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Abstract 
Conceptual design is a key early activity of product development. Limited understanding of conceptual design 
process and lack of quantitative information at this stage of design pose difficulties on effective support for 
concept generation and evaluation. In this paper, a hierarchical co-evolutionary approach is proposed to 
support conceptual design. In this approach, higher-level functions are decomposed based on a set of 
grammar rules, and mappings between functions and their solutions, or means, are realized through a co-
evolutionary computing process. The paper describes the details of the approach. An example of designing a 
mechanical personal transporter is presented to demonstrate the effectiveness of the proposed approach. 
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1 INTRODUCTION 
Conceptual design is a major early activity of engineering 
design that involves generation and evaluation of design 
concepts [1]. Due to its creative nature, providing effective 
tool support for designers at this stage of design has been 
a highly difficult task. Effort was made to provide 
information management support for designers to 
managing their design information. But this approach 
cannot effectively help designers to extend their reach in 
the design space for more ideas. Other researchers are 
more aggressive and attempt to generate design concepts 
automatically for designers [2]. 
There are two major issues that must be addressed to 
achieve effective support for conceptual design. First, the 
concept generation process of conceptual design is very 
much unknown. Although researchers have developed 
various design methods [1] [3], they only specify the steps 
that designers should follow. Designers must rely on their 
own experience and expertise to generate concepts and 
select the best ones. Cognitive models of conceptual 
design process have been explored recently [4], but it will 
still take time for these models to be useful for building 
computational design support tools. 
Another important issue is the lack of quantitative 
information at conceptual design stage [1]. The concepts 
and information involved in conceptual design are related 
to function requirements and solution principles, which are 
usually highly qualitative. This situation makes it difficult to 
establish evaluation criteria to support conceptual design. 
Recent progress in evolutionary computing [5] [6] has 
attracted researchers’ attentions because of its great 
potential for aiding idea generation. The existing 
evolutionary design research, however, is limited to dealing 
with parametric design problems [7] or relatively simple 
architectural design problems [8]. Grammar based 
approach [2] has been applied to provide computational 
support for conceptual design, but they do not explicitly 
provide criteria for design concept evaluation. Due to the 
two issues mentioned above, thus far there has been no 
effective ways for conceptual design support.  
The goal of our research is to develop a hierarchical co-
evolutionary approach that supports conceptual design by 

providing automated exploration of design space and 
generation of design concepts. In this approach, function 
grammar guides function decomposition, and co-evolution 
of functions and means leads to best solutions at each 
layer of decomposition. A co-evolutionary algorithm based 
on this model is developed for concept generation. In the 
following, we first provide an overview of the proposed 
approach. After that, details of the approach are presented 
in Sections 3 and 4. A case example is presented in 
Section 5, and conclusions drawn in Section 6.  
2 A HIERARCHICAL CO-EVOLUTION APPROACH 
Mechanical design problems are usually complex and 
involve various functional requirements and a large 
number of potential means as solutions. Decomposing 
high level complex functions into lower level ones has been 
a common practice to create design concepts [1] [3]. In his 
axiomatic design framework, Suh [3] proposed a zigzag 
design process in which before a FR1 (functional 
requirement) is decomposed, a designer is advised to first 
find a suitable DP1 (design parameter) so that the 
information of DP1 can be used to guide the decomposition 
of FR1. After FR1 is decomposed into FR1-1, ..., FR1-n, then 
these sub FRs can be used to find suitable sub DPs for 
DP1. While the axiomatic design suggests the zigzag 
process, it is designers’ job to perform the decomposition 
of FRs and identification of suitable DPs. Our research 
question is how can we devise a computational support 
that can help designers 1) decompose functions, 2) identify 
most suitable means to carry the functions, and 3) 
generate most desirable design concepts? 
To address this question, we turn to evolutionary 
computing techniques [5] [6] for solutions. The evolutionary 
approach is adopted because it can address the two major 
issues mentioned above. First, evolution can be applied as 
an underlying process for idea generation, and second, the 
concept of fitness can be used to maximize the utility of 
available information for concept evaluation.  
Figure 1 illustrates our proposed evolutionary framework 
for conceptual design. At the center is the evolutionary 
computing based on a co-evolutionary design process and 
evolutionary algorithms. Function and means library serves 
as the design space in which specific functions and means 
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evolve to form final design concepts. The fitness functions 
are composed of general principles and the information 
acquired during design. They serve as evaluation criteria to 
guide evolution. After a list of requirements and a top-level 
function are given, the function will be decomposed, and 
more concrete functions and means will evolve to 
eventually form complete design concepts. 
 
