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Abstract

Understanding design intent of designers is important for managing design quality, achieving coherent integration of design solutions, and
transferring design knowledge. This paper focuses on automatically estimating design intent, represented as a summation of weighted
functions, based on the operational and product-specific information monitored through design processes. This estimated design intent
provides a basis for us to identify the evaluation tendency of designers’ ways of doing design. To represent and estimate the design intent, we
introduced a staged design evaluation model as a general yet powerful model of design decision-making process, and developed a
methodology for estimation of design intent (MEDI) as a reasoning method. MEDI is composed of two basic algorithms. One is our
newly introduced multiple genetic programming (MGP) and the other is statistical multivariate analysis including principal component
analysis and multivariate regression. The characteristics of MEDI are; (1) principal component analysis provides approximate evaluation of
how much preferable a specific product model is, assuming the final product model (or design) is the most preferable one; (2) MGP enables us
to simultaneously estimate both structure of target performance functions and the approximate values of their weights for a domain of design
problems; and (3) multivariate regression readjusts the approximate weights obtained by MGP into more accurate ones for specific design
problems within the domain. Our framework and methods have been successfully tested in a case study of designing a double-reduction gear

system. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, engineering design projects have grown
larger in scale and more complex in contents. In practice, a
design task is usually divided into a number of highly
coupled sub-tasks that require multiple designers to work
together collaboratively. It is common for a group of
designers to iteratively design different versions of the
same artifacts such as car and electrical appliances. Under
these conditions, understanding other designers’ intent is
important for managing the effectiveness and efficiency of
collaboration and for achieving high quality of the overall
design. Furthermore, knowing expert designers’ intent can
help knowledge transfer. For instance, knowing what guided
an expert designer during his/her design process may
provide insights for new designers to improve their design,
especially when the new designers deal with the same or
similar design tasks as the expert designer did. Design intent
signifies why an object is designed the way it is. It is related
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to a designer’s decision mechanism and reflected through
his/her design process. In other words, design intent of a
specific artifact designed by a specific designer can be
viewed as the decision criteria employed by the designer
for making design decisions during the process of designing
the artifact.

While viewing designers’ decision criteria as their design
intent opens new ways for acquiring design intent knowl-
edge, explicitly representing and capturing the intent is still
a challenge. It is usually hard for designers to be willing to
express their decision criteria since it takes time and
distracts their design work. Even if a designer is willing to
take time to do so, expressing quantitative, subjective, and
practical criteria can be very difficult. For example, a
designer may express that “I focused on reducing the total
cost first and then tried to increase safety.” We cannot
exactly understand from this statement how much quantita-
tively the designer cares about cost and safety since the
statement is a qualitative one. Moreover, some components
of design criteria such as safety are very vague. This kind of
components does not exist explicitly as itself in the design
process, and designers usually judge them from several

1474-0346/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S1474-0346(01)00005-2



108 Y. Ishino, Y. Jin / Advanced Engineering Informatics 16 (2002) 107—-125

lower level items. Take safety as an example, lower level
items such as material selection and load balance might be
synthetically considered into safety. This synthetic thinking
process often makes it difficult to analyze what is the design
criterion that the designer employed.

Generally speaking, a designer should take a normative
decision-making approach and clearly define his/her design
objective and value function for making design decisions
[8]. In case of complex design problems, multi-objective
decision approach [11] can be applied. Practically, however,
the normative approach is hardly working partly due to
the complexity of design problems. In our research, we
believe that designers’ intent (i.e. evaluation criteria) is
embedded in their design processes. Our goal is to auto-
matically estimate or extract design intent based on the
data recorded from the design process, without interrupting
designer’s normal design activities. To achieve this goal, a
new approach is needed to support identifying design
intent that captures quantitative, subjective, and practical
criteria used by designers to evaluate design alternatives.
This estimated design intent provides a basis for us to under-
stand the evaluation tendency of a designer in his/her
design.

One major problem we face in achieving our goal is that
the decision mechanism in design processes is often ill-
structured and complex. Furthermore, the quantity of usable
data is small, as contrasted with other fields such as market-
ing [2]. To address the first problem, a general yet powerful
model is needed to represent the decision mechanism in
design. We have introduced a staged design evaluation
model for this purpose. This model provides a way to bridge
the gap between the evaluation criteria and actual design
parameters. In addition to this model, introduce the follow-
ing assumptions:

1. The design evaluation criteria for a specific engineering
domain or a type of design tasks have certain additive
functional structures such as utility function found in
Utility theory [11]; i.e.

criteria = Z w;F;,
i

where F; is a constituent function of the criteria, i
identifies a specific constituent, and w; is the weight
coefficient for F;.

2. The form of functions F; can be identified from a pool of
process information generated by a group of designers
working on the same domain or same type of tasks.

3. The differences between the evaluation criteria of indi-
vidual designers are in the values of weighting coeffi-
cients, i.e. w; in the equation cited earlier, associated
with the functional structure.

By introducing the earlier three assumptions, the problem
of estimating design intent is formulized as a problem of
finding ‘what the factors F; are’ and ‘how much the coeffi-

cients w; weigh.” This is an inverse problem whose objective
is to search the best approximation of the function from
observed data sets.

We propose a methodology for estimation of design
intent (MEDI) to solve this problem. MEDI is composed
of two basic algorithms. One is our newly introduced
multiple genetic programming (MGP) and the other is statis-
tical multivariate analysis including principal component
analysis and multivariate regression. When MEDI is
applied, the values of weighting coefficients (w;) can be
uniquely determined by minimizing total sum square error
between estimated values and observed ones, based on the
condition that the values of each factors (F;) are normalized
at every data set, e.g. the average of those should be 0.0 and
the standard deviation of those should be 1.0.

This paper is organized as follows: Section 2 clarifies
design evaluation process and introduces a generic
model of evaluation called staged design evaluation
model. Section 3 provides a step-by-step presentation
of MEDI. In Section 4, we describe a case study
where the proposed model and methods are applied to
a practical double-reduction gear system design problem.
Sections 5 and 6 discuss the related work and conclusions,
respectively.

