
Annals of the CIRP, Vol.54/1, pp.155-158, 2005

155

A Hierarchical Co-Evolutionary Approach to Conceptual Design

Y. Jin, W. Li, S.C-Y. Lu (1)
IMPACT Laboratory, Department of Aerospace and Mechanical Engineering

University of Southern California, Los Angeles, USA

Abstract
Conceptual design is a key early activity of product development. Limited understanding of conceptual design
process and lack of quantitative information at this stage of design pose difficulties on effective support for
concept generation and evaluation. In this paper, a hierarchical co-evolutionary approach is proposed to
support conceptual design. In this approach, higher-level functions are decomposed based on a set of
grammar rules, and mappings between functions and their solutions, or means, are realized through a co-
evolutionary computing process. The paper describes the details of the approach. An example of designing a
mechanical personal transporter is presented to demonstrate the effectiveness of the proposed approach.

Keywords:
Conceptual design, design automation, genetic algorithm

1 INTRODUCTION
Conceptual design is a major early activity of engineering
design that involves generation and evaluation of design
concepts [1]. Due to its creative nature, providing effective
tool support for designers at this stage of design has been
a highly difficult task. Effort was made to provide
information management support for designers to
managing their design information. But this approach
cannot effectively help designers to extend their reach in
the design space for more ideas. Other researchers are
more aggressive and attempt to generate design concepts
automatically for designers [2].
There are two major issues that must be addressed to
achieve effective support for conceptual design. First, the
concept generation process of conceptual design is very
much unknown. Although researchers have developed
various design methods [1] [3], they only specify the steps
that designers should follow. Designers must rely on their
own experience and expertise to generate concepts and
select the best ones. Cognitive models of conceptual
design process have been explored recently [4], but it will
still take time for these models to be useful for building
computational design support tools.
Another important issue is the lack of quantitative
information at conceptual design stage [1]. The concepts
and information involved in conceptual design are related
to function requirements and solution principles, which are
usually highly qualitative. This situation makes it difficult to
establish evaluation criteria to support conceptual design.
Recent progress in evolutionary computing [5] [6] has
attracted researchers’ attentions because of its great
potential for aiding idea generation. The existing
evolutionary design research, however, is limited to dealing
with parametric design problems [7] or relatively simple
architectural design problems [8]. Grammar based
approach [2] has been applied to provide computational
support for conceptual design, but they do not explicitly
provide criteria for design concept evaluation. Due to the
two issues mentioned above, thus far there has been no
effective ways for conceptual design support.
The goal of our research is to develop a hierarchical co-
evolutionary approach that supports conceptual design by

providing automated exploration of design space and
generation of design concepts. In this approach, function
grammar guides function decomposition, and co-evolution
of functions and means leads to best solutions at each
layer of decomposition. A co-evolutionary algorithm based
on this model is developed for concept generation. In the
following, we first provide an overview of the proposed
approach. After that, details of the approach are presented
in Sections 3 and 4. A case example is presented in
Section 5, and conclusions drawn in Section 6.
2 A HIERARCHICAL CO-EVOLUTION APPROACH
Mechanical design problems are usually complex and
involve various functional requirements and a large
number of potential means as solutions. Decomposing
high level complex functions into lower level ones has been
a common practice to create design concepts [1] [3]. In his
axiomatic design framework, Suh [3] proposed a zigzag
design process in which before a FR1 (functional
requirement) is decomposed, a designer is advised to first
find a suitable DP1 (design parameter) so that the
information of DP1 can be used to guide the decomposition
of FR1. After FR1 is decomposed into FR1-1, ..., FR1-n, then
these sub FRs can be used to find suitable sub DPs for
DP1. While the axiomatic design suggests the zigzag
process, it is designers’ job to perform the decomposition
of FRs and identification of suitable DPs. Our research
question is how can we devise a computational support
that can help designers 1) decompose functions, 2) identify
most suitable means to carry the functions, and 3)
generate most desirable design concepts?
To address this question, we turn to evolutionary
computing techniques [5] [6] for solutions. The evolutionary
approach is adopted because it can address the two major
issues mentioned above. First, evolution can be applied as
an underlying process for idea generation, and second, the
concept of fitness can be used to maximize the utility of
available information for concept evaluation.
Figure 1 illustrates our proposed evolutionary framework
for conceptual design. At the center is the evolutionary
computing based on a co-evolutionary design process and
evolutionary algorithms. Function and means library serves
as the design space in which specific functions and means

Annals of the CIRP, Vol.54/1, pp.155-158, 2005

156

evolve to form final design concepts. The fitness functions
are composed of general principles and the information
acquired during design. They serve as evaluation criteria to
guide evolution. After a list of requirements and a top-level
function are given, the function will be decomposed, and
more concrete functions and means will evolve to
eventually form complete design concepts.

