fluctuate

through a design context. Each design event is part of a

design operation. While redundant design events may have

zero value, any identifiable design event should contribute

to the overall value of the design operation. The axiom

therefore should be valid. It indicates that a sequence with

more elements provides more information. From the axiom,

the more design events a sub-sequence X contains, the

higher value (or at least the same value) the X should be able

to generate. We introduce an intrinsic value function f(x) in

which x represents the number of design events that

constitute sequence X. The function f(x) should be a

monotonic increasing function and always satisfy the

conditions in logical formulas (1) and (2).

0%cx1 !cx2 0 f ðx1Þ% f ðx2Þ (1)

daO0; f ðaÞO0o f ða K1Þ Z 0 (2)

In formula (2), the integer a represents the lowest

number of design events that constitute the sequence X
f(x) f(x)

x

x is the number of design events that constitute X. 
is length-lower-limit. α

-1α -1α

(A) (B)

Fig. 5. Examples of intrin
when the intrinsic value function has value bigger than zero.

We call a a lower length limit.

In fact a designer can determine any function satisfying

the above conditions as an intrinsic value function of a given

design task. We assume that the designer who did the design

has empirical knowledge about how the value of a sub-

sequence of design events relates to the number of the

events constituting the sub-sequence. Typical examples of

intrinsic value function are schematically depicted in Fig. 5.

Fig. 5(A) shows a linear intrinsic value function in which

the informative value increases in proportion with the

number of design events. In practice, however, it is

conceivable that the value tends to reach a ceiling and not

increase any more after the number of events goes over a

limit. We call this limit upper length limit. Graphs B and C

in Fig. 5 are two different functions with ceilings.

Next, we define the extrinsic value. Our interactions with

industrial designers indicated that important design oper-

ations appear more than once in design processes. However,

regarding the frequency of appearance of operations, there

were two different opinions. Some designers felt that more

frequent appearance means more significant. Others voiced

that the rarely appeared operations were the most important

ones. After summarizing the opinions of the designers, we

adopt the following Assumption No. 1.

Assumption No. 1. A valuable sequential pattern always

appears more than once in design processes.

Based on this assumption, we introduce extrinsic value

function, g(y), where y indicates how many times a sequence

X appears in the design process. The extrinsic value function

is expressed by Eq. (3), where Freq(X) is a function of an

event sequence X and indicates its number of appearance in

the design process. The extrinsic value function is not

always a monotonic function, but needs to satisfy the

condition in formula (4), which signifies Assumption No. 1.

In formula (4) an integer b represents the largest number of

appearance when the extrinsic value function gets zero-

value. The integer b is called a frequency threshold.

gðyÞ Z gðFreqðXÞÞ (3)
f(x)

x x
length 
upper 
limit  

-1α

(C)

length 
upper 
limit  

sic value functions.



β β β

g(y)

(D) (E) (F)

g(y) g(y)

y y y

β is a frequency threshold in the design process. 

y is the frequency of X in the design process. 

Fig. 6. Examples of extrinsic value functions.
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dbR1; gðb C1ÞO0ogðbÞ Z 0ogðb K1Þ

Z 0o.ogð1Þ Z 0 (4)

As in the case of intrinsic value function, a designer can

determine a function satisfying the condition in formula (4)

as an extrinsic value function of a certain design task based

on his/her experience. Typical extrinsic value functions are

schematically depicted in Fig. 6. The graph F in Fig. 6

indicates the case that the rare sequences have great value,

and graphs D and E in Fig. 6 indicate the cases that more

frequent means more valuable. The word ‘extrinsic value’ is

similar to the notion of ‘support’ in data mining. However,

the word ‘support’ is usually used for finding an association

rule. Strictly speaking, our resultant sequences differ from

association rules, because association rules do not consider

the order of components. So, we use the word, ‘extrinsic

value’ instead of ‘support’.

Finally, we integrate intrinsic and extrinsic values into a

comprehensive measure of information value, called

interestingness, expressed by I(X). The concept of it is

very similar to the term interestingness used in data mining

domain. The interestingness indicates how seriously

interesting and meaningful the detected patterns are for

design experts. Since the interestingness should be zero-

value when either the intrinsic value or the extrinsic value is

zero-value, we define the interestingness as multiplication

of intrinsic value and extrinsic value, as shown in Eq. (5). In

Eq. (5), x represents the number of literals of event sequence

X, and y represents number of appearance of X. Given the

interestingness in Eq. (5), ‘a valuable sequence (or design

operation)’ can be viewed as ‘a sequence that has a high

value of interestingness.’