2. Staged design evaluation model
2.1. Design process

A designer’s design process usually consists of following
steps. First, after clarifying a given design task, the designer
adopts an evaluation policy based on the design require-
ments and his/her design experience. Here we define evalua-
tion policy as a qualitative strategy to carrying out a given
design task. For example, a designer may decide “to target
on reducing the total cost first and then attempt to increase
safety, without violating the given constraints.” After the
evaluation policy is either explicitly or implicitly set, the
designer starts to create design alternatives. In this paper,
we call a completed design alternative a product model.
After a product model is created, the designer evaluates
the product model based on how its performance matches
the evaluation policy. If the product model does not satisfy
the designer, he/she adjusts and refines certain design
parameters to meet his/her design target. It should be
mentioned that a designer’s evaluation policy could be
revised during the design process depending on what the
designer finds through the design process. This cycle of
creation and evaluation is repeated until the designer obtains
the final design solution that completely meets his/her
design preference.

The earlier description suggests that (1) design processes
can be generally viewed as trial-and-error, and the evalua-
tion follows every creation of new design alternatives; (2)
evaluations on design alternatives are made based on
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Fig. 1. Staged design evaluation model.

designers’ own preference which is formed by synthesizing
several, and often competing, factors; and (3) the finally
selected design alternative can be regarded as the ideal
one for the designer. These ideas have led us to introducing
a staged design evaluation model to represent general deci-
sion mechanism in design process.

2.2. Staged design evaluation model

We propose a general model, called staged design
evaluation model, to represent evaluation process in
design, as shown in Fig. 1. This model indicates that
although there is an information gap between the
evaluation level preference and the actual operation
level decisions, a staged information-processing system
can be developed to bring together the missing links.
The staged design evaluation model consists of four layers
of information, namely, design parameter, design attribute,
performance, and preference. We define terminology as
follows:

Design parameter. Any basic factor of an object being
designed whose value can be manipulated by a designer
directly, e.g. geometric characteristics, such as position
and length, and material of components.

Design attribute. Any property of an object being
designed whose value is determined by a numerical
value of design parameters, e.g. cost, weight, volume,
and stiffness.

Performance. Any target function with regard to effec-
tiveness, e.g. cost- performance, size-performance, stabil-
ity, and durability.

Preference. An inclusive index that represents how well
for a designer a product model goes.

Product model. A complete solution for a design task.
This is also called a design alternative.

Based on our proposed model, a design process can be
described as follows.

After designers start designing, they generate and con-
figure design attributes and design parameters based on
given design requirements, e.g. “Total weight = 1000 kg.’
The designers set their evaluation policy along with their
design goals using performance concepts, e.g. “target on
reducing the total cost first and then try to increase safety,
without violating the given constraints.” Here, reducing
total cost means to pursue cost performance. Both cost
performance and safety are performance concepts. At this
stage, designers usually cannot directly link the perform-
ance concepts to the values of design parameters, since a
design parameter has relationships with more than one
design attribute. Moreover, although designers qualitatively
know which design attribute affects which performance,
they cannot exactly know how much impact each design
attribute has upon the performance. During design,
designers directly operate the values of design parameters,
manage the values of design attributes, produce a product
model, and then, evaluate the product model. If the product
model is not good enough to satisfy the designers, they
repeat the process of creation-and-evaluation. However,
even after finishing designing, it is often difficult for
designers to concretely explain their evaluation process,
i.e. how all design attributes were quantitatively related to
performances and how much did they weigh each perform-
ance. Designers often obtain some knowledge about rela-
tionships between preference, performance and design
attributes through design process, but it is fragmentary
and not well-organized. For instance, a designer may
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know that both body stiffness and coating material are
related to the durability, but he/she is often not consciously
aware of how these design attributes are synthesized into the
durability in his/her mind.

While it is often difficult to predict the performance of a
design without using sophisticated analytical methods and
tools, we believe that designers are making rough predic-
tions through certain synthetic information-processing in
their mind based on their experiences. They create product
models by defining and manipulating design parameters and
predict the performance of the product models by mentally
linking design parameters with design attributes, and design
attributes with performance. The research challenge we
face is that “can we extract designers’ implicit evaluation
process and criteria from their design operational informa-
tion and make it explicit?”

In our research, we assume the following.

1. Designers’ evaluation criteria can be represented as
a preference function of summation of weighted
performances.

2. The functional form of each performance in the prefer-
ence function depends more on design domain and task
than on designers, since the relationships between per-
formances and design attributes are mostly objective and
physics based.

3. The weight of each performance in the preference
function depends on individual designers, since it is
the designer who determines how important each per-
formance is in his/her design based on his subjective
judgment.

Based on the earlier assumptions, we introduce the
following relationships among preference, performances,
and design attributes.

Ri=> wpP; 1)

P; = fi(DA,,DA,,...,DA)) 2)

where R; is the preference, a value which represents the
relative desirability of a product model, j = 1...u, where
the number of u are the number of total product models,
P, the individual performance, i = 1...m, where the number
of m depends on a design problem, w;, the weighting factor
assigned to each performance P;, DA,, the individual design
attribute, k = 1...n, where the number of n depends on a
design problem, and f; is the individual function which
expresses the relationships between each performance P;
and all design attributes which relate to P,.

We call Eq. (1) a preference equation, and the right side
of the preference equation signifies an evaluation function
of designers. Each function f; in Eq. (2) is called a perform-
ance function, and the weighting coefficient w; in Eq. (1) is
called a performance weight of the performance function.
Since we usually deal with situations where multiple

designers perform the same or similar design task, there
can be two types of evaluation functions. One is generated
based on a pooled data set generated by multiple designers a
domain, and the other is obtained based on individual
designers’ data set which is a subset of the pooled data
set. We call the former a domain specific evaluation func-
tion, and the latter an individual specific evaluation func-
tion. Although only one domain specific evaluation function
is obtained from a pooled data set, the number of individual
specific evaluation functions corresponds to the number of
participating designers. Both types of evaluation functions
on the same design task have the same performance func-
tions i.e. fi’s, and the differences in design intent are
displayed in performance weights i.e. w;’s. In our research,
we regard the magnitude of the normalized performance
weight (w;) as the index of how much designers considered
the corresponding performance in their design. Eventually,
according to Egs. (1) and (2), our problem of estimating
design intent becomes acquiring a set of performance func-
tions f; and sets of performance weights w; in both the
domain specific evaluation function and a number of indi-
vidual specific evaluation functions. We propose a MEDI as
a solution.

