
Acquiring engineering knowledge from design processes

YOKO ISHINO and YAN JIN
IMPACT Laboratory, Department of Aerospace and Mechanical Engineering, University of Southern California,
Los Angeles, California 90089, USA

(Received January 30, 2001;Accepted December 11, 2001!

Abstract

Knowledge management has recently become the focus of public attention in business and engineering. Because
knowledge acquisition is situated in the upstream of knowledge management, capturing knowledge is an important step
for enterprises to achieve successful knowledge management. We focus onhow engineers solve their design problems
under given design contextsand propose a novel model and methods to capture knowledge from engineering design
processes. Our goal is to acquireknow-howknowledge without disrupting the normal design process. Athree-layer
design process modelis introduced to represent generic design processes, and agrammar and extended dynamic
programming~GEDP! method is developed based on the process model. GEDP adopts thegrammar approachand EDP
to automatically identify meaningful clusters, calledoperations, from primitive designevents. Our approach is evalu-
ated through a case study of designing a double-reduction gear system.

Keywords: Design Process;Know-HowKnowledge; Knowledge Acquisition; Strategic Knowledge; Three-Layer
Design Process Model

1. INTRODUCTION

Engineering design is highly knowledge intensive in na-
ture. In addition, in recent years, industrial design projects
have grown larger in scale and more complex in content. In
practice, a design task is usually divided into a number of
highly coupled subtasks that require multiple designers to
work together collaboratively. Some of the designers may
be more skillful and have more experiences than the others.
To maintain the quality of the overall design, it is desirable
for designers to clarify and share their knowledge. Devel-
oping ways to capture engineering knowledge from expe-
rienced designers without disturbing their normal design
process is a key to achieving successful knowledge sharing.

Although the value of capturing, managing, and utilizing
design knowledge has long been recognized and much re-
search has been carried out, capturing engineering knowl-
edge without disturbing the designers’normal design process
is still a challenge. Design processes are often ill structured
andad hocand vary greatly, depending on the design con-
texts. Although operation data recorded by CAD systems

may contain valuable information, it is difficult to general-
ize ways of obtaining useful design knowledge directly from
the operation data.

On the other hand, asking designers to record and share
their design knowledge may also be problematic. There are
several reasons:~1! a substantial time commitment is re-
quired for a designer to record his or her design knowledge;
~2! design knowledge is tacit and embedded in the design
process in most cases, so it will be difficult for a designer to
express it fully and accurately; and~3! forcing designers to
record their knowledge would interrupt their natural think-
ing process and become an unacceptable burden for them.

Our goal is to automatically capture engineering knowl-
edge that can facilitate the understanding of a designer’s
design intent and provide guidance for designers to explore
alternative designs, without disrupting the normal design
process. There are several research questions that must be
addressed to achieve this goal. What is engineering knowl-
edge? What kind of knowledge should be acquired and ac-
cumulated in a design process? These questions are the crux
of a knowledge system in engineering design. Furthermore,
we must also understand what a design process is. This is a
critical question for extracting design knowledge from de-
sign processes. To address these questions it is necessary to

Reprint requests to: Dr. Yoko Ishino, 375 Central Avenue, #145, Riv-
erside, CA 92507, USA. E-mail: okinaka@usc.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2002!, 16, 73–91. Printed in the USA.
Copyright © 2002 Cambridge University Press 0890-0604002 $12.50
DOI: 10.1017.S0890060402020073

73

clarify knowledge structure in the engineering design field
and develop a model of design processes.

This paper categorizes design knowledge and empha-
sizes the importance ofknow-howknowledge. A generic
design process model called athree-layer design process
model is proposed. Based on this model, a novel method
calledgrammar and extended dynamic programming~GEDP!
is introduced to acquireknow-howknowledge. Generally,
design knowledge and design processes may both vary, de-
pending on the structure of the design organization, whether
it is a team’s collaborative design or a single designer’s
design, because coordination and negotiation are indispens-
able to collaborative design. For simplicity, this paper fo-
cuses on a single designer’s case. However, the proposed
model and method can be extended to team collaborative
design situations. We successfully tested our knowledge
acquisition framework in a case study of designing a double-
reduction gear system.