IðXÞ Z f ðxÞ!gðFreqðXÞÞ Z f ðxÞ!gðyÞ (5)

As mentioned above, the intrinsic value function and the

extrinsic value function should be determined by reflecting

designers’ experience. The typical forms of functions

illustrated in Figs. 5 and 6 represent some practically useful

valuations. The designers can choose from them depending
on the scale and contents of their design tasks. The

applications of these value functions are not restricted to

the same design tasks. They are applicable to other similar

design tasks. When deciding the intrinsic and extrinsic value

functions, one should pay attention to the balance between

them. While the proposed method does not pose any

constraint on the relationship between intrinsic and extrinsic

value functions, we think both intrinsic and the extrinsic

values are important. Eq. (6) shows the condition we used to

try balancing the values. In Eq. (6), k represents the upper

length limit if exits, or maximum literal length (i.e. the

largest possible number of events constituting an event

sequence). On the other hand, u represents the ceiling value

of frequency of an event sequence if exits. Otherwise u

equals the number of product models assuming the sequence

appears once for each product model generation.

ðk

1
f ðxÞdx Z

ðu

1
gðxÞdx (6)

3.2. VMSP method

After defining what valuable patterns are, our next

question is how can they be acquired? We propose a new

method called Value-based Mining for Sequential Pattern

(VMSP) to capture valuable sequential patterns as design

procedure knowledge based on the interestingness. In order

not to require predefined templates, we take a generation-

and-test approach. The following are the steps of our

method.

Step 1 Treat the chronicle sequence of monitored events

as an applied field for data mining.

Step 2 Pick up a j-tuple event sequence from the applied

field and treat it as a template.

Step 3 Apply the template through the whole applied field

to match the similar patterns and identify the

valuable j-tuple event sequences as design

operations.



Start:
Let j = length_lower_limit – 1 

Iteration: 
Let j = j + 1 

 If j > length_upper_limit Then Go to End_Iteration 
Else

      Create a new j-template from the Applied Field
             If no more j-template, Then go to Iteration

     Else
  Calculate Intrinsic Value of the j-template based on Intrinsic Value Function 

Get Frequency of the j-template through Pattern Matching 
If Frequency > frequency_threshold
Then  

       Calculate Extrinsic Value of the j-template based on Extrinsic Value Function 
       Calculate Interestingness of the j-template
        Add the j-template to the OperationList

If Stop Condition is satisfied Then Go to End_Iteration
Else Go to Iteration

End_Iteration 
Determine operation sequence 

End

Fig. 7. Algorithm of VMSP.
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Step 4 Alter j and go to Step 2.

The variable j is an integer between the minimum length

and the maximum length of the successive event sequence.

It can be seen that in VMSP any j-tuple event sequence can

be picked up as a template, but only the matched sequences

with high enough interestingness will be selected as design

operations.

To create an effective algorithm of pattern matching for

design operation identification, we introduce two practically

important assumptions:

Assumption No. 2. A design operation often emerges with

noise.

Assumption No. 3. A design operation appears literally at

least once in the design process.

Assumption No. 2 arises because design is a human

activity. It is usually hard for designers to perform

completely ‘clean’ operations. Assumption No. 3 indicates

that all design operations should be observable from the

whole applied field of events. We do not need to worry

about anything beyond this field. Our VMSP algorithm uses

the two assumptions as described below.
Table 1

Example data of design process

Product model Design events

P1 M1Z[b, c, a, c, d, a]

P2 M2Z[a, d, c, e]

P3 M3Z[b, a, d, c, e, d, c]

P4 M4Z[e, c, a, c, a]
3.2.1. VMSP algorithm

The VMSP algorithm is developed based on the

definitions of intrinsic and extrinsic values and the three

assumptions described above. The pseudo-code of the

algorithm is illustrated in Fig. 7. As shown in Fig. 7, the

core mechanisms of VMSP include: (1) create templates, (2)

execute pattern matching, (3) check and stop the search, and

(4) determine design operation sequences.
To further illustrate the above four functions, let us

consider the data in Table 1 as a design process that consists

of four product model event sets. Five literals, or types of

events, described by a, b, c, d and e, are utilized in this case.

The maximum literal length in this design process is seven.

In this example, in order to simplify the understanding of the

overall process of VMSP we do not use dynamic

programming in pattern matching.

First of all, the intrinsic value function f(x) and the

extrinsic value function g(x) are determined as shown in

Fig. 8.

According to the functions, the lower length limit is 3,

the upper length limit is 4, and the frequency threshold is 1.

Next, while j-templates—i.e. the set of all j-tuple

templates (1%j%5)—are generated, the frequency of

each template is investigated using pattern matching. In

this example, 3-templates include: [b, c, a], [c, a, c], etc.

They are generated and kept sorted in their lexicographic

order. All 3-templates have the intrinsic value of 2.0

according to the intrinsic value function. The frequency of

each 3-template is tested using pattern matching, and it

turns out that only three templates, [a, d, c], [c, a, c], and

[d, c, e], exceed the frequency threshold, since they all
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appear twice in the design process. Their extrinsic values

are all 2.0 based on the extrinsic value function. Therefore,

these three templates are stored in memory with their

interestingness and places of appearance in the design

process, as shown in Table 2. After that, the stop condition

is checked; if an upper length limit exists and j in j-

templates reaches it, the iteration loop is stopped. When j is

3, this stop condition is not satisfied. The same procedure is

performed on 4-templates, and consequently only one

4-template is stored in memory, as shown in Table 3. When

j is 4, the stop condition is satisfied and the iteration loop

stops.