Before moving to the explanation of MEDI, it is worth
mentioning that the form of preference Eqgs. (1) and (2) are
consistent with the evaluation function found in multi-
objective decision theory or utility theory. Utility theory
was originally developed by von Neumann and Morgenstern
[20], with later development by many other researchers.
Keeney and Raiffa published the standard reference text
of multi-objective decision approach [11]. In general, the
utility of a given alternative is the benefit or overall satisfac-
tion for a decision-maker with a specific objective, e.g. to
minimize cost, to pursue. When a decision-maker has
multiple objectives, e.g. to minimize cost and maximize
quality, then the overall utility of a specific alternative can
be derived by a summation of weighted utilities of indivi-
dual objectives given certain conditions satisfied [11]. The
concept of performance in our model corresponds to the
concept of objective in decision theory. As will be described
later, the normalized performance measures can be viewed
as utilities of individual objectives. The preference of
Eq. (1) corresponds to the weighted multi-objective utility
function for evaluating specific alternatives, i.e. product
models.

In case of engineering design, designers have their own
design objectives. Therefore they know which performance
should be considered. As will be described later, in our
model, we allow designers to choose their performances
from the candidates that are generated by MEDI. Although
designers have knowledge about what their performances
are, the knowledge is incomplete and MEDI helps them
formulate it. The thing that is not obvious for designers is
the structure of performance functions in Eq. (2). To esti-
mate design intent using Eq. (1), we need to develop ways to
find performance functions in Eq. (2).
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Method: Multivariate Regression

I) Calculate each quantitative Preference value of each Product Model
Method: Principal Component Analysis

II) Determine Performance Functions and the approximate Performance Weights
Method: Multiple Genetic Programming (MGP)

1) Search candidate solutions for Performances P; and their weights w;
1-1) Preliminary (by human)
* Itemize Performance P;
* Classify Design Attributes (D4;) into a specific Performance
1-2) Execution of MGP (by machine)
* Produce candidate solutions of P; structures and w; values

2) Determine the P; structure (by human)
* Select an appropriate set of P; structures out of candidates

III) Determine the accurate values for Performances

1) Recalculate a set of accurate weights w; from the normalized data of all designers
—— domain specific evaluation function

2) Calculate sets of weights w; from the normalized data of every designer
— individual specific evaluation functions

Fig. 2. Framework of MEDI.

3. Methodology for the estimation of design intent
3.1. Framework of MEDI

As mentioned earlier, estimating design intent is to deter-
mine how much a designer takes each performance into
account while designing. To approach this problem, the
following issues need to be addressed:

1. calculate each quantitative preference value of each
product model,

2. determine the structures of all performance functions,
and

3. determine the sets of performance weights, i.e. ones in
both domain specific evaluation function and individual
specific evaluation functions.

These are not easy tasks. Especially, issue (2) has many
difficulties because many design attributes exist in a usual
design task and the number of the combination of them may
run into astronomical figures. Utilizing designers’ knowl-
edge about performance functions can help dealing with this
problem. In the following, we propose a MEDI as a reason-
ing method to address the earlier three issues. The frame-
work of MEDI is indicated in Fig. 2.

In order to calculate preference value for each product
model, one of statistical multivariate analysis methods
called principal component analysis is employed. To
address issue (2), a novel method named MGP is introduced.
When MGP is applied, the designer who did the design task
first enumerates what target concepts, i.e. categories of
performances, exist in the design task, and assigns design
attributes into their mostly related performance categories.

We assume that designers do know which design attribute
mostly relates to which performance, although they may not
know how they are related. Next, the novel evolutionary
computing, MGP, is employed. MGP produces several
candidate solutions of a set of performance structures and
their approximate weights. Then, designers collectively
select the best set of structure of performances. In this
process, designers can clarify what their exact performances
are while seeing candidates created by MGP and discussing
them with other designers. MGP effectively helps the
designers by providing candidate performance structures
and performance weights. These candidates serve as the
basis for eliciting the right performance structures.

Lastly, to address issue (3), multivariate regression is
used to calculate the precise values of the weights from
the data that is normalized where each performance deter-
mined through MGP is regarded as a new variable. The set
of performance weights in a domain specific evaluation
function is acquired from the normalized data of all
designers, and the set of them in each individual specific
evaluation function is from the data normalized on each
designer’s basis.

To summarize, the main points of our methodology are;
(1) principal component analysis enables us to approximate
the quantitative value of preference of each product model
being explored; (2) MGP enables us to estimate the struc-
tures of performance functions together with the approxi-
mate values of their weights; and (3) multivariate regression
readjusts the approximate weights obtained by MGP into
the accurate ones. Although MGP is not guaranteed to
find the optimum solution, it produces a good approxima-
tion through evolutional generate-and-tests. The following
subsections describe these methods.
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3.2. Multivariate analyses in MEDI

Multivariate analysis consists of a collection of methods
that can be used when several measurements are made on
each individual or object in one or more samples [19].
Historically, a large number of applications of multivariate
techniques have been in the behavioral and biological
sciences. However, interest in multivariate methods has
now spread to other fields of investigation including educa-
tion, physics, engineering, and psychology. The availability
of multivariate techniques and inexpensive computing
power also broadened its application. Both principal com-
ponent analysis and multivariate regression belong to multi-
variate analyses. Principal component analysis is usually
employed to summarize the given information. On the
other hand, multivariate regression is used to predict the
trends of one dependant variable from multiple independent
variables.

3.2.1. Principal component analysis in MEDI

In principal component analysis, maximizing the vari-
ance of a linear combination of the variables is executed
to summarize the given information [19]. Geologically, this
method makes the axes rotated in the multiple-dimensional
space formed by the multiple variables so that a smaller
number of variables can be found through linearly combin-
ing the original set of multiple variables. The new smaller
set of variables, which are conventionally called com-
ponents, has the equivalent power to represent the given
information. Moreover, the components are completely
independent to one another. Algebraically, this method
calculates eigenvalues and eigenvectors of a covariance
matrix formed by given multiple variables. The eigenvalues
represent variance of components and the eigenvectors
represent the synthesizing weights of the components.
This method usually cannot provide meaningful interpreta-
tions of the components. However, it has the merit of reduc-
ing the number of dimensions in the multiple-dimensional
space if there are high correlation and redundancy between
given dependent variables. We utilize this merit of the
method to measure the distance between product models.