This paper is organized as follows. Section 2 clarifies
and categorizes engineering design knowledge and ex-
plains what knowledge on which we focus and why. Sec-
tion 3 proposes a generic design process model called the
three-layer design process model and describes the model
in detail. In Section 4 we introduce the novel GEDP method
for the acquisition ofknow-howknowledge and describe
how it works. Section 5 presents a case study where the
proposed model and methods are applied to a practical
double-reduction gear system design problem. Sections 6
and 7 discuss the related work and makes concluding re-
marks, respectively.

2. ENGINEERING DESIGN KNOWLEDGE

2.1. Categories of engineering design knowledge

Many practical design problems have the following
characteristics:

• One design task consists of multiple activities.

• These activities are dependent on one another.

• The product alternatives are evaluated based on mul-
tiple requirements.

To solve a complex design problem effectively and effi-
ciently, different types of knowledge are utilized. There
are many dimensions in which knowledge can be charac-
terized. Examples of the dimensions include knowledge
representation~e.g., symbolic knowledge vs. numerical
knowledge!, availability ~e.g., documented knowledge vs.
unwritten knowledge!, accessibility~e.g., tacit knowledge
vs. explicit knowledge!, andapplication function~e.g., do-
main knowledge vs. strategic knowledge!. Because we are
interested in capturing engineering knowledge that can guide
design activities in various design contexts, we categorize
design knowledge based on application function, as shown
in Figure 1.

Domain knowledge is applied to characterize domain de-
sign problems. It is usually explicit and does not vary, de-

pending on the designers. Domain knowledge can be
categorized into three types. The first type of knowledge is
called principle knowledge. It is knowledge about general
principles of design. For example, principles of physics and
principles found in systematic design~Pahl & Beitz, 1996!
and axiomatic design~Suh, 1990! are principle knowledge.
The second type of knowledge is product knowledge. It
consists of function knowledge, constraint knowledge, and
accompanying knowledge. Function knowledge is related
to the physical or mechanical function and specification of
products. Constraint knowledge is related to requirements
that a product should meet. Accompanying knowledge is
related to secondary needs of products, for example, cus-
tomers’ preferences, and so forth. Process knowledge is the
third type of domain knowledge. It is about the design pro-
cess, including information for task decomposition and the
dependency information of the process. Task decomposi-
tion knowledge is about the manner in which design tasks
are decomposed, and dependency knowledge describes re-
lationships between subtasks. The content and magnitude
of dependency between subtasks are affected by the task
decomposition schemes.

On the other hand, strategic knowledge is about the way
a designer proceeds with his or her design and what the
designer’s intent is that leads to the ways the designer per-
forms his or her design. Strategic knowledge is usually im-
plicit and designer specific. It can be categorized into two
types of knowledge:know-howknowledge andknow-why
knowledge.Know-howknowledge is about the ways to iden-
tify design opportunities, define design directions, and ma-
nipulate design situations. In our research, we define design
know-howknowledge as theknowledge about design pro-
cedures. A typical design procedure is a sequence of design
operations. In many design situations, design procedures
may exhibit certain patterns, for example, certain opera-
tions may appear in sequence, and certain operations al-
ways proceed, or succeed, in a specific design procedure.
We call the patternsprocedure features. Know-howknowl-
edge, that is, design procedures and procedure features, re-
flects a designer’s procedural intent or strategy. In practice,
the design procedure and procedure features are often not
well documented. Generally speaking, more experienced
designers have moreknow-howknowledge and can select
and apply it more efficiently.

Know-whyknowledge, on the other hand, signifies why
the object is designed the way it is.Know-whyknowledge,
which is also called design rationale, has two categories,
knowledge for reasons behind procedure and knowledge
for reasons behind products. The former means a conglom-
erate of detailed reasons why a designer did each operation.
The latter indicates a designer’s own decision mechanism
for an assigned design mission. Because reasons behind
design products can hardly be extracted from the products
themselves and designers’ evaluation criteria are often im-
plicit, it is difficult to acquire designknow-whyknowledge.