Next comes a finalizing process, the operation determi-

nation process. A template that has the highest value of

interestingness is first chosen as the most possible operation

sequence. At the same time, its places of appearance

corresponding to where the template appears in the design

process are recorded as a consumed area. In this example,

the template [a, d, c, e] is selected as the first operation

sequence, and its places of appearance, one from the first

literal to the fourth in M2 and the other from the second
Table 2

Examples of 3-Template

Template Fre-

quency

Place Intrinsic

value

Extrinsic

value

Interest-

ingness

[a, d, c] 2 M2(1,3),

M3(2,4)

2.0 2.0 4.0

[c, a, c] 2 M1(2,4),

M4(2,4)

2.0 2.0 4.0

[d, c, e] 2 M2(2,4),

M3(3,5)

2.0 2.0 4.0

Table 3

An Example of 4-Template

Template Fre-

quency

Place Intrinsic

value

Extrinsic

value

Interest-

ingness

[a, d, c, e] 2 M2(1,4),

M3(2,5)

4.0 2.0 8.0
literal to the fifth in M3, are recorded as the consumed area.

Then, other templates that have the second highest value of

interestingness are put in a candidate set. In the example, all

three templates in Table 2 are put in the candidate set. Then,

a candidate template whose places of appearance do not

overlap with the consumed area is chosen as the second

operation sequence, and the places of the second operation

sequence are added to the consumed area. In the example,

the sequence [c, a, c] is selected as the second operation

sequence, and its places, from the second literal to the fourth

in M1 and from the second literal to the fourth in M4, are

added to the consumed area. This process is repeated until

the candidate templates run out. In the example, no more

candidates exist, and finally two sequences, [a, d, c, e] and

[c, a, c], are selected as operation sequences.
3.2.2. Implementation of VMSP

For effective and efficient implementation of VMSP the

following two issues must be addressed. First, how to

tolerate the noise in design event sequences while searching

valuable patterns, and second, how to ensure a successful

discovery of the most valuable design operations without

excessive calculation cost. The pattern matching using

dynamic programming was employed in VMSP for the

former objective. A heuristic algorithm called Apriori

heuristic was used in VMSP for the latter one.
3.3. Pattern matching in VMSP

We introduce pattern matching using dynamic program-

ming in order to measure Freq(X), that is, how many times a

template X appears in design processes. A pattern matching

method in VMSP should tolerate noise, according to

Assumption No. 2. Simple pattern matching such as a

word search cannot satisfy this requirement. The pattern

matching using dynamic programming is noise-tolerable.

For example, if the sequence [w, o, r, d] is an original

sequence where letters are literals, [w, o, a, r, d] and [w, r, o,

d] can be recognized as the same.

Originally, dynamic programming was an approach to

solving sequential decision problems, developed by Richard
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Bellman in 1957. The simplest dynamic programming

context involves an n-step decision-making problem, where

the states reached after n steps are considered terminal states

and have known utilities. The main concept of dynamic

programming is that choosing the best state in each step

leads to the optimum final state. Recently, dynamic

programming has been applied to solving various pattern

matching problems, e.g. speech recognition [26], image

recognition [6], and bioinformatics [16].

Dynamic programming enables us to detect not only the

same sequence as the template but also approximately

similar ones. It allows us to deal with noisy design event

data, such as missing, additional or substituted events.

However, our pattern matching in VMSP allows only

insertion (addition) and substitution (interchange) of

literals. This means that VMSP recognizes substrings of a

sequence as different ones from an original sequence. The

reason is as follows: our interestingness of a template is

determined by multiplying the intrinsic value and the

extrinsic value. It is tacitly based on the assumption that all

sequences counted as reappearance of templates have the

same information content. If we allow a deletion of literals

of a template while pattern matching, the assumption is

broken. In practice, to recognize only the insertion and

substitution of literals, we adjust the weights used in

dynamic programming.
3.4. Apriori Heuristic in VMSP

VMSP can capture sequences as design operations that

have the highest value of interestingness. Moreover, VMSP

saves calculation cost based on the Apriori heuristic. The

Apriori heuristic was first proposed in mining association

rules between items in a large database of sales transactions

[1]; the frequency of any super-pattern of a given pattern is

always equal or less than the frequency of the given pattern.

Although the Apriori heuristic enables methods of mining

association rules to reduce the search space, it works in

VMSP to determine when the search for templates should

stop.

There are three stop conditions: (1) In the case that the

upper length limit exists and the extrinsic value function is a

monotonic function, when the number of literals in

templates (i.e. j of j-template) reaches the upper length

limit, VMSP stops the generation-and-test process and does

not make (jC1)-templates. We call this situation ‘the search

stops.’ (2) If all j-templates get their frequency equal to or

less than the frequency threshold while searching, the search

stops. Or (3) if j of j-template reaches the maximum literal

length, the search stops. The third condition is a full search

of all the possible templates, independent of the Apriori

heuristic. However, the first and second conditions are based

on the Apriori heuristic.