In our model, to estimate w; and f; in the Eqs. (1) and (2),
the data, i.e. pairs of preference R and design attributes DA,,
should be given as input. Although all design attributes can
be monitored through design processes by using a custom-
ized CAD system for a design task, the value of preference
is difficult to obtain from a design history. We introduce the
concept of virtual distance. If the virtual distance between a
given product model and the final or the preferred product
model can be calculated, then the distance can be used to
approximate the values of the designer’s preferences of that
product model. To make this distance calculation possible,
we need to introduce a Euclidean space with orthogonal
dimensions and coordinates in which the ‘position’ of a
given product model can be identified. Because the original
multiple variables describing the product model are usually

not independent to one another. For finding orthogonal co-
ordinates to calculate the distance, principal component
analysis is employed.

We view all design parameters and design attributes of
each product model as an original set of multiple variables
that are often highly correlated and even redundant to each
other. After principal component analysis is applied, the
new components are synthesized that are independent to
each other. These components form orthogonal coordinates
that define the position of a product model. Settling a cutoff
point for eigenvalue of the components is effective to reduce
the number of dimensions and in practice, it is usual to set
the value on 1.0. The distance (D) of a Product model is
defined as follows:

D; = \/Z (Cij — Cideal-j)z 3)
j

where D; is the distance between the i-product model and
the ideal product model that is selected as the best through
the design process, i = 1...u, where the number of u is the
number of product models, D;4.,; = 0, and Cj; is the score of
the i-product model on the j component which is made by
principal component analysis, j = 1...v, where the number
of v is the number of synthesized components.

After the distance D is calculated the conversion of the
distance into the index of preference is conducted under the
assumption that the product model which is created as
the final solution by a designer would be the best or the
ideal one for the designer.

R; = Normalize(Const — D;) )

D;
L—Di
R = u

’ \/uzz)% —(ZD)
MZ

&)

where R; is the preference value on the i product model, i =
1...u, where the number of u is the number of product
models, Const, a constant to convert a distance into prefer-
ence value, yet this Const is canceled in the normalizing
process, and Normalize is a function normalizing a variable
whose average should be 0.0 and whose standard deviation
should be 1.0.

3.2.2. Multivariate regression in MEDI

Multivariate regression is a useful way in statistics to
predict one Y, called the dependent or response variable,
from several X’s, called independent variables. In the multi-
variate regression model, we express Y as a linear function
of the X’s:
Y:b0+b1X1 +b2X2+”' +prP (6)
where p is the number of independent variables, and b; is the
regression coefficients, j = 1...p.
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Here, a random error, e, which is a probabilistic variable
that means the difference between a predicted value and
an actual measured value of the dependent variable, is
introduced to illustrate Eq. (6) by each observation.

yi = bo + b]xil + bzxiz + -+ bpxip + €; (7)

where y; is a sample of g observations of Y, i = 1...¢g, where
the number of g represents the number of total observations,
and x; is a sample of g observations of X, i = 1...q, where
the number of g represents the number of total observations,
and j = 1...p, where the number of p represents the number
of independent variables.

Multivariate regression usually obtains the values of
regression coefficients using least squares estimation,
which is equivalent to minimizing total sum square error
between estimated values and observed ones [19]. There-
fore, we have the following equations.

de=0 (®)

l

injei = O,
i

The regression coefficients, by...b,, can be obtained by
solving Eqgs. (7)—(9). It is important to point out that to
compare the influence of individual independent vari-
ables X’s upon Y, all X’s should be normalized to make
the average value and standard deviation of each X
the same (usually average is 0.0 and standard deviation is
1.0).

We use this least squares estimation technique for the
fitness calculation in MGP. To estimate how much each
designer weighted individual performances in their design,
we apply the multivariate regression technique again after
fixing the structure of performances through MGP to
compare their regression coefficients.

(Jj=1..p) 9

3.3. Multiple genetic programming

3.3.1. Genetic programming

Genetic programming (GP) is one of the evolutionary
computation methods and was introduced by John Koza
as an extension of the concept of genetic algorithms (GA)
[12]. Motivated by an analogy to biological evolution, GA
provides a learning method based on biased subsequent
search using genetic operations, such as mutation and cross-
over [6]. In common GA, bit strings or symbolic descrip-
tions are used for representing hypotheses. GP succeeds
the core idea of GA, but uses tree-structure or graph-
structure to represent hypotheses so that GP can deal with
structural problems, such as program language, function,
and concept-tree. GA and GP can be viewed as general
optimization methods that search a large solution space.
Although not guaranteed to find an optimal object, GA

and GP often succeed in finding an object with high
fitness.

Because of its representation power, GP has been applied
to produce interesting and successful results in many differ-
ent applications [9,10,13]. One active area of GP application
is to find solutions of inverse problems and effective incor-
poration of subroutines. The performance of GP largely
depends on the choice of representation and on the choice
of fitness function. The weak point of GP is the high
calculation cost due to the huge size of the hypothesis
space it must search.

Our problem, estimating design intent as the summation
of weighted functions, is regarded as one of the inverse
problems. More specifically, our problem is a system iden-
tification problem, i.e. to estimate the behavior of a system
based on the pair of input and output data. There are a
variety of system identification problems, such as pattern
recognition problem and time-series estimation [1]. GP is
one of the most effective methods for solving such system
identification problems. In order to efficiently apply GP to
our system identification problem whose partial structure is
given, we propose a method called multiple GP, or MGP for
short.

3.3.2. Algorithm of MGP

The MEDI partially includes a human—machine inter-
active process. Designers know well about their design
processes. They know what performances need to be con-
sidered and which design attributes are related to which
performance, although they may not know the exact rela-
tionships between them. In MEDI, designers first create a
list of performances and link design attributes to relevant
performances. After that, MGP is executed based on the
given performances and the links between the design attri-
butes and the performances.

Fig. 3 shows the core idea of MGP. MGP is a series
circuit of GP modules, and each GP module undertakes
the estimation of each f;, respectively. We call a solution
candidate a chromosome, which contains several genes that
correspond to GP modules, respectively. The example of f;
(i > 0) is shown in Fig. 3. The f; (i > 0) has tree representa-
tion whose nodes are divided into two types, one is a
terminal, and the other is a non-terminal. The terminal
nodes are design attributes linked to the performance func-
tion concerned, and constants from 0.000 to 1.000, e.g.
0.578. The non-terminal nodes are primitive functions
such as add, subtract, multiply, and divide. A non-terminal
node always has its arguments as its descendant nodes in
a tree-structure. Each GP module uses an evolutionary
search to explore the vast solution space. If f; (i > 0) has
only one design attribute as a terminal candidate, we call
it a fixed gene and it is removed from the chromosome
to save calculation cost. We assume that when designers
classify only one design attribute into a performance, the
performance function could be simply replaced by the
design attribute with the condition that larger value of
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Genetic Operation:

Each gene is independent, and genetic operations, such as crossover and mutation,
are separately performed on every gene.
However, the performance of each chromosome is evaluated as a whole.