Domain knowledge is usually explicit and describable
before designing. Strategic knowledge, however, is often

74 Y. Ishino and Y. Jin

tacit and dependent on a designer’s ability. From a knowl-
edge management point of view, domain knowledge has
been well collected and shared within organizations through
development of product models~Bradshaw et al., 1997!.
Strategic knowledge, on the other hand, is often hard to
share because of the difficulty of its acquisition. In this
paper we focus on acquiringknow-howknowledge as part
of strategic knowledge.Know-howknowledge directly cor-
responds to useful design knacks and sharing it among de-
signers can contribute to more effective collaboration.
Moreover, it is still a challenge to captureknow-howknowl-
edge automatically. We argue thatknow-howknowledge is
important engineering knowledge that should be shared
among designers. In the following, we proposed a specific
approach to acquire theknow-howknowledge by analyzing
design history.

2.2. Know-howknowledge acquisition

In order to not interfere with a designer’s normal design
process, we take an action-based knowledge capturing ap-
proach and focus on the data that can be obtained through
observing design activities using a CAD system. To make it

possible to collected needed data, the CAD system we use
must contain domain knowledge and function as an inter-
face for the designer to use other engineering tools. While a
designer does his or her design through the CAD system,
all actions he or she takes during the design process will be
recorded. This approach alleviates the problem of interfer-
ing in the design process, but it creates a new problem in
managing the large volume of information recorded. The
model and methods to elicit meaningful chunks of knowl-
edge from an enormous pool of data must be devised.

As depicted in Figure 2, our architecture to captureknow-
how knowledge contains two main modules: the monitor-
ing module and the knowledge-capturing module. The
former records designing events by monitoring a designer
using the CAD tool. The latter module consists of two
components: the data integration and the analysis. The data
integration component translates design history from the
design event log into a sequence of meaningful “hows.”
The analysis component identifies and explains procedure
features in the sequence ofhows. The mechanisms of the
knowledge-capturing module are described in Section 4,
and the model on which the mechanisms are based is dis-
cussed in Section 3.

Fig. 1. Knowledge categories and an example.

Acquiring engineering knowledge from design processes 75

3. THREE-LAYER DESIGN PROCESS MODEL

Designers usually decide on a specific design after many
trial cycles. Based on our observation of designers’ behav-
iors, most designers make tentative design decisions and
create a prototype design at first. They then repeatedly ad-
just and refine certain design parameters to meet specific
requirements. Finally they reach the final design after eval-
uating all alternatives that have been explored. This design
process can be viewed as a trial and error process and de-
signers seek the satisfactory solution according to their strat-
egy. From this observation, we propose a three-layer design
process model to capture general design processes. The three-
layer design process model is schematically illustrated in
Figure 3.

The three-layer design process model represents generic
design processes based on three layers of information,
namely, Event-Layer, Operation-Layer, and Product Model-
Layer. Event-Layer captures primitive-level design events
that are generated by designers through operating a CAD
system. For example, “Change length A from 15 to 30” or

“See document B,” illustrated as “E” in Figure 3, is an
event that occurred at Event-Layer. Operation-Layer repre-
sents higher level design operations that reflect meaningful
design actions. Elements at Operation-Layer are design op-
erations that can be generated by reasoning based on mul-
tiple design events found at Event-Layer. “Decrease the
weight of the object” and “Increase the strength of the arm”
illustrated as “Op” in Figure 3 are examples of design op-
erations. The elements in Product Model-Layer are design
alternatives, which are generated from multiple design op-
erations, and are illustrated as “P” in Figure 3. An element
in the Product Model-Layer is called a design alternative.

Based on our model of design processes, the goal of de-
signers can be considered to be to create a final product
model. To do so, designers intentionally plan and perform
sequences of operations~Ops!. Although the sequences of
operations a designer performed cannot be observed di-
rectly, we can capture the events~Es! that were generated
while the designer was performing the operations. In our
research, we consider the sequences of operations as design
know-howknowledge and capturing the operation se-

Fig. 2. The architecture ofknow-howknowledge acqui-
sition; information flow.

Fig. 3. A three-layer design process model;E, each event caused by a designer~e.g., “Change length A from 15 to 30,” “See
document B”!; Op, meaningful action under a designer’s certain intention, which is a cluster of plural events~e.g., “Decrease the
weight of the object,” “Increase the strength of the arm”!; P, product model~design prototype! that represents design alternatives.