 
 
 
 

Figure 1: Evolutionary approach to conceptual design 
It is conceivable that generating meaningful concepts 
requires a rich library of functions and means. How to 
create such a rich library is a future research topic. In this 
research, a limited library is predefined for testing purpose, 
and we focus on developing the evolutionary process, 
algorithms, and fitness functions. 
Modelling conceptual design as an evolution process of 
functions and means is a major challenge. We follow the 
zigzag process of axiomatic design. A grammar-based 
approach is adopted for function decomposition, and a co-
evolution process of functions and means is introduced for 
automated function structuring and function-means 
mapping at each layer of decomposition. The process of 
our model can be described as follows (see Figure 2): 
(0) A designer provides top-level function f0 based on 

given design requirements. From f0, top-level means 
m0 is found through search based means selection.  

(1) Decompose f0 into N decomposition sets based on 
grammar rules and information of m0. 

    For each decomposition set, do the following: 
(2) Find all feasible means for each of the sub-functions 

based on a search algorithm. 
(3) Compose function structures with genetic program-

ming (GP) and feasible means set information. 
(4) Select most suitable means for each sub-function 

based on genetic algorithm (GA) and function 
structure information. 

(5) Repeat (3) and (4) until a high fitness function value 
can be reached. 

(6) Repeat (1) through (5) if the means identified in (5) are 
still not implementable. 

This evolutionary design process has two important 
features. First, it is hierarchical in the sense that higher- 
level functions are decomposed into lower level ones for 
finding most suitable means. Second, the functions and 
means are co-evolving in that the selected means sets are 
used to evaluate the fitness of function structures, and the 
functions structures in turn are also used to further select 

suitable means. We call this process a Hierarchical Co-
Evolutionary approach to conceptual Design, or HiCED. 
From a computational point of view, it is conceivable that at 
each layer of decomposition hierarchy, there can be a 
huge number of possible decompositions.  While human 
designers can do the decomposition and function-means 
mapping based on their experience, automating this 
process requires a powerful search mechanism. In our 
proposed process model, a co-evolutionary approach is 
devised to let functions and means find each other in an 
evolutionary way. In the following two sections, we 
describe some of the details of grammar-based function 
decomposition and GA & GP based co-evolution of 
functions and means. 
3 GRAMMAR BASED FUNCTION DECOMPOSITION 
Grammar based function decomposition is carried out by 
applying a set of grammar rules [2]. As in any rule-based 
systems, effective grammar based decomposition depends 
on the balance between generality and specificity of the 
grammar rules since too specific will limit applicable 
domains and too general may lead to large amount of 
incompatible decompositions. In HiCED, we follow a 
number of general grammar rules [2], and a set of specific 
rules created based on our following function definition. 

 f = {<action><object>,{input_flow},{output_flow}}          (1) 
In definition (1), action is the operation to be performed by 
this function, input_flow and output_flow are flows of energy, 
material and signal [1]. Object is part of input_flow and 
represents the object to be processed by this function. In 
the following, we present both general rules and action-
based rules. The application of these rules will be 
discussed in Section 5. 

3.1 General grammar rules 
The general function decomposition rules are applied to 
function decompositions where no action based rules can 
be matched. Thus general rules have lower priority. 
Initial Rule (IR): fi is a function at the ith 
decomposition layer, and Ii+1 is an initial 
decomposition function set for function 
fi. The result of this rule is that it adds a 
function Import for each input_flow of fi 
and a function Export for each 
output_flow of fi. 
General Expansion Rule (GER):  
Fi+1,j is an incomplete function 
decomposition set for function fi at 
layer i+1. j is the number of sub 
functions in function set Fi+1,j. The 
result of this rule is the addition of 
fi+1,.j+1 to initial incomplete set Fi+1,j. 
A major issue in applying this rule is how we can find a 
function fi+1,.j+1 to make a new function decomposition set 
that can better fulfill the function fi.. A greedy search 
algorithm is employed that selects best matching functions 
based on compatibility of input and output flows. 
Termination Rule (TR): For any func-
tion fi at ith layer, Impi+1 and Expi+1 are 
the Import function set and Export 
function set of fi, respectively, at 
(i+1)th layer. If for all output_flows of any function in Impi+1 
there is a flow path that can reach one of the functions in 
Expi+1, and vice versa, then the decomposition from ith 
layer to (i+1)th layer terminates. 