The first condition can be explained as follows: Let kupper

be the upper length limit. The intrinsic value of all kupper
templates equals f(kupper). If kupper exists, then formula (7)

stands true.

f ðkupperÞ Z f ðkupper C1Þ Z f ðkupper C2Þ Z/Z f ðkmaxÞ

(7)
where kmax is the maximum literal length

On the other hand, formula (8) stands true based on the

Apriori heuristic.

max of FreqðTkupper
ÞRmax of FreqðTkupperC1ÞR/R

max of FreqðTkmax
Þ; where Tj represents j-template: ð8Þ

Moreover, if the extrinsic value function is a monotonic

function, then formula (9) stands true.

gðmax of FreqðkupperÞK templateÞ

gðmax of FreqðTkupper
ÞÞRgðmax of FreqðTkupperC1ÞÞR/R

gðmax of FreqðTkmax
ÞÞ ð9Þ

In this case, formula (10) stands true supported by

formulas (7) and (9).

max of IðTkupper
ÞRmax of IðTkupperC1ÞR/Rmax of IðTkmax

Þ

(10)

According to formula (10), the search after kupper-

templates is not needed to obtain the template that has the

highest interestingness.

Next, the second condition can be proved as follows: Let

kt be the length, where all kt-templates get their frequency

equal to or less than the frequency threshold. From formula

(4) and the Apriori heuristic, formulas (11)–(13) stand true.

max of FreqðTkt
Þ%b;

max of FreqðTktC1ÞÞÞ%b;/
(11)

, where b represents the frequency threshold.

gðmax of FreqðTkt
ÞÞ Z gðmax of FreqðTktC1ÞÞ Z/Z 0

(12)

IðTkt
Þ Z IðTktC1Þ Z/Z 0 (13)

According to formula (13), the search after kt-templates

is not needed to obtain the template that has the highest

interestingness.
4. Case study

We have tested the VMSP method on two design

problems: one is double-reduction gear system design and

the other is car front door design. Since we had already

acquired design operations using GEDP method for the gear

design problem [13], the objective of the gear design

experiment was to compare the captured operations of

VMSP with the ones from GEDP. The car door design

problem is a more practical one. The objective of the

experiment with this problem is to qualitatively evaluate the

effectiveness of VMSP.



Fig. 9. Graphical user interface of GearCAD.
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4.1. VMSP for gear system design
4.1.1. Design task

The double-reduction gear system is composed of four

gears, three shafts, bearings, and a case. Since the power of

the revolution makes the torque and the bending moment,

gears and shafts are designed to stand up to the force. We

developed a 2D CAD system called ‘Gear-CAD.’ Gear-

CAD is equipped with needed domain knowledge for

supporting design of double-reduction gear systems.
Fig. 10. Hierarchical structure of p
Besides, it records the designer’s operational events and

the status of the objects throughout the design process.

Fig. 9 shows an example of the Gear-CAD screens.

The constraints and requirements for the gear design

problem were:

Constraints:

(1) Spur gears that have teeth with a 20-degree pressure

angle are utilized in this system.

(2) The input power and speed of rotation are 10.0 kW and

500 rpm, respectively.
roduct design (gear design).
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Fig. 11. Intrinsic and extrinsic value functions on gear design.
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Requirements:

(1) All design components are determined in detail, i.e. size

and position.

(2) Required reduction ratio is 10:1.

(3) Lighter, smaller, and cheaper is better (because the gear

is to be used in space).
4.1.2. Monitored design events

In our gear design experiment, a user with enough

knowledge of gear design designed the double-reduction

gear system using Gear-CAD. Gear-CAD stored 472 events

in a list during the design process. The list consists of the

event-ID and the associated action, e.g. ‘Event-ID 5; See

document No. 2’ and ‘Event-ID 150; Input the number of

gear teeth of pinions.’

And then, eight product models were obtained in this

case. The parent–child relationships among product models

are shown in Fig. 10, where the final product model chosen

was product model No. 8.
Table 4

Obtained design operations by VMSP on gear design

ID Sequence as operations Fre

1 [E21,E30,E31,E130,E129,E125,E126,E41,E50,E51] 4

2 [E67,E69,E82,E133,E83,E84,E134,E85,E135,E86] 4

3 [E132,E131,E127,E128,E60,E91] 4

4 [E93,E94,E96,E95,E97] 5

5 [E94,E96,E98,E91,E92] 4

6 [E97,E65,E65,E67,E67,E67,E66,E69] 3

7 [E87,E137,E89,E138,E88,E136] 3

8 [E123, E124] 6

9 [E93,E94,E96,E98,E67,E67] 2

10 [E82,E133,E83,E85,E135,E86] 2

11 [E87,E137,E88,E136,E89,E138] 2

PM1 Design Events 1 … 35 36 37 38 39 40 41

4

42 43

155

Design Operations by VMSP

Design Operations by GEDP 156 155

Fig. 12. Example of design operatio
4.1.3. VMSP application to design event log

We set the intrinsic value function and the extrinsic value

function as shown in Fig. 11. The shapes of the two value

functions were determined by the subjective intuition of the

designer who executed this design task.