76 Y. Ishino and Y. Jin

quences of a designer will allow us to understandhow the
designer did his or her design.

Discoveringknow-howknowledge requires understand-
ing of an executed design process in which many product
models were created, explored, and discarded or adopted.
Knowing the design operations performed to create each
product model and the relationships between product mod-
els are necessary to put the design process into perspective.
The goal is to find out what subsets of design operations are
important features and where the features appear in the
design process. Indeed, analyzing how product models re-
late to each other in their representative parameters pro-
vides us with an overall map of how product models were
generated, explored, discarded, and finally adopted. More-
over, analyzing what sequences of operations were done to
create a certain product model state may give us insights
about why the designer did the operations at that point.

In addition to the three-layer model described above, we
introduce a hierarchical structure of product models that
represents the development process of design. The hierar-
chical structure is a time-series branching tree of product
models in which a newly developed product model be-
comes a child of one of existing leaf product models. Basi-
cally, a child product model is derived from its parent product
model with new feature updates or additions. During the
design process, a child product model may be created and
explored, and can be given up. In this case, backtracking
takes place and the designer goes back to the parent product
model to explore new opportunities.

The hierarchical tree structure of product models can be
used to find procedure features. Procedure features can be
found by checking the emergence of and distribution pat-
tern of design operations in all design paths based on de-
sign principle knowledge. A further explanation about the
identification of procedure features can be found in Sec-
tion 4.4. An example of the hierarchical tree structure of the
product model is shown in Figure 4. The structure also
shows the design path that a designer went through during
his design process. In Figure 4 we see that the product
model P4 is recognized as a child of P2 ~not P3! by compar-

ing their parametric features, although P4 arises after P3
chronologically. The designer might have given up on de-
veloping P3 and gone back to modify P2.

4. GEDP APPROACH

4.1. GEDP for acquiring know-how

Capturing design operations and their relationships with
product models from design events is a challenging task.
The key issue is how to correctly cluster events into oper-
ations, because there are an enormous number of possible
combinations of events.

From empirical studies we found that a design process
is like astory that continues until the design goal~i.e., the
final product model that satisfies all requirements! is
achieved. Figuratively speaking, aneventcorresponds to a
word, for example, a noun, a verb, an adjective, and so on.
An operation corresponds to a sentence and aproduct
model is equal to a paragraph. We define and apply rules
of “how events emerge and make sense in an operation” in
the same way that a natural language has its grammar. Our
grammar works as ground rules for detecting sentences
and pauses of paragraphs by searching for key words. How-
ever, it may not work properly when various punctuations
and multiple interpretations are detected. In these cases,
we need a new way to find the most reasonable punctua-
tion and interpretation.

We developed the GEDP for achieving the most reason-
able punctuation and interpretation. GEDP is a method that
combines thegrammar approachand EDP. First the gram-
mar is defined and applied to the whole event log to extract
clusters of events, and then EDP is applied to certain se-
lected areas of the event log as a result of grammar ap-
proach to extract more detailed clusters if needed. The GEDP
is schematically illustrated in Figure 5. The GEDP enables
us to generate operations at Operation-Layer from the events
captured at Event-Layer. It is the base of the data integra-
tion component in our knowledge-capturing module.

The GEDP approach has several advantages. First, it is a
reasonable and understandable method for humans. Be-
cause this method adopts an analogy to a generic problem
solving of human, for example, grammar rules and tem-
plates, it leads to understandable results. Second, this method
has flexibility on template matching, because using EDP
makes it possible to detect not only the same sequence as
the template but also approximately similar ones. Third,
this method is widely applicable. GEDP can be applied to
general design problems, although the grammar has to be
modified to fit the design context.

The algorithms of the grammar approach and EDP are
described in the following two subsections.

4.2. Algorithms of grammar approach

Before starting the knowledge capturing, all events in the
Event-Layer are enumerated and identified in the monitor-

Fig. 4. The hierarchical tree structure of product models:P1, initial prod-
uct model created by a designer;P9, final product model that meets the
designer’s requirements;P2–P8, derived product models generated through
the design process;~—! parent and child relationship between product
models;~• • •! the main path that leads from the origin to the finally se-
lected product model.