Figure 1: Evolutionary approach to conceptual design
It is conceivable that generating meaningful concepts
requires a rich library of functions and means. How to
create such a rich library is a future research topic. In this
research, a limited library is predefined for testing purpose,
and we focus on developing the evolutionary process,
algorithms, and fitness functions.
Modelling conceptual design as an evolution process of
functions and means is a major challenge. We follow the
zigzag process of axiomatic design. A grammar-based
approach is adopted for function decomposition, and a co-
evolution process of functions and means is introduced for
automated function structuring and function-means
mapping at each layer of decomposition. The process of
our model can be described as follows (see Figure 2):
(0) A designer provides top-level function f0 based on

given design requirements. From f0, top-level means
m0 is found through search based means selection.

(1) Decompose f0 into N decomposition sets based on
grammar rules and information of m0.

 For each decomposition set, do the following:
(2) Find all feasible means for each of the sub-functions

based on a search algorithm.
(3) Compose function structures with genetic program-

ming (GP) and feasible means set information.
(4) Select most suitable means for each sub-function

based on genetic algorithm (GA) and function
structure information.

(5) Repeat (3) and (4) until a high fitness function value
can be reached.

(6) Repeat (1) through (5) if the means identified in (5) are
still not implementable.

This evolutionary design process has two important
features. First, it is hierarchical in the sense that higher-
level functions are decomposed into lower level ones for
finding most suitable means. Second, the functions and
means are co-evolving in that the selected means sets are
used to evaluate the fitness of function structures, and the
functions structures in turn are also used to further select

suitable means. We call this process a Hierarchical Co-
Evolutionary approach to conceptual Design, or HiCED.
From a computational point of view, it is conceivable that at
each layer of decomposition hierarchy, there can be a
huge number of possible decompositions. While human
designers can do the decomposition and function-means
mapping based on their experience, automating this
process requires a powerful search mechanism. In our
proposed process model, a co-evolutionary approach is
devised to let functions and means find each other in an
evolutionary way. In the following two sections, we
describe some of the details of grammar-based function
decomposition and GA & GP based co-evolution of
functions and means.
3 GRAMMAR BASED FUNCTION DECOMPOSITION
Grammar based function decomposition is carried out by
applying a set of grammar rules [2]. As in any rule-based
systems, effective grammar based decomposition depends
on the balance between generality and specificity of the
grammar rules since too specific will limit applicable
domains and too general may lead to large amount of
incompatible decompositions. In HiCED, we follow a
number of general grammar rules [2], and a set of specific
rules created based on our following function definition.

 f = {<action><object>,{input_flow},{output_flow}} (1)
In definition (1), action is the operation to be performed by
this function, input_flow and output_flow are flows of energy,
material and signal [1]. Object is part of input_flow and
represents the object to be processed by this function. In
the following, we present both general rules and action-
based rules. The application of these rules will be
discussed in Section 5.

3.1 General grammar rules
The general function decomposition rules are applied to
function decompositions where no action based rules can
be matched. Thus general rules have lower priority.
Initial Rule (IR): fi is a function at the ith
decomposition layer, and Ii+1 is an initial
decomposition function set for function
fi. The result of this rule is that it adds a
function Import for each input_flow of fi
and a function Export for each
output_flow of fi.
General Expansion Rule (GER):
Fi+1,j is an incomplete function
decomposition set for function fi at
layer i+1. j is the number of sub
functions in function set Fi+1,j. The
result of this rule is the addition of
fi+1,.j+1 to initial incomplete set Fi+1,j.
A major issue in applying this rule is how we can find a
function fi+1,.j+1 to make a new function decomposition set
that can better fulfill the function fi.. A greedy search
algorithm is employed that selects best matching functions
based on compatibility of input and output flows.
Termination Rule (TR): For any func-
tion fi at ith layer, Impi+1 and Expi+1 are
the Import function set and Export
function set of fi, respectively, at
(i+1)th layer. If for all output_flows of any function in Impi+1
there is a flow path that can reach one of the functions in
Expi+1, and vice versa, then the decomposition from ith
layer to (i+1)th layer terminates.