VMSP was applied to the data where 472 design events

had been divided into eight product models, and 11 design

operations were discovered as design operations. The result

is shown in Table 4.
4.1.4. Comparison of GEDP and VMSP results

We previously indicated that GEDP successfully

acquired beneficial design procedure knowledge using a

case study of a double-reduction gear system [13].

Although GEDP is a useful method to obtain design

procedure knowledge, it needs predefined classification

rules, which is a burden for users. In contrast, VMSP has

the advantage of not requiring any predefined classifi-

cation rules. The objectives of GEDP and VMSP are

the same; to acquire beneficial design procedure knowl-

edge. To ensure that VMSP, without predefined rules,
quency Intrinsic value Extrinsic value Interestingness

5.0 5.0 25.0

5.0 5.0 25.0

3.0 5.0 15.0

2.5 6.0 15.0

2.5 5.0 12.5

4.0 3.0 12.0

3.0 3.0 9.0

1.0 7.0 7.0

3.0 1.0 3.0

3.0 1.0 3.0

3.0 1.0 3.0

5

44 45 46 47 48 49 50 51 52 53 54 55 56 57 …

156 155 156 153 151

ns from different algorithms.
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can obtain design procedure knowledge to the same

level as GEDP did, we applied both methods for a

double-reduction gear system design and compared the

results.

The designer who had conducted design of the

double-reduction gear system knew that one of the

most important operations of this design task was related

to the change of the geometric position and size of the

gears and shafts. We picked up the sequences that were

supposed to be connected with such changes from a set

of operation sequences obtained by VMSP. The selected

sequences were VMSP ID 2, 4, 5, 6, 9, and 10 in

Table 4. On the other hand, we had analyzed the same

data by GEDP. The design operations ID 14, 151, 152,

153, 154, and 155 in GEDP were regarded as ones

connected to the change mentioned above. We compared

the design operations, respectively, obtained by the two

algorithms. Fig. 12 gives us a partial illustration of the

outcome. For example, VMSP captured a design

operation from design event ID 52–57, though GEDP
Body

Cross Section

Information of

Lock & Striker

Center of
 the Hinge

Center of meshin

Lo

Lock & Stri

FR Door

Fig. 14. Design of fro
captured three different design operations from the

corresponding sequence: the first from design event ID

50–53, the second from design event ID 54–55, and the

last from design event ID 56–57.

We calculated some index numbers to compare two

algorithms: (1) the total number of obtained design

operations related to the change of the geometric position

and size of the gears and shafts, (2) the average number of

design events composing the design operations, (3) the

number of design events contained in the design operations

detected both VMSP and GEDP in each product model, and

(4) the number of design events contained in the design

operations detected VMSP or GEDP in each product model.

In the case of VMSP the values of index-1 and index-2 were,

respectively, 20 and 7.1, though GEDP yielded 75 and 3.0

for those values. This means that GEDP tends to capture

design operations in further detail in comparison with

VMSP. This occurred because VMSP can acquire only

those design procedures that repeatedly appear in design

process. However, as far as the design procedure knowledge

is concerned, the contents of design operations captured by

GEDP and VMSP were very similar, as shown in Fig. 13

where the values of index-3 and index-4 are indicated. The

high ratio of index-3 in index-4 means the design operations

obtained by the two algorithms are overlapped to each other

to a great extent. Fig. 13 shows that the similarity is

conspicuously observed in PM1, PM2, PM3, PM4, PM6 and

PM7. The design operations obtained by VMSP were

significantly included in design operations by GEDP. We

can see that the sequences obtained by VMSP are not

exactly the same as the ones by GEDP, but they correlate

greatly well with each other. This means that the sequential

patterns discovered by VMSP without predefined GEDP

rules can be very valuable in practice. Manually refining
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Fig. 15. Geometric model of front door design.
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the sequences makes them more reliable in terms of the

meanings of the sequences.
4.2. VMSP for front door design of an automobile
aP1 aP2 aP3 aP4

aP10 aP11 aP12 aP13 aP17

aP5

aP8 aP9

Design Case A 

aP6 aP7
4.2.1. Design task

In practice, designing a car is decomposed into many

sub-activities [2]. From the automotive design process

documented by Araki [2], we picked up one of the sub-

activities, designing the front door, and applied design data

presented in [2] in our case study. In this design task a

designer has to design all of the geometric positions and size

of the front door, the lock and striker part, and the seal part,

based on the information of the cross-section of the car

body, depicted in Fig. 14. This design was built as a 2D

parametric design using a commercial CAD system. The
Table 5

Case-specific requirements

Case A Case B Case C

FL5CBL5 160 156 166

CL 12 9 13

PL1 8 6 8

PL2 5 4 5

BL1 75 70 79

BL2 7 5 9

BL3 12 11 12

BL4 47 45 50

BL5 30 28 30

BL6 39 35 39

BL7 44 40 44

BL10 69 64 72
wrapper module was developed and plugged into the CAD

to monitor design events. The geometric model of this

design is shown in Fig. 15. There are 28 parameters in total.