Acquiring engineering knowledge from design processes 77

ing component. The contents of the events are dependent
on the design context. The event-log data are stored based
on the event ID number. Before applying the grammar ap-
proach, events are classified into several groups based on
their contents. This classification is similar to the classifi-
cation of words into verb, noun, adjectives, and so on in a
natural language. The unique grammar rules and templates
are assigned to each group. A rule template defines a one to
one relationship between a typical event sequence and an
operation. Examples of grammar rules and templates are
shown in Tables 1 and 2, respectively.

The algorithm of the grammar approach is illustrated in
Figure 6. As indicated in the figure, the main function of the
grammar approach isCLUSTERING_BY_GRAMMAR,
which receives the whole event sequence as its input and re-
turns the whole operation sequence as its output. First of all,
the whole event sequence is put in the variableevents. The
UPDATE-CURRENT function puts the head event ofevents

into the variablecurrent. TheDISCRIMINATION-GROUP
function investigates to which groupcurrentbelongs and puts
the value inSG. TheSEARCH-HARMONIOUS-EVENTS
function searcheseventsfrom the top sequentially to get the
event sequence that goes harmoniously withcurrent.The rules
about the harmony are written as grammar rules and they de-
pend on the group. This function also puts the resulting event
sequence inmemory.TheCHOOSE-MANIPULATOR func-
tion selectsmanipulatoraccording toSG. The variablema-
nipulatordenotes how to make a cluster based on the kind of
group. TheGRAMMAR-MANIPULATION function ap-
pliesmanipulatortomemoryand obtains a corresponding op-
eration ID in the variableoperation. Thisoperationis added
to operation-list, andeventsare updated whereUPDATE-
EVENTS function omitsmemoryfrom events. The actions
from UPDATE-CURRENT to UPDATE-EVENTS are re-
peated untileventsis empty. Finally, a set of operations can
be acquired.

Fig. 5. The grammar and extended dynamic pro-
gramming approach~GEDP!: ~d! a design event;
Op, a design operation.

Table 1. Examples of grammar rules

Meaning of Group Event ID Grammar Rule

Group 1 Direct input of some parameters 21, 31, . . . A member of Group 1 can build up an Operation on its own or one
that is modified by members of Group 2. There is no limitation on
the number of modifiers.

Group 2 Reference~to see a document! 101, 103, . . . A member of Group 2 can modify another event that belongs to
Groups 1, 3, 4, or 5. A member of Group 2 cannot form an Operation
by itself.

Group 3 Increase of a parameter 66, 68, . . . A member of Group 3 can build up an Operation on its own or by
assembling two or more. Moreover, this can be modified by members
of Group 2. There is no limitation on the number of modifiers.

Group 4 Decrease of a parameter 65, 67, . . . A member of Group 4 can build up an Operation on its own or by
assembling two or more. Moreover, this can be modified by members
of Group 2. There is no limitation on the number of modifiers.

Group 5 Change of a location 91, 92, . . . A member of Group 5 can build up an Operation on its own or by
assembling two or more. Moreover, this can be modified by members
of Group 2. There is no limitation on the number of modifiers.

Group 6 Cue to start something 1, 60, . . . A member of Group 6 can build up an Operation individually. The
element of this group is never modified.

78 Y. Ishino and Y. Jin

4.3. Algorithms of EDP

Originally, dynamic programming~DP! was an approach to
solving sequential decision problems that was developed
by Richard Bellman in 1957~Bellman, 1957!. The simplest
DP context involves ann-step decision-making problem,
where the states reached aftern steps are considered termi-
nal states and have known utilities. The main concept of DP
is that choosing the best state~i.e., the state with the highest
utility ! in each step leads to the optimum final state. Re-
cently, DP was applied to solving various pattern matching
problems, for example, speech recognition~Sakoe & Chiba,
1990!, image recognition~Chikada et al., 1999!, and bioin-
formatics~Krogh et al., 1994!. EDP is a method based on
DP theory and modified to be suitable for this design
problem.