3.2 Action based grammar rules
From definition (1) we can see that decomposition of a
function can be along the action dimension. In HiCED we
introduced following two action-based grammar rules.

Functions
& Means
Library Evolutionary Computing

(Process & Algorithms)

Fitness
Functions

Design
Concepts Requirements

fi

Fi+1,j

fi

Fi+1,j fi+1.j+1

Impi+1

Expi+1

Ii+1

fi
fi

Figure 2: Hierarchical co-evolution of functions & means

(1) Grammar Based
 Decomposition

(3) GP Based Structuring

(4) GA Based Means Selection

f0 m0

(2) Search Based
 Means Selection

 GA: Genetic Algorithm, GP: Genetic Programming,
Function, Means, Set, Info flow.

Legend:

Annals of the CIRP, Vol.54/1, pp.155-158, 2005

157

Action Decomposition Rule (ADR): In case ACTh can be
divided into sub-actions []ln1,..., ACTACTl , then we have:

{ }

{ } ()niobjectACTfwhereffdecompf

ACTACTACTobjectACTfif

liin

lhh

≤≤=⎯⎯⎯⎯ →⎯⇒

==

1 , ,...

,..., and

1

ln1
 (2)

Action Expansion Rule (AER): When execution of ACT1
either depends on or leads to another action ACT2, then,

{ }
{ } objectACTfwherefff

ACTACTACTobjectACTfif
and

2221
exp

1

12111

 ,

, and

=⎯⎯⎯ →⎯⇒

⇒=
 (3)

4 CO-EVOLUTION OF FUNCTIONS AND MEANS
In HiCED, at each layer of decomposition hierarchy,
function and means co-evolve until some satisfactory
solutions are found. We developed a genetic algorithm
(GA) for means selection and genetic programming (GP)
for function structuring. Fitness functions are composed to
evaluate function structures and means selections.

4.1 Co-evolution algorithm
In our co-evolutionary algorithm, means are pre-encoded
into strings of binary bits, as shown in Figure 2. Each
chromosome [5] represents a combination of means for
corresponding functions. The length of bits for mi is
determined by the number of matchable means of the
corresponding function fi.

Figure 2: A chromosome model of means

Figure 3: A chromosome model of function structure
In function structuring by GP, each function structure is
represented as a genetic programming tree, where internal
nodes are genetic programming functions, and terminals
are functions that are derived from the function
decomposition, as shown in Figure 3. At present, two basic
genetic programming functions are used, namely, connect
and parallel, as shown in Figure 3. More functions will be
added as our research advances.
Following is pseudo-code of our co-evolutionary algorithm:
Given requirements Q, toplevel functin f0;
S = InitializeDesignSolution (Q, f0);
if S is not implementable, do iteration
{
 FDS = GetFunctionDecompositionSets(S, Q); //Grammar
 CMS = GetCorrespondingMeansSets(FDS) ; //Search
 PFS = GetPreliminaryFunctionStructureSets (FDS); //GP
 PMS = GetPreliminaryMeansSets(PFS); //GA
 FsMS =GetFuncStructure-MeansPairSet(PFS, PMS);
 //The above line involves GP&GA based co-evolution
 S = GetTheOneWithHighestFitnessValue(FsMS);
} End;
4.2 Fitness functions
Fitness functions in evolutionary computing are used to
evaluate candidate solutions. The fitness value attached to
each candidate determines whether the candidate, or part
of it, will go to the next generation. In HiCED, fitness
functions must make maximum use of design principles
and all qualitative information since no much quantitative
or performance related information is available.

Explicitly modelling function structures, flows, and their
mappings to means allows us to compose fitness functions
based on input and output flow connections—i.e., how well
two functions or two means are connected to each other—
and structural dimensions—i.e., how many functions or
means are involved. In addition to these structural
evaluations, performance based fitness is also included in
case quantitative information is available. In the following,
we briefly present the fitness functions of HiCED.