Since we prepared three design cases, (A) a middle-sized

car, (B) a compact car, and (C) a luxury car, a skillful

designer dealt with all design cases in this order. There were

common constraints and requirements for all cases, as well

as specific ones for individual cases.

Constraints: (symbols are defined in Fig. 15)
aP14 aP15

aP16

aP18

bP1 bP2 bP3 bP4

bP9

bP5 bP6 bP7 bP8

cP1

cP2

cP3

cP4 cP5 cP6

Design Case B 

Design Case C 

Fig. 16. Hierarchical structure of product models (front door design).
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ab is on ij; b Z j; fg is on km; m Z g; jmqj Z 4;

where the notation of jmqj means the length of segment mq.

Common requirements:

cd is on pn; eh is on pq;

9%KL1%16; 8%KL2%14;

FL9 Z FL1$cos q sin q CFL2$sin2 q CCL$cos2 q

KKL2$cos q

, where qZFA1-908

This equation in common requirements indicates the

following: The radius of the circular arc that has one

endpoint at the center of the front door hinge and the other

endpoint on the segment ij of the front door should be

orthogonal with the segment ij. The center of the lock and

striker part should be on the intersection of the radius and

the segment ij.

Case-specific requirements:

Shown in Table 5.
aP6 aP7

aP10 aP11 aP12 aP13 aP17

aP8 aP9

aP14 aP15

aP16

aP18

Op1

Op3 Op1

Op1 Op2 Op6

Op6

bP1 bP2 bP3 bP4Op4

Op4

Design Case B 
4.2.2. Monitored design events

A designer who had sufficient knowledge to accom-

plish this design executed all three design cases A, B,

and C in this order. In design case A, 74 design events

were yielded and 18 product models were detected by

analyzing the status of the product model core. Similarly,

39 design events and nine product models were detected

in design case B, and 39 design events and six product

models were obtained in design case C. The hierarchical
Table 6

Obtained design operations by VMSP on front door design

ID Sequence as

Operations

Fre-

quency

Intrinsic

Value

Extrinsic

Value

Interest-

ingness

1 FL1-FL2-FL9-KL2 5 3.0 3.0 9.0

2 FL2-FL9-BL9-BL8 3 3.0 3.0 9.0

3 FL2-FL9-FL1 3 2.0 3.0 6.0

4 BA1-FA1-FL1 2 2.0 2.0 4.0

5 FL4-FL6-BA1 2 2.0 2.0 4.0

6 FL6-FL8 2 1.0 2.0 2.0
structures of product models on each design case are

shown in Fig. 16.

4.2.3. VMSP application to design event log

The intrinsic value function and the extrinsic value

function we set are shown in Fig. 17. These were determined

based on the hearing from the designer who had

accomplished these three design cases.

VMSP applied to all three design cases together as if one

huge design process had included all 33 product models. Six

sequential patterns were discovered as valuable design

operations, as shown in Table 6.

4.2.4. Results of VMSP

The obtained design operations were located on the

design process of each design case, as shown in Fig. 18.

In order to examine how obtained sequences of design

events were qualified to be practical design operations, we

interviewed the designer who had accomplished these
bP9

bP5 bP6 bP7 bP8Op2

cP1

cP2

cP3

cP4 cP5 cP6

Op1, 5 

Op1

Op2, 5 Op3

Design Case C 

Fig. 18. Emergence of obtained design operations in design process.
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design cases by showing her Table 6 and Fig. 18. She

evaluated the sequence ID 1, 2, 4, and 6 as important

operations. Following is a summary of her comments:

† The sequence No. 1 seemed to be executed to meet the

common requirement expressed by the following

equation.

FL9 Z FL1$cos q sin q CFL2$sin2 q CCL$cos2 q

KKL2$cos q;

, where qZFA1-90

This equation included FL1, FL2, FL9, CL, KL2, and FA1.

The length of CL was designated as a case-specific

requirement, so that the rest five parameters should be

determined. Since FA1 was an angle and the change of its

one-degree affected other parameters much greater than

other parameters did, the point was that first FA1 should be

examined and determined and then other FL1, FL2, FL9,

and KL2 be adjusted to meet the requirement. The sequence

No. 1 represented the natural order of changing parameters,

FL1, FL2, FL9, and KL2, from large parameter to small

parameter. Since the requirement was the most important

and difficult requirement, the sequence No. 1 tended to

reappear in early stage of design process.