When more than one prospective solution exists for a
pattern matching, EDP is able to detect the most reasonable
solution. Here, the most reasonable solution means the so-
lution that has the highest value for a user based on a given
objective criterion. Moreover, EDP enables us to detect not

only the same sequence as the template but also approxi-
mately similar ones. It allows sequential errors to some
extent, for example, deletion, insertion, or exchange of
elements.

In EDP, templates, which are typical target fragments of
elements and, in this case, sequences of design events, should
be prepared before starting the analysis. Every template
needs two elements. One is the definition of a one to one
relationship between a typical event sequence to grasp and
an operation ID, and the other is the value score of the
templates. A user, such as a designer, can determine the
value score based on his or her subjective evaluation of a
design problem. A higher score means it is more important.
Figure 7 describes the algorithm of EDP.

The algorithm shown in Figure 7 works as follows. The
main function of EDP isCLUSTERING_BY_ EDP, which
receives the delivered event sequence and the set of tem-
plates as its input and returns the corresponding operation
sequence as its output. First of all, the template that has the
highestvalue scoreof all templates is chosen and put into
the variableprobe by the UPDATE-HIGHEST-VALUE-

Table 2. Examples of rule templates

Template Grammar Rules Operation Contents of Operation

T1 If it includes E21, then Op1 Op1 Determine the number of gear teeth.
T10 If it makes a combination out of$E66, E68, E70

~n .5 1!%, Then Op10
Op10 Prolong Y-length of shafts.

T15 If it makes a combination out of$E91, E92, E93,
E94, E95, E96, E97, E98~n .5 1!%, Then Op15

Op15 Apply EDP, because various operations can exist
in Op15.

Fig. 6. The algorithm of the grammar
approach.

Acquiring engineering knowledge from design processes 79

TEMPLATE function. Then theEDP-MANIPULATION
function, which is discussed below, extracts the event se-
quence whose mismatching score is less than the threshold
by applyingprobe to eventsand puts the resulting event
sequence into the variableextractant. The UPDATE-
TEMPLATES function omitsprobefrom templates. If ex-
tractantis not null, then theTRANSLATE function obtains
a corresponding operation ID inoperationby referringprobe
andextractant; then thisoperation is added tooperation-
list, andeventsare updated where theUPDATE-EVENTS
function omitsextractantfrom events. The above-mentioned
actions fromUPDATE-HIGHEST-VALUE-TEMPLATE to
UPDATE-EVENTS are repeated untileventsor templates
is empty. Finally, a set of operations can be acquired.

The algorithm of theEDP-MANIPULATION function is
now described. The formula,S 5 EDP-MANIPULATION
~T, P!, indicates that the sequenceS, which is approxi-
mately similar to the sequenceP, is extracted out of the
sequenceT. Because the elements~i.e., design events! in a
sequence are arranged in a time-series order from left to
right, their order is retained.

The definitions are as follows:

• T 5 @T0, T1, T2, . . . ,Ti , . . . ,TI # , P 5 @P0, P1,
P2, . . . ,Pj , . . . ,PJ# . HereT andP symbolize sequential
strings; Ti and Pj symbolize an element of each se-
quence; the bracket means elements in it are ranged in
a time-series order from left to right; andI andJ are
the number of elements ofT andP, respectively.

• The concept of Levenshtein distance~Graham, 1994!
is introduced, which is widely used in pattern match-
ing problems. The Levenshtein distance shows the dis-
tance between one string~i.e., an array of characters!

and another string and represents the minimum cost
for one string changing into another one through inser-
tion, deletion, or exchange.

• d~i, j ! represents the distance between Ti and Pj .

• D~T,S! represents the distance betweenT andP.

• g~ i , j ! represents the distance between the string
@T0, . . . ,Ti # and the string@P0, . . . ,Pj # .

• g~I, J! 5 D~T,S!

• B~i, j ! represents the beginning point of the subset of
T that is extracted fromT to maximally coincide with
P. In other words, the string@TB~i, j !, . . . ,Ti # matches
the string@P0, . . . ,Pj # the best.

• p is the cost of exchange between two events.

• q is the cost of deletion of an event.