Fitness functions for GP-based function structuring
Function connection rules: These rules are applied to
check the compatibility of function connections. Three sub
rules are defined: function connection rule (FCR) for
checking flow connections of two functions; means
connection rule (MCR) for checking corresponding means
connection compatibilities; and input/output rules (IOR) to
check if the candidate structure has the same I/O flows as
the top-level function. For functions fi, fj with matching
means mi, mj in structure Fk, we have

() ,_∑−= jiFCR ffflowunmatchff (4)

() ,_∑−= jMCR mimmeansunmatchff (5)

() functionleveltopisfwhereFfflowunmatchff kIOR 00,_−= (6)

ffMCR reflects the fact that means information is used to
evaluate function structures in co-evolution.
Structure dimension rule (SDR):This function controls size
of function structures. Generally, smaller size is preferred.

()kSDR Ffunctionofnumberwff __⋅−= (7)

Fitness function for GA based means selection
Means connection rule (MCR): This rule checks the
compatibility of means connections. Given mi, mj we have

() ,_∑−= jMCR mimmeansunmatchff (8)

The means connection information comes from function
structures. This is how function information is used to
evaluate means in co-evolution.
Means performance rule (MPR):If performance information
of certain means is available, e.g., maximum power, the
information is used as part of fitness functions. Let design
requirements be Q={qi, ..} and performance P={pi, ..}, then,

()∑ −−=−−=
j

iiMPR pqPQff 2 (9)

Means preference rule (MPRR): Designers can assign
specific preference pri to certain means mi. This rule
indicates the likelihood a means is selected in a design.

∑ ⋅=
i

iiMPRR bprff where {1
0

selectedismif
selectednotismifi

i

i
b = (10)

In the following section, an example of designing a simple
mechanical transporter is presented to show how the
grammar rules, algorithms, and fitness functions work
together for design concept generation and evaluation.
5 A CASE EXAMPLE
The task in this example is to design a function structure
with matched means for a simple mechanical transporter.
The top-level function for design is <transport><X>, where
X stands for any object.
Examples from the function and means library used for
mechanical transporter design are shown in Table 1 and
Table 2. The functions are chosen from the common
function basis defined in [9]. In Table 1, <E> refers to
energy and <ME> to mechanical energy.
In Table 2, application functions contain functions that the
means can fulfil; high-level means are the means of which

connect

f1

f2 f3

parallel
f3

f1

f2

Function structure GP chromosome model

GA chromosome model

Means ID Coding
m1 1 001
m2 2 010

b1 b2

m1 mL m2

 b3 bn

Means Library

Annals of the CIRP, Vol.54/1, pp.155-158, 2005

158

this means is a subtype; and attributes such as weight and
cost can are included. The applicable functions can help
mapping from function to means, and the high level means
set can be used to determine whether the function that this
means is supposed to satisfy is still decomposable.

Table 1: Part of function library

Table 2: Part of means library
General and action-based grammar rules are used in the
example. The later are listed below. The abbreviations ADR
and AER are the types of rules discussed in Section 3.
Part of the decomposition hierarchy with applied rules is
shown in Figure 4.
R1: { }XportXmoveXtransport ADR sup,⎯⎯ →⎯

R2: { }MEstopMEguideMEgenerateXmove ADR ,,⎯⎯ →⎯

R3: { }MEgenerateEplyMEgenerate AER ,sup⎯⎯ →⎯

R4: { }MEguideMEgenerateMEguide AER ,⎯⎯ →⎯

R5: { }MEstopMEgenerateMEstop AER ,⎯⎯ →⎯

R6: { }XinputXcontrolEply ADR ,sup ⎯⎯ →⎯

R7: { }MEchangeEimportEimport AER ,⎯⎯ →⎯

Figure 4: Part of the decomposition hierarchy
With the functions, means, and grammar rules defined in
this example case, there can be approximately 430
possible function decomposition sets.
The co-evolution algorithm described in Section 4.1
searches through this huge space. In our test, we set
population size to 100, and applied a fitness function that is
the weighted summation of fitness functions (4) through
(10). One satisfactory function structure together with the
function-means mapping is shown in Figure 5 and Table 3.

 Function Means
<control><E> human
<input><E> pedal, handlebar, cramp brake
<change><E> pedal gear, handlebar, lever
<convert><E to ME> pedal gear, handlebar, cramp brake
<transmit><ME> frame and wheel, chain wheel, chain,

shaft
<stop><ME> rubber brake
<guide><ME> wheel
<secure><X> saddle

Table 3: A means selection result by GA
The convergence curves are in Figure 6. It shows that the
best solutions emerge from the 10th generation when
selecting suitable means and best function structures are

developed after the 45th generation. The total computer
elapse time is less than 5 minutes on a Pentium 4 &
2.0GHz PC. Total number of possible solutions examined
through this process is well over 1 million.