† The sequence No. 2 seemed to be executed to adjust the

space between the front door and the body in order to put

the lock and striker part. After the requirement mentioned

above was satisfied, sometimes came the problem there

was not enough space left for the lock and striker part. The

series of design events, changing the parameters FL2,

FL9, BL9, and BL8, behaved to solve it by changing

vertical length of the front door and the body.

† The sequence No. 4 seemed to be executed to adjust the

horizontal space between the front door and the body by

changing angles, FA1 and BA1. This was a radical change,

since the change of these angles affected the requirement

mentioned above. The sequence No. 4 might indicate the

following things: When the necessity to change the

parameter, either BA1 or FA1, occurred in the middle of

design, both of them should be also changed. Since the

change of these angles often affected the horizontal length

of the space between the front door and the body,

successively the length of FL1 should be changed.

† The sequence No. 6 seemed to be conducted to adjust the

vertical space for the seal part. This was a small change

for the design as a whole, and executed in the late stage

of the design.

According to the designer’s comment, the sequences

obtained by VMSP can approximate significant design

operations in practice. Although the sequential patterns

discovered by VMSP cannot always become meaningful

design operations, they can be used by designers to recall

the significant design operations they did in their design

processes. This experiment showed that VMSP has the
potential to produce valuable design procedures even in

practical design cases using a commercial CAD system. It is

important to note that VMSP captures design operations

without predefined design-task-specific rules. Instead, it

uses intrinsic and extrinsic values functions which are more

design task independent and can be shared across given

design domains.
4.3. VMSP for synthetic data

To evaluate the scalability of VMSP, we applied it to

synthetic event data sets generated by a computer program.

The parameters used for generating data include: (1) the

total design event numbers, (2) the total number of product

models in design process, (3) the maximum number of

design events in a product model, (4) the minimum number

of design events in a product model, (5) the maximum

threshold of a target sequence length of design events as a

design operation, (6) the number of a target model pattern in

design process. We made 27 data sets by changing values of

parameter No. 1 to No. 5. The pattern such as ‘108, 300,

412, 800, 707, 228, 589’ was set as a target model of a

design operation to be captured. Then the target model was

randomly inserted using parameter No. 6. We changed

parameter No. 1 from 20 to 10000 and parameter No. 2 from

10 to 500, so that the size of test data set was changed from

390 byte to 153 kb. The required time for calculation was

shown in the Fig. 19. The required time for acquiring design

operations tends to increase not linearly but 2-order

exponentially, corresponding to the number of existing

design parameters. However, generally speaking, the

number of design parameters in a normal engineering

design task in industry is 3000–5000 at the most. In our

experiment, the case with 5000 design parameters required

13589137.0 mm s (Z3.77 h). It is reasonable in time scale.

As a result, VMSP showed the ability to be used in actual

engineering design.
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5. Related work

Capturing design procedure knowledge of experienced

designers is important for effective engineering knowledge

management. While many researchers in engineering and

artificial intelligence have focused their knowledge captur-

ing research on documented domain knowledge [5],

research on capturing know-how knowledge such as design

procedures received little attention. One reason for this is

that know-hows and procedures are much domain-specific

and it is difficult to deal with the capturing problem in a

general way. Despite the difficulty, some researchers

pointed out its importance and attempted to tackle the

problem; e.g. Knowledge Infrastructure for Collaborative

and Agent-based Design (KICAD) was proposed to use

agent-based systems to capture and manage procedure

knowledge in collaborative design [14,15]. However, the

general way to capture the design procedure knowledge

remains to be a challenging research topic.

On the other hand, the research on design rationale has

been done from different point of views [22]. There are three

major models: argumentation-based design rationale such as

the Issue-Based Information System (IBIS) [17], action-

based design rationale [18], and model-based design

rationale such as the Active Design Document (ADD)

system [8]. Recently, as the computer systems supporting all

aspects of the design process evolved, many have pursued

the integration of the record of design rationale with the

history of the evolution of the design artifact [19,27].

Furthermore, a number of recent design rationale systems

including PHIDIAS [28] and KBDS-IBIS [3] were

proposed. In the field of design rationale, the research

focus is on capturing why a specific design feature was

designed the way it is. The process of how it was designed is

not an issue. Moreover, few researchers cared about not to

interrupt designers’ normal thinking process. Many require

designers to record reasons during the design process.

Several researches in the action- and model-based design

area worked on both know-how and know-why knowledge

capturing. Ganeshan et al. [7] proposed the framework to

capture how and why, in which the core idea was to model

design as selections from predefined transformation rules.