• r is the cost of insertion of an event.

The manipulation proceeds according to the following:
1! Initialization

g~0,0! 5 0, B~i, j ! 5 0
For i 5 1 to i 5 I

g~i,0! 5 0, B~i,0! 5 i
For j 5 1 to j 5 J

g~0, j ! 5 g~0, j 2 1! 1 r, B~0, j ! 5 0
2! Iteration

For i 5 1 to i 5 I
For j 5 1 to j 5 J

g~i, j ! 5 minH g~i 2 1, j ! 1 q ~1!

g~i 2 1, j 2 1! 1 d~i, j ! ~2!

g~i, j 2 1! 1 r ~3!

where, If Ti 5 Pj , Thend~i, j ! 5 0
Elsed~i, j ! 5 p

Fig. 7. The algorithm of EDP.

80 Y. Ishino and Y. Jin

If ~1! 5 ~2! 5 ~3!, ThenB~i, j ! 5 minH B~i 2 1, j !
B~i 2 1, j 2 1!

B~i, j 2 1!

Else~1! 5 ~2! , ~3!, ThenB~i, j ! 5 minH B~i 2 1, j !
B~i 2 1, j 2 1!

Else~2! 5 ~3! , ~1!, ThenB~i, j ! 5 minH B~i 2 1, j 2 1!

B~i, j 2 1!

Else~3! 5 ~1! , ~2!, ThenB~i, j ! 5 minH B~i 2 1, j !
B~i, j 2 1!

Else~1! , ~2! and~1! , ~3!, ThenB~i, j ! 5 B~i 2 1, j !

Else~2! , ~1! and~2! , ~3!, ThenB~i, j ! 5 B~i 2 1, j 2 1!

Else~3! , ~1! and~3! , ~2!, ThenB~i, j ! 5 B~i, j 2 1!

3! Finalization
For i 5 1 to i 5 I

If g~i, J! # Threshold, ThenSc 5@TB~i, j !, . . . ,Ti #
Sc represents a candidate of a target design event se-
quence. When more than one candidateSc are found
overlapping one another, the longest should be se-
lected as the final solution sequenceS out of them.
We allow pluralS to exist unless their scopes inter-
fere with each other.

4.4. Acquiring know-howknowledge

In this research we also attempt to capture procedure fea-
tures from the design procedure information obtained by
applying GEDP. To achieve this goal, we combine the para-
metric design view with the GEDP and introduce several
definitions.

First of all, we introduce the concept ofproduct model
core to represent the current status of a product model un-
der development. A product model core is an essential part
of its corresponding product model and is defined by a key
subset of the parameters of the product model. Updating the
parameter values of the product model core implies signif-
icant progress in product model development.

Next we require that the product models be created and
developed through the following steps:~1! the initial prod-
uct modelis generated from an empty or incomplete prod-
uct structure~i.e., a product model with parameters that
have null values! by assigning nonnull values to the design
parameters, and~2! aderived product modelis created when
a major design change~i.e., the design change that causes
changes in the product model core! is made on an initial or
derived product model. Subsequent design changes can be
made to a newly derived product model to accommodate
the major design change. Based on these definitions, one
can determine when a product model is formed by monitor-
ing the changes of the parameters of the product model
core.

Besides being able to distinguish between different de-
rived product models, we also need to know therelation-

ship between the models, for example, how close or far
away they are to each other. To evaluate the relationship
between product models, we introduce a concept ofvirtual
distancebetween product models. We define the distance
between two product models as represented by the summa-
tion of a set of binary values resulting from the comparison
of the parameters of the product model core. If the values of
the same parameter of the two product models are different,
then the binary value is 1, otherwise 0. When a new derived
product model is formed, the distances between the product
model and all other existing product models are calculated.
After that the product model that has the closest distance is
selected as the parent of the newly derived product model.
In the product model tree structure, such as the one shown
in Figure 8, a child product model is located and linked
directly under a parent. If the closest distance is further
than the predefined threshold, the product model is recog-
nized to be independent of all other product models and
have no parent. An independent derived product model with
no parent is located as the root of a new tree, as shown in
Figure 8.