Fig. 3. Mechanism of MGP.

the design attribute means better performance for the
design. If a design attribute has its value the smaller the
better for the design, then the reciprocal of the design attri-
bute is used as the performance function. On the other hand,
fo has a specific feature that differs from f; (i > 0). The f; has
a list structure that represents weight values of Performance
function f; (i > 0). So, the genetic operator for f; behaves as
simple GA.

Each f; is treated as an independent gene, and genetic
operations are independently performed between the same
kinds of genes. However, the evaluation using the fitness
function, which is described in the next sub-subsection, is
executed as a whole individual chromosome. The rewarded
evaluation value is divided equally among genes that consti-
tute the chromosome. This type of rewarding action is a kind
of simple experiential reinforcement learning with profit
sharing [7].

The algorithm of MGP is shown in Fig. 4.

The process of MGP is as follows.

Stepl. Initialize a population

Step2. Evaluate each chromosome in the population
Step3. Distribute the evaluated value to each gene, f;
Step4. Create the next population based on evaluated
value

e Step5. Repeat Step2 to Step4 until fulfill the closing
condition

As in a common GP, the MGP maintains a population of
individuals. In each stage of iteration, it produces a new
generation whose population is as many as the first gener-

ation’s by using selection, crossover, and mutation. It is
calculated by the fitness function how good an individual
chromosome is.

The main characteristics of MGP are (i) connecting more
than two independent components of GP in series, (ii)
synchronizing every GP’s genetic operations, and (iii)
rewarding each GP’s component by using reinforcement
learning.

3.3.3. Fitness function of MGP

Since each chromosome produces solution candidate
for estimation of w; and f;, chromosomes are considered
to be hypotheses. We have to evaluate how good each
hypothesis is. We use fitness value to indicate how
close the value predicted by hypothesis fits to an actual
measured value. In MGP, the fitness value indicates
how far away the value predicted by hypothesis is
from the value obtained by principal component analy-
sis. Therefore, smaller fitness value means better fit. The
function that is used to determine fitness values is called a
fitness function. The earlier mentioned least squares estima-
tion technique is used in our fitness function, as is indicated
in Eq. (10).

V J
Ry=> wif; (11)

where F is a fitness value of a chromosome, where the closer
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Initialization: Initialize a population (N = k * s ) of chromosomes.
1) Each gene from fjto f,, are respectively prepared.
The population number of f;is s, and the population number of f; (>0) is £.
2) Pre-chromosomes randomly combined f; - f,, are made (N = k).

3) Chromosomes (N = k * s) are formed by all combinations between f; and f; - f,, .

|
¥

Evaluation: Evaluate each chromosome in the population.
1) Fitness value on each chromosome is calculated based on Fitness Function,
which is determined in advance.
2) Reinforcement learning is executed by distributing the fitness value to

115

component functions.

Yes
Closing Conditio

A 4

End

Generation: Generate the next population of chromosomes.
1) The best chromosome remains automatically.
2) The following procedure is repeated until filling enough population.
i) Select parents at every gene: Probability of each function to select as a
parent reflects the learned value.
ii) Perform genetic operations: Genetic operations such as crossover and
mutation are performed at every gene.
iii) Create new chromosomes: New chromosomes are formed by hybridizing
new respective functions created as respective genes.

Fig. 4. Algorithm of MGP.

to zero is the better, R;, a value measured by principal
component analysis, j= l...r, where r represents the
number of product models, and ﬁj is a value predicted by
a chromosome, j = 1...r, where r represents the number of
product models.

3.3.4. Genetic operations of MGP

In MGP, the probability by which an individual chromo-
some will be selected to the next generation is given in
inverse proportion to its fitness value towards the fitness
of other chromosomes in the same population. That is
because the fitness value in MGP has a reverse direction,
as compared to an ordinary fitness value in usual GP. This
method is called roulette wheel selection or fitness propor-
tionate selection. Two individuals selected by this roulette
wheel selection are viewed as parents, and then they are,
respectively, divided into each gene (f;). And such common
genetic operations as crossover and mutation are executed in
every gene that corresponds to every performance function.
Although all genetic ways that are commonly used in GP
can be used in MGP, a single-point crossover and a point
mutation, which are the most common genetic operations in
GA and GP, are adopted in our MGP. The probability of
these genetic operations should be experimentally deter-
mined, e.g. single-point crossover is conducted in 80%,
and point mutation is executed for inherited parent’s gene
in 10%. In each gene section, a cycle, in which basically

two selected individuals produce two offspring candidates
through genetic operations, is repeated until the number of
offsprings reaches a regular population. After finishing all
genetic operations in each GP module, new chromosomes
are created by connecting respective produced genes in
order of performance function. The chromosomes as
offsprings in the next generation are put in the evaluation
stage again. Thus, genetic operations are conducted in
respective  GP module, but generational changes are
synchronized through all the process of MGP.

4. Case study
4.1. Double-reduction gear system

Our proposed methods were evaluated in a case study,
design of ‘double-reduction gear system.” The double-
reduction gear system is composed of four gears, three
shafts, bearings, and a case. Basically, the teeth number of
the gears determines the speed reduction rate. Since the
power of the revolution makes the torque and the bending
moment, gears and shafts should be designed to stand up
to the force. We developed the CAD system called ‘Gear-
CAD.’ Gear-CAD is an integrated design environment that
allows designers to access needed information through the
CAD software and executes the basic technical computing
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Fig. 5. Example screen of gear-CAD.

for the gear system. Gear-CAD supports design, and simul-
taneously monitors and records what designers do, i.e. all
events designers generated during the design process. This
double-reduction gear system has 29 design parameters,
such as gear teeth number and a shaft length, etc., and 11
design attributes, such as total weight and total cost, etc.
Gear-CAD also records these values in detail through the
design process.