3.2 Action based grammar rules 
From definition (1) we can see that decomposition of a 
function can be along the action dimension. In HiCED we 
introduced following two action-based grammar rules. 
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Action Decomposition Rule (ADR): In case ACTh can be 
divided into sub-actions [ ]ln1,..., ACTACTl , then we have: 

{ }

{ } ( )niobjectACTfwhereffdecompf

ACTACTACTobjectACTfif

liin

lhh
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Action Expansion Rule (AER): When execution of ACT1 
either depends on or leads to another action ACT2, then, 

{ }
{ } objectACTfwherefff

ACTACTACTobjectACTfif
and
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exp
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  ,  
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=⎯⎯⎯ →⎯⇒
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4 CO-EVOLUTION OF FUNCTIONS AND MEANS 
In HiCED, at each layer of decomposition hierarchy, 
function and means co-evolve until some satisfactory 
solutions are found. We developed a genetic algorithm 
(GA) for means selection and genetic programming (GP) 
for function structuring. Fitness functions are composed to 
evaluate function structures and means selections. 

4.1 Co-evolution algorithm 
In our co-evolutionary algorithm, means are pre-encoded 
into strings of binary bits, as shown in Figure 2. Each 
chromosome [5] represents a combination of means for 
corresponding functions. The length of bits for mi is 
determined by the number of matchable means of the 
corresponding function fi.  
 
 
 

 

Figure 2: A chromosome model of means 
 
 
 
 
 

Figure 3: A chromosome model of function structure 
In function structuring by GP, each function structure is 
represented as a genetic programming tree, where internal 
nodes are genetic programming functions, and terminals 
are functions that are derived from the function 
decomposition, as shown in Figure 3. At present, two basic 
genetic programming functions are used, namely, connect 
and parallel, as shown in Figure 3. More functions will be 
added as our research advances. 
Following is pseudo-code of our co-evolutionary algorithm: 
Given requirements Q, toplevel functin f0; 
S = InitializeDesignSolution (Q, f0); 
if S is not implementable, do iteration  
{       
   FDS = GetFunctionDecompositionSets(S, Q);           //Grammar 
   CMS = GetCorrespondingMeansSets(FDS) ;            //Search 
   PFS = GetPreliminaryFunctionStructureSets (FDS); //GP 
   PMS = GetPreliminaryMeansSets(PFS);                   //GA 
   FsMS =GetFuncStructure-MeansPairSet(PFS, PMS); 
                  //The above line involves GP&GA based co-evolution 
   S = GetTheOneWithHighestFitnessValue(FsMS ); 
}  End; 
4.2 Fitness functions 
Fitness functions in evolutionary computing are used to 
evaluate candidate solutions. The fitness value attached to 
each candidate determines whether the candidate, or part 
of it, will go to the next generation. In HiCED, fitness 
functions must make maximum use of design principles 
and all qualitative information since no much quantitative 
or performance related information is available.  

Explicitly modelling function structures, flows, and their 
mappings to means allows us to compose fitness functions 
based on input and output flow connections—i.e., how well 
two functions or two means are connected to each other—
and structural dimensions—i.e., how many functions or 
means are involved. In addition to these structural 
evaluations, performance based fitness is also included in 
case quantitative information is available. In the following, 
we briefly present the fitness functions of HiCED. 

Fitness functions for GP-based function structuring 
Function connection rules: These rules are applied to 
check the compatibility of function connections. Three sub 
rules are defined: function connection rule (FCR) for 
checking flow connections of two functions; means 
connection rule (MCR) for checking corresponding means 
connection compatibilities; and input/output rules (IOR) to 
check if the candidate structure has the same I/O flows as 
the top-level function. For functions fi, fj with matching 
means mi, mj in structure Fk, we have 

( ) ,_∑−= jiFCR ffflowunmatchff    (4) 

( ) ,_∑−= jMCR mimmeansunmatchff    (5) 

( ) functionleveltopisfwhereFfflowunmatchff kIOR 00,_−=  (6) 

ffMCR reflects the fact that means information is used to 
evaluate function structures in co-evolution. 
Structure dimension rule (SDR):This function controls size 
of function structures. Generally, smaller size is preferred. 

( )kSDR Ffunctionofnumberwff __⋅−=    (7) 

Fitness function for GA based means selection 
Means connection rule (MCR): This rule checks the 
compatibility of means connections. Given mi, mj we have 

( ) ,_∑−= jMCR mimmeansunmatchff    (8) 

The means connection information comes from function 
structures. This is how function information is used to 
evaluate means in co-evolution. 
Means performance rule (MPR):If performance information 
of certain means is available, e.g., maximum power, the 
information is used as part of fitness functions. Let design 
requirements be Q={qi, ..} and performance P={pi, ..}, then, 

( )∑ −−=−−=
j

iiMPR pqPQff 2    (9) 

Means preference rule (MPRR): Designers can assign 
specific preference pri to certain means mi. This rule 
indicates the likelihood a means is selected in a design.  