Eventually, after performing GEDP and the analysis of
the tree structure of product models, the following can be
obtained:~1! relationships between product models as a
time-series branching tree structure,~2! a list of the status
of product models described by parameters of the corre-
sponding product model cores, and~3! a list of design op-
erations attached to individual product models in the
occurrence order. These three items contains important and
useful design procedure information.

In addition to the design procedure information, proce-
dure features are also acquired through the following steps
~see Fig. 9!:

1. Find the main path that leads from the origin to the
finally selected ideal product model. Treat other paths
as branch paths.

2. Enumerate all the positions of design operations. De-
sign operations on the main path are given numbers
starting from 0 at the origin and increasing sub-
sequently to the end of the path. Design operations on
branch paths are assigned numbers starting with the
number of the branching operation on the main path.
This enumeration allows us to represent the depth of
the tree structure and recognize the positions of oc-
currence of a specific type of operation in the design
process. Figure 9 shows an example of the enumera-
tion in which seven product models were generated
and 22 design operations were performed. As shown
in the figure, each design operation not only has its
type identification~e.g., Op2 or Op12! but also its
position numbers~e.g., 3 or 6! in the product model
tree.

3. Find key indexes that represent emergence features of
different types of operations in the design process.
Instances of the key indexes include theemergence

Acquiring engineering knowledge from design processes 81

Fig. 8. An example of the hierarchical tree structure.

Fig. 9. The design procedure analysis for capturing procedure features:Pn, product model, where P1 is the initial product model and
P7 is the final product model;P1-P5-P6-P7, the main path that leads from the origin to the finally selected product model;~Opj ! the
design operation, wherej indicates an identification of the contents of the design operation;~ :i ! the existence of a design operation,
wherei indicates the position number in the tree structure;~—! the parent and child relationship between product models.

82 Y. Ishino and Y. Jin

frequency, the average of emergence positions, and
their standard deviation. The emergence features of
the operations of the example Figure 9 are shown in
Table 3. As shown in the table, Op2 occurred three
times: between P1 and P2, P1 and P3, and P1 and P5.
Its average emergence position is 2.3, and its standard
deviation is 0.47.

4. Translate predefined design process meta knowledge
into IF–THEN rules using the key indexes. Based on
design principle knowledge, one can define a set of
meta-level principles about design processes. For ex-
ample, “Design operations which frequently appear
in the early stage of the design process are related to
a crucial change of product specifications” is a use-
ful meta-level knowledge about the design process.
To use this type of knowledge effectively, we en-
coded it using the key indexes described above. An
example of such encoded rules is “IF an identified
design operation has its emergence frequency.5 3,
its average position, 0.5, and its standard deviation
of the position, 1.0; THEN the emergence pattern
of the design operation is a procedure feature ofearly
examination.”

5. Search for procedure features based on the key in-
dexes based IF–THEN rules. Based on the IF–THEN
rules described above, procedure features of the de-
sign process can be captured through a production
system reasoning mechanism. For example, in Fig-
ure 9 and Table 3, only Op2 matches the above-
mentioned IF–THEN rule. Therefore, design Op2
represents anearly examinationprocedure feature of
the design process.

5. CASE STUDY

5.1. Double-reduction gear system

Our proposed methods were evaluated in a case study on
the design of a double-reduction gear system. The double-
reduction gear system is composed of four gears, three shafts,
bearings, and a case. Basically, the number of teeth in the
gears determines the speed reduction rate. Because the power
of the revolution makes the torque and the bending mo-
ment, the gears and shafts are designed to stand up to the
force. We developed the CAD system called “Gear-CAD.”
Gear-CAD is an integrated design environment that allows

designers to access all the information they need and to use
the tools they need. Gear-CAD has all the domain knowl-
edge about this double-reduction gear system, supports the
design, and simultaneously records the entire designer’s log,
which contains all events he or she generated during the
design process. Figure 10 shows an example of the Gear-
CAD screens, and Figure 11 shows the structure of the gear
design problem.

The requirements and conditions for the gear design prob-
lem follow.

Requirements:

1. All design components are determined in detail, that
is, the size and position.

2. The required reduction ratio is 10:1.

3. Lighter, smaller, and cheaper