Figure 5: A satisfactory function structure result

Best Value vs. Generation

-45
-40
-35
-30
-25
-20
-15
-10
-5
0

1 11 21 31 41 51 61 71 81 91

Generation

Be
st

 V
al

ue

Best Value vs. Generation

-60
-55
-50
-45
-40
-35
-30
-25
-20

1 11 21 31 41 51 61 71 81 91

Generation

Be
st

 V
al

ue

Figure 6: Convergence curves

6 CONCLUDING REMARKS
As design problems become more complex and design
lead time more pressing, designers need supporting tools
to expand their reach in the design space and increase
number and quality of their design concepts. Our research
takes a hierarchical co-evolution approach to help
designers explore design space and develop design
concepts by automatically generating desirable function
structures and their mappings to embodiment means. The
approach adopts a zigzag design process in which
grammar rules are applied to decompose higher level
functions and GA and GP based algorithms are employed
to let function structures and means co-evolve into design
concepts. The concepts of evolution and fitness of this
approach worked well to deal with the two major issues,
i.e., unknown idea generation process and lack of
quantitative information at the stage of conceptual design.
Modelling conceptual design as a co-evolutionary process
and composing a set of effective fitness functions were two
major challenges in our research. The co-evolution results
are sensitive to genetic functions (we used only connect
and parallel in the case example), grammar rules, and
fitness evaluation. Our current research explores more
genetic functions and fitness measures.

7 REFERENCES
[1] Pahl, G. and Beitz, W., 1996, Engineering Design – A

Systematic Approach, Springer.
[2] Schmidt, L., Cagan, J., 1997, “A Graph Grammar-

Based Machine Design Alg.” Res. in Eng. Design, 7.
[3] Suh, N.P., 2001, Axiomatic Design – Advances and

Applications, Oxford University Press, New York.
[4] Cross, N., Christianns, H.& Dorst, K., 1997, Analyzing

design activity, John Wiley & Sons, New York, NY.
[5] Goldberg, D.E., 1989, Genetic Algorithms in Search,

Optimization and Machine Learning. Addison Wesley.
[6] Koza, J.R., 1992, Genetic Programming. MIT Press.
[7] Roy,R. Tiwari,A. Corbett,J.2003, Designing a Turbine

Blade Cooling System Using a Generalised Regres-
sion Genetic Algorithm. CIRP Annals 52/1,p.415-418

[8] Maher, M.L., 2001, “A Model of Co-Evolutionary
Design,” Eng. with Computers, 16:195-208.

[9] Stone, R. Wood, K., 2000 “Developmt of Functional
Basis for Design,” J. Mech. Design, 122(4):359-370.

ID Means Applicable
function

High level
means

Weight
value

Cost
value

w2 Pedal drive f2 Φ n/a n/a
w14 Pedal gear f10 w2 3 3
w20 Pedal f13 w2 1 1
w26 Chain f12 w2 2 2
… … … … … …

ID Function
f1 <transport><X>
f2 <generate><ME>
f3 <stop><ME>
f4 <guide><ME>
f5 <support><X>
f6 <supply><E>
f7 <control><E>

ID Function
f8 <input><E>
f9 <secure><X>
f10 <change><E>
f11 <transmit><E>
f12 <transmit><ME>
f13 <convert><E to ME>
f14 <move><X>

E ME
human

E

E E E

E E E

ME

ME

ME

ME ME

ME

E<control>
<E>

<input>
<E>

<change>
<E>

<convert>
<E to ME>

<transmit>
<ME>

<stop>
<ME>

<control>
<E>

<input>
<E>

<change>
<E>

<convert>
<E to ME>

<transmit>
<ME>

<control>
<E>

<input>
<E>

<change>
<E>

<convert>
<E to ME>

<transmit>
<ME>

<secure>
<X>

<transmit>
<ME>

<guide>
<ME>

<transport><X>

<move><X> <support><X>

<guide><ME <stop><ME> <secure><X> <transmit><ME>

… … … … … … … … … … … … … … …

R1:

GER:
<generate><ME>

R2:

GER: General
 Expansion Rule

E

ME

ME

Best Value vs. Generation
Means Selection

Best Value vs. Generation
Function Structuring

Generation Generation