Our monitoring system including Gear-CAD and knowl-
edge capturing system were developed on Windows98 OS.
The demo system was written in Visual Basic 6.0. Fig. 5
shows an example of Gear-CAD user interfaces.

4.2. Design experiments

Design experiments were planed as follows. To inves-
tigate if our proposed methodology could accurately
acquire domain specific evaluation function and indivi-
dual specific evaluation functions, three designers, who
are subsequently called designer-A, designer-B, and
designer-C, were participating in the design experiments
using Gear-CAD. However, they did not know the exis-
tence of others. They were separately assigned the following
design task.

e Common requirements and conditions to all designers
All design components in double-reduction gear
system should be determined in detail, i.e. size,
material and position.

Required reduction ratio is 10:1.
The gear system will be used in outer space. It must be
light, small, and cheap to build as well.
Total weight of the system must be equal to or less than
155.0 kg.
Total cost of the system must be equal to or less than
$6000.
Total volume of the system must be equal to or less
than 6.0 X 10* cm”.
Spur gears that have teeth with a 20° pressure angle
should be utilized in this system.
The input power and speed of rotation should be
10.0 kW and 500 rpm, respectively.

e Individual suggestion to the designers
To designer-A. Although lighter weight, smaller size
and cheaper cost should all be achieved, the most
important thing should be the size.
To designer-B. Although lighter weight, smaller size
and cheaper cost should all be achieved, the most
important thing should be the cost.
To designer-C. Although lighter weight, smaller size
and cheaper cost should all be achieved, the most
important thing should be that the system is stable
and well balanced.

4.3. Outcome of design experiments

Three designers, respectively, executed the assigned
design task. According to the data monitored by Gear-CAD,
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Fig. 6. Design history of designer-A.

the designer-A made 15 product models and finally selected
the last one as the solution through design process. In the
same manner, the designer-B and the designer-C made 13
product models and eight product models, respectively, and
both of them chose the product model they made lastly as
the final solution. Figs. 6—8 show their design process
recorded Gear-CAD, respectively.

4.4. Results of MEDI

4.4.1. Application of principal component analysis

For all 36 product model data (15 from designer-A, 13
from designer-B and eight from designer-C), principal
component analysis was executed to calculate their distance
based on the independent components made of design
parameters and design attributes. Although this design
problem has 40 variables (29 design parameters and 11
design attributes), principal component analysis pro-
duced seven synthetic components whose eigenvalue
was more than 1.0. To understand the characteristics of
product models, we plotted them on a two dimensional
space constituted by the first and the second components
from principal component analysis. The plotting is shown
in Fig. 9.

From Fig. 9, we can see the differences between the
models of three designers in the two dimensional, although
the meaning of the synthetic components is unknown. Using
the coordinates of all product models on seven synthetic
components, the distance values between them were calcu-

lated, and preference values were obtained from the distance
values.

4.4.2. Application of MGP

After designs are all finished, the three designers gathered
and decided on their collectively selected performances.
They set six performances, namely, main function per-
formance (P,), size performance (P,), stability performance
(P3), durability performance (Py), cost performance (Ps), and
maintenance performance (Pg). And then, all 11 design attri-
butes were linked to the performances. P; included two
design attributes; reduction ratio and gear mesh ratio. P,
contained two design attributes; reciprocal weight and reci-
procal volume. In the same manner, P; and P, included five
design attributes, respectively. Ps and P4 contained only one
design attribute, respectively.

Then, MGP was conducted based on the classification.
MGP was applied for the data of all three designers that
contained 36 record sets as to product models. MGP para-
meters were set as follows:

e Population number per generation: 10,000

e Generation number: more than 50

e Terminal symbols: each design attribute and constant
(a condition with all constants, Const; 0 = Const < 1.0)

e Non-terminal symbols (function symbols): *+°, =,
N

e Crossover method: gene f;, employed uniform crossover,
and other genes employed single-point crossover. For all
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genes, roulette wheel selection was applied to choose
parents based on the fitness value.
e Mutation ratio: 0.15 for gene f;, 0.10 for other genes.

4.4.3. Results of MGP and multivariate regression

Three experiments with MGP were conducted in total.
The vicissitudes of the best fitness value and the average
fitness value in each generation are shown in Figs. 10-12,
with every experiment.

In each experiment, the best chromosome was
obtained in the 12-generation, the 27-generation, and
the 45-generation, respectively. In all experiments, the
average fitness value was gradually improving along
with the generation, which means the evolutions were
well accomplished.

Obtained performance functions f; and their weights w;
from the best individual (chromosome) are described in
Tables 1-3, with every experiment.

In all tables, the raw function indicates the genotype
in MGP and the rearranged function is the phenotype
translated with a usual notation. Also coefficients were
adjusted corresponding to the functions. From the results,
three designers discussed and decided that the perform-
ance functions in the Experiment 3 were the best suitable
for their thoughts about the design task. They seemed
to attach greater importance to the understandability
and the reasonability of the structure of the performance
functions. They stated that it was an understandable
finding that they had judged the stability mainly based

on only gear balance and symmetry. While doing
designing, they had not known how to evaluate the
stability performance, although they had checked the
performance in a vague manner. And they expressed
the reasonability of the size performance. They had
learned through their design processes that there had
been high correlation between the two design attributes,
weight and volume. By viewing the result of MGP,
their conviction that one of two design attributes is
enough to represent the size performance was con-
firmed. However, they told that the durability perfor-
mance was a kind of second-guessing. They thought
that although material of gear 1 (MatGl) and material
of shaft 3 (MatS3) are good representatives of all gears’
and shafts’ properties, respectively, they had never
subtracted MatS3 from MatG1 in their mind. However,
overall, the structure of functions from Experiment 3 satis-
fied them. The performance functions were determined
as follows.

fi = Reduction Ratio

> = Reciprocal Volume (= VolumeP in Table 3)
/3= Gear Balance + Symmetry

f1 = Material_of_Gearl — Material_of_Shaft3

5 = Reciprocal Cost (= CostP in Table 3)

fs = Material Kinds ( = MaintenanceP in Table 3)

Next, multivariate regression was applied for the data
that had been renormalized based on the fixed performance
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Fig. 8. Design history of designer-C.

Principal Component 2
8:6

Principal Component 1

8.0 10,0

~*~  Product Model by Designer-A
“*~ Product Model by Designer-B
~®= Product Model by Designer-C

Fig. 9. Product models on the first- and the second-component by principal component analysis.
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Fig. 10. Vicissitude of fitness value in Experiment 1.

functions, so that actual weights were obtained shown in
Table 4.