When a rule is selected, the choice is recorded along with

rationale associated with that rule. In their approach,

designers’ activities are constrained and they are translated

into the predefined rules beforehand. Myers et al. proposed a

framework to capture design rationale from a general CAD

database [23]. They developed an experimental system, the

Rationale Construction Framework (RCF), which automati-

cally acquires rationale information from the detailed design

process. In RCF, they regarded design history as a

conglomerate of detailed design rationales and focused on

capturing many partly isolated design rationales in detail. In

RCF, simple pattern matching is executed to detect design

procedure using general predefined rules called design

metaphors and qualitative reasoning is used to capture
design rationale. Focusing on capturing know-how knowl-

edge and design procedure features, rather than know-why

knowledge, Ishino and Jin proposed a Grammar and

Extended Dynamic Programming Approach (GEDP) [12,

13]. The core idea of GEDP was to model a design process

as a series of meaningful clusters of design events, called

design operations. In this approach, designers’ activities

were constrained and translated into design operations using

the predefined classification rules called grammar rules and

EDP rules. All methods mentioned above were useful to

reach their goals, respectively. However, they all needed

predefined rules used for classification of recorded events.

So, these methods are limited by high cost of creating

predefined rules. Our VMSP approach, however, does not

need any predefined rules. It is simple and applicable to a

wide range of design tasks.

In addition, some of the industrial Case Based Reasoning

(CBR) systems can also be considered as capturing design

process knowledge. Several recent publications have

addressed specific issues of applying CBR to design [20].

Goel et al. directly addressed the representation of causal

behavior through the use of structure-behavior-function

(SBF) models [9]. SBF models are useful to diagnose

products. However, they focused on states of product

models rather than design history.

In the field of data mining, various techniques and

algorithms have been studied to capture knowledge

possessing high interestingness. The number of patterns

generated in a process is usually very large and only a few of

the patterns are likely to be of any interest to the domain

expert analyzing the data. To increase the utility, relevance,

and usefulness of the discovered patterns, techniques are

required to reduce the number of patterns that need to be

considered. These techniques are referred to as interesting-

ness measures in data mining domain [11]. To date, many

techniques have been published such as Piatetsky–Shapiro’s

rule-interest function [25], Smyth and Goodman’s J-

Measure [29], Agrawal and Srikant’s itemset measures

[1], and Gray and Orlowska’s interestingness [10]. There

have also been many application studies of the techniques in

many fields such as marketing [1] and medical domains [21,

24]. For example, Piatetsky–Shapiro introduced his rule-

interest function which was used to quantify the correlation

between two attributes arbitrarily chosen, and the obtained

knowledge is expressed as classification rules [25]. And

later Piatetsky–Shapiro and Matheus proposed Key Find-

ings Reporter (KEFIR), which can perform an automatic

drill-down through data and discover key findings in a

database, and they tested it using health-care data [21]. The

survey paper [11] summarized major studies on the

interestingness measure. Almost all such techniques

focused on the correlation or deviation among attributes

or components, and the acquired knowledge was expressed

as classification rules or association rules. These techniques

did not treat the time series sequential patterns of the

components. On the other hand, our proposed measure and
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implemented method focused on the sequential patterns

frequently appeared and considered to be valuable. The

sequential patterns are not combinations of attributes or

components, but permutations of them. We introduced a

novel function to express the interestingness of sequential

patterns considering sequential variations occurred with

components’ insertions and substitutions.
6. Concluding remarks

Since engineering design is highly knowledge intensive,

capturing, managing, and utilizing knowledge can yield

significant benefits for both designers and enterprises. In this

paper we focus on capturing design procedure knowledge

through monitored operational events from CAD systems.

We proposed a novel method called Value-based Mining for

Sequential Pattern (VMSP). VMSP does not require any

predefined and task-specific rules for classification of design

events. The core concept of VMSP is to regard a list of

design events as a sequential pattern and search for frequent

and informative patterns as design operations. VMSP

automatically generates templates of sequential patterns,

and then identify valuable sequential patterns as design

operations based on the templates and the interestingness

defined by non-task-specific intrinsic and extrinsic value

functions. The captured design procedure knowledge shows

how a designer approaches and achieves a final product

model, and what are the key design operations for a specific

design task. We have evaluated VMSP through two case

studies in which practical CAD data monitored through

design processes were used.

The advantage of our approach is that a user can utilize

VMSP without having to make predefined rules about the

design task concerned. We achieved this advantage by

introducing a meta-level concept called value function.

Comparing with predefined pattern matching rules, value

functions are more general and usually applicable to a wide

range of design tasks. Our algorithm allows this important

saving of rule-definition cost without substantial increase of

computation cost. The Apriori heuristic and our fetch-

generation mechanisms described in Section 3.2 limit the

maximum number of templates proportional to the number

of product models and events.

One issue of our approach is that some of the sequential

patterns discovered by VMSP may not be literally mean-

ingful design operations. Manually refining the sequences

obtained by VMSP is needed to make them more meaningful.

Moreover, the tuning up of the intrinsic and extrinsic value

functions is sometimes needed to acquire more reasonable

sequences. Despite the limitations, we have demonstrated

that VMSP can produce meaningful primitives of design

operations that can help designers to recall their practical

design procedures and make this know-how knowledge

explicit. Our current research addresses these limitations and

explores issues related to the scalability of this method.
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