∑ ⋅=
i

iiMPRR bprff where {1
0

selectedismif
selectednotismifi

i

i
b =  (10) 

In the following section, an example of designing a simple 
mechanical transporter is presented to show how the 
grammar rules, algorithms, and fitness functions work 
together for design concept generation and evaluation. 
5 A CASE EXAMPLE 
The task in this example is to design a function structure 
with matched means for a simple mechanical transporter. 
The top-level function for design is <transport><X>, where 
X stands for any object. 
Examples from the function and means library used for 
mechanical transporter design are shown in Table 1 and 
Table 2. The functions are chosen from the common 
function basis defined in [9]. In Table 1, <E> refers to 
energy and <ME> to mechanical energy. 
In Table 2, application functions contain functions that the 
means can fulfil; high-level means are the means of which 
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f2 

Function structure  GP chromosome model  

GA chromosome model  

Means ID Coding 
m1 1 001 
m2 2 010 
    

b1 b2 

m1 mL m2  

 b3 bn 

Means Library  



Annals of the CIRP, Vol.54/1, pp.155-158, 2005 

 
158

this means is a subtype; and attributes such as weight and 
cost can are included. The applicable functions can help 
mapping from function to means, and the high level means 
set can be used to determine whether the function that this 
means is supposed to satisfy is still decomposable. 
 
 
 
 
 
 

Table 1: Part of function library 

Table 2: Part of means library 
General and action-based grammar rules are used in the 
example. The later are listed below. The abbreviations ADR 
and AER are the types of rules discussed in Section 3. 
Part of the decomposition hierarchy with applied rules is 
shown in Figure 4.  
R1: { }XportXmoveXtransport ADR sup,⎯⎯ →⎯  

R2: { }MEstopMEguideMEgenerateXmove ADR ,,⎯⎯ →⎯  

R3: { }MEgenerateEplyMEgenerate AER ,sup⎯⎯ →⎯  

R4: { }MEguideMEgenerateMEguide AER ,⎯⎯ →⎯  

R5: { }MEstopMEgenerateMEstop AER ,⎯⎯ →⎯  

R6: { }XinputXcontrolEply ADR ,sup ⎯⎯ →⎯  

R7: { }MEchangeEimportEimport AER ,⎯⎯ →⎯  

 
 
 
 
 
 

Figure 4: Part of the decomposition hierarchy 
With the functions, means, and grammar rules defined in 
this example case, there can be approximately 430 
possible function decomposition sets.  
The co-evolution algorithm described in Section 4.1 
searches through this huge space. In our test, we set 
population size to 100, and applied a fitness function that is 
the weighted summation of fitness functions (4) through 
(10). One satisfactory function structure together with the 
function-means mapping is shown in Figure 5 and Table 3. 

 Function Means 
<control><E> human 
<input><E> pedal, handlebar, cramp brake 
<change><E> pedal gear, handlebar, lever 
<convert><E to ME> pedal gear, handlebar, cramp brake 
<transmit><ME> frame and wheel, chain wheel, chain, 

shaft 
<stop><ME> rubber brake 
<guide><ME> wheel 
<secure><X> saddle 

Table 3: A means selection result by GA 
The convergence curves are in Figure 6. It shows that the 
best solutions emerge from the 10th generation when 
selecting suitable means and best function structures are 

developed after the 45th generation. The total computer 
elapse time is less than 5 minutes on a Pentium 4 & 
2.0GHz PC. Total number of possible solutions examined 
through this process is well over 1 million. 
 
 
 
 
 
 
 
 

Figure 5: A satisfactory function structure result 
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Figure 6: Convergence curves  

6 CONCLUDING REMARKS 
As design problems become more complex and design 
lead time more pressing, designers need supporting tools 
to expand their reach in the design space and increase 
number and quality of their design concepts. Our research 
takes a hierarchical co-evolution approach to help 
designers explore design space and develop design 
concepts by automatically generating desirable function 
structures and their mappings to embodiment means. The 
approach adopts a zigzag design process in which 
grammar rules are applied to decompose higher level 
functions and GA and GP based algorithms are employed 
to let function structures and means co-evolve into design 
concepts. The concepts of evolution and fitness of this 
approach worked well to deal with the two major issues, 
i.e., unknown idea generation process and lack of 
quantitative information at the stage of conceptual design. 
Modelling conceptual design as a co-evolutionary process 
and composing a set of effective fitness functions were two 
major challenges in our research. The co-evolution results 
are sensitive to genetic functions (we used only connect 
and parallel in the case example), grammar rules, and 
fitness evaluation. Our current research explores more 
genetic functions and fitness measures. 
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w2 Pedal drive f2 Φ n/a n/a 
w14 Pedal gear f10 w2 3 3 
w20 Pedal f13 w2 1 1 
w26 Chain f12 w2 2 2 
… … … … … … 
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