In Table 4, we use the b for representing the actual
weights. The b;,; indicates performance weight in a
domain specific evaluation function, and b;,, b, and b;c,
respectively, indicates the weight in an individual specific
evaluation function of each designer. The domain specific
evaluation function and individual specific evaluation func-
tions are as follows:

The domain specific evaluation function

Preference = 0.282 X f; + 0.177 X f, + 0.637 X f; + 0.418

Xf, +0.531 X f5 + 0.101 X f;

The individual specific evaluation function of designer-A

Preference = —0.384 X f; + 0.917 X f, + 0.528 X f3

+0.000 X £, + 0.316 X f5 + 0.000 X f;

The individual specific evaluation function of designer-B

Preference = 0.277 X f; —0.489 X f5 + 0.590 X f; + 1.062

X f, + 0.527 X f5 + 0.000 X f;
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Fig. 11. Vicissitude of fitness value in Experiment 2.

The individual specific evaluation function of designer-C

Preference = 0.314 X f; — 0.475 X f, +0.960 X f3 —0.478

Compared with performance weights in individual
specific evaluation functions, the followings were
found. In the case of designer-A, the highest value
was put on size performance with the value 0.917.
The second highest weight of the designer-A was on
the stability performance with 0.528. This indicated
that designer-A had paid attention to performances in
the order, first size performance (P,), secondly stability
performance (P3). This outcome matched the suggestion
for the designer-A, which had been given to only
designer-A. As for the designer-C, the obtained weights
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also agreed with the beforehand suggestion; the weight
for stability performance (P;) was the highest with
0.960. In designer-C’s case, several weights were nega-
tive value, which means that he had not cared these
performances as far as the values of design attributes
that were included in these performances met the given
requirements. In designer-B’s case, however, the weight
for cost performance (Ps) was the third in spite of the
beforehand suggestion. We suppose that it was because
he had made some changes on materials during design
process. While the kinds of materials were related
to cost performance, they also had relationship with
durability performance (P,). And, from the results of
domain specific evaluation function, stability (P;) and
cost performance (Ps) had been given attention by the
group as a whole.

The earlier results suggest the effectiveness of our
methodology in estimating design intent of designers.
The differences in beforehand instructions to indivi-
dual designers could be detected in the magnitude of
performance weights in both a domain specific evalua-
tion function and individual specific evaluation func-
tions. Designers can know their individual tendencies
in their design by being informed of the results of
MEDI. This suggests that MEDI promote knowing expert

Table 1
The best individuals in Experiment 1

Best of fitness value 17.2171

Raw function Main function fi = MUL(0.06243539,
performance ADD(GearMR, GearMR))
Size performance f, = ADD(0.04034072,

WeightP)

Stability f3=MUL(0.8821044,
performance ADD(Gear Balance,
ADD(ADD(ADD(Gear
Balance, Load Balance),
0.07436836), Symmetry)))
Durability fi=MUL(MatG2,0.5483157)
performance

Cost performance f;5 = CostP
Maintenance fs = MaintenanceP

performance

Raw coefficient Coefl wy = 0.210
Coef2 wy, = 0.257
Coef3 ws = 0.360
Coef4 wy = 0.614
Coef5 ws = 0.337
Coef6 wg = 0.506

Rearranged function ~ Main function ' = GearMR
performance
Size performance f', = WeightP
Stability f'3=2X Gear
performance Balance + Load

Balance + Symmetry

Durability f'4=MatG2
performance

Cost performance f's= CostP
Maintenance f'6 = MaintenanceP

performance

Rearranged coefficient Coefl wi = 0.026
Coef2 wh = 0.257
Coef3 wh = 0.032
Coef4 wh = 0.336
Coef5 ws = 0.337
Coef6 wi = 0.506

Rearranged constant Const = 0.013

designers’ intent and it should help knowledge transfer in
organizations.

5. Related work

Recently knowledge acquisition using Al techniques
in general has attracted attentions from many research-
ers in the engineering design field. For example,
machine-learning techniques are used to predict the
replacement of aircraft components [16], and some clas-
sification learning techniques are utilized by astrono-
mers to automatically identify stars and galaxies in a
large-scale sky survey [3]. It has been recognized,
however, that capturing design intent is rather difficult.
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Table 2
The best individuals in Experiment 2

Best of fitness value

16.9322

Raw function Main function performance
Size performance
Stability performance

Durability performance
Cost performance
Maintenance performance

Raw coefficient Coefl
Coef2
Coef3
Coef4
Coef5
Coef6

Rearranged function Main function performance
Size performance

Stability performance
Durability performance
Cost performance

Maintenance performance

Rearranged coefficient Coefl
Coef2
Coef3
Coef4
Coef5
Coef6
Rearranged constant

fi = MUL(ADD(ADD(ReductR, ReductR),
GearMR), 0.01242131)

/> =DIV(WeightP, 0.9694437)

5= SUB(ADD(Gear Balance, Gear Balance),

0.2145615)

f2=SUB(0.5478688, ADD(MatS1, MatS1))

fs = CostP

s = MaintenanceP

wy = 0.160

wy, = 0.268

wy = 0.216

wy = 0.209

ws = 0.166

wg = 0.469

f'i =2XReductR + GearMR

f'> = WeightP

f'3 = Gear Balance
'y =MatS1

f's = CostP

f'6 = MaintenanceP

wh = 0.002

wh = 0.277

wh = 0432

wy = —0.418

ws = 0.166

wg = 0.469

Const = 0.068

The reason behind is that estimating design intent seems
more domain specific and it is difficult to generalize
design intent capturing techniques. Moreover, gathering
enough data is difficult in many real engineering design
situations. In this paper, we presented our initial
attempts to challenge these difficulties.

Research on design rationale in the past decade has
developed various approaches from different point
ofviews [17]. There are three major models: argumenta-
tion-based design rationale, action-based design ratio-
nale, and model-based design rationale. In the first
approach, rationale is represented as a set of arguments
(pros and cons) attached to issues, and the issues are
interconnected. The issue-based information system
(IBIS), developed by Rittel [14], is an example of
such methodologies. However, the argumentation-based
approach increases designers’ burden and interrupts
their normal design process. Next, the action-based
rationale was developed. The claims are that actions
can be explained by themselves [15]. However, they
could not well manage the large volume of information
recorded. Last, model-based design rationale was
proposed. The active design document (ADD) system
[5] is based on a certain computational model of design
rationale, which is developed for parametric design

tasks. Although this system works effective, its model
and method are limited to a certain subject. Ganeshan et
al. [4] proposed a framework to capture how and why,
in which the core idea is to model design as selection
from predefined transformation rules. When a rule is
selected, the choice is recorded along with rationale
associated with that rule. In their approach, designers’
activities are constrained and they are translated into the
pre-defined rules beforehand. Myers et al. [18] proposed
the framework to capture design rationale from a
general CAD data. They use design metaphor in order
to meaningful activity of a designer, and design ratio-
nale is inferred by using qualitative reasoning. It is
valuable that they aim to develop framework to apply
to a general design problem.

Although design rationale models described earlier
can yield more specific information behind design, the
excessive requirement of interactions with designers
limits their effectiveness. On the other hand, our
proposed method, MEDI based on a staged design
evaluation model, can automatically reason the design
intent based on the data automatically gathered through
a design process. This method does not interrupt designers’
normal design activities. Our original point of view is that
design intent can be interpreted as a summation of weighted
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Table 3
The Best individuals in Experiment 3

123

Best of fitness value

17.4536

Raw function Main function performance

Size performance

Stability performance
Durability performance
Cost performance
Maintenance performance

Raw coefficient Coefl
Coef2
Coef3
Coef4
Coef5
Coef6

Rearranged function Main function performance
Size performance

Stability performance
Durability performance
Cost performance

Maintenance performance

Rearranged coefficient Coefl
Coef2
Coef3
Coefd
Coef5
Coef6
Rearranged constant

Jfi=ADD(ADD(0.6219068, ADD(0.2196131,

0.02071297)), ReductR)

Jf2=MUL(0.2333337, ADD(0.2333337, ADD
(ADD(VolumeP, ADD(0.2480602, VolumeP)), 0.6926309)))
5= ADD(Gear Balance, Symmetry)
fi=SUB(SUB(MatG1, 0.1749092), MatS3)

fs = CostP

s = MaintenanceP

wy = 0.042
wy, = 0.280
wy = 0.576
wy = 0.213
ws = 0.354
we = 0.054
f'1 =ReductR
f'> = VolumeP

f'3 = Gear Balance + Symmetry
f's=MatGl — MatS3

f's = CostP

f'6 = MaintenanceP

wh = 0.042
wh = 0.131
wh = 0.576
wh =0213
ws = 0.354
wh = 0.054
Const = 0.075

performance function. Our proposed framework provides us
a starting point toward a general understanding about
designers’ intent.

6. Conclusions

This paper focuses on estimating design intent, repre-
sented as a summation of weighted functions, based on the
data monitored through design processes. This estimated
design intent provides a basis for us to identify the evalua-
tion tendency of a designer’s way to do design. It can be
applied to manage design quality by adjusting group
members’ design intent, and to achieve better design
integration and knowledge transfer. In order to achieve
our research goal, we (1) introduced a staged design
evaluation model as a general yet powerful model to
represent decision mechanism in design process, and (2)
developed MEDI as a reasoning method. MEDI contains
MGP and some multivariate analysis techniques. The
characteristics of MEDI are; (i) principal component
analysis provides approximate evaluation of how much
preferable a specific product model is, assuming the
final product model (or design) is the most preferable
one; (ii) MGP enables us to simultaneously estimate

both structure of target performance functions and the
approximate values of their weights for a domain of
design problems; and (iii) multivariate regression re-
adjusts the approximate weights obtained by MGP into
more accurate ones for specific design problems within
the domain. Although MGP is not guaranteed to find the opti-
mum solution, it is a novel approach to produce good
approximations through a large number of evolutional
generate-and-tests. Our framework and method have been
tested in a case study of designing a double-reduction gear
system. In our experiments, we successfully acquired the
target design intent as a domain specific evaluation function
and individual specific evaluation functions. A set of perfor-
mance weights in the domain specific evaluation function
means design characteristics as a whole domain, and a set of
them in the individual specific evaluation function well
reflects individual designers’ tendency in their design.
Comparing the weights allows us to know the difference
among designers. MEDI enables us to know expert or super-
ior designers’ design intent, and it can be applied for both
design integration and knowledge transfer in organizations.

One limitation of our methodology is that it needs enough
amount of design alternatives obtained through design
process. Otherwise, it cannot produce stable results. The
needed number of design alternatives depends on the
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Table 4
Performance functions and weights

All designers Standard regression coefficient

Constant
Coefficient of determination

Designer-A (required being size- Standard regression coefficient

conscious)

Constant
Coefficient of determination

Designer-B (required being cost- Standard regression coefficient

conscious)

Constant
Coefficient of determination

Designer-C (required seeking a Standard regression coefficient

stable and well-balanced system)

Constant
Coefficient of determination

Coef1 for main function b = 0.282
performance
Coef2 for size performance by = 0.177
Coef3 for stability performance b3 = 0.637
Coef4 for durability by = 0.418
performance
Coef5 for cost performance bs1 = 0.531
Coef6 for maintenance bga1 = 0.101
performance
bOall = 0.000
R*=0.573
Coefl for main function by = —0.384
performance
Coef2 for size performance bypy = 0917
Coef3 for stability performance byp = 0.528
Coef4 for durability byp = 0.000
performance
Coef5 for cost performance bsy = 0.316
Coef6 for maintenance bea = 0.000
performance
bya = 0.000
R* =0.852
Coef1 for main function big = 0.277
performance
Coef2 for size performance bg = —0.489
Coef3 for stability performance big = 0.590
Coef4 for durability byg = 1.062
performance
Coef5 for cost performance bsg = 0.527
Coef6 for maintenance beg = 0.000
performance
bOB = 0.000
R* = 0.690
Coefl for main function b, c =0.314
performance
Coef2 for size performance byc = —0.475
Coef3 for stability performance byc = 0.960
Coef4 for durability byc = —0.478
performance
Coef5 for cost performance bsc = —0.985
Coef6 for maintenance bgc = 0.000
performance
boc = 0.000
R* = 0951

complexity of design problem, and is related to the number
of design parameters and design attributes.

As a next step, we plan to investigate, through more case
studies, the issues related to computational cost and sensi-
tivity of our proposed model and method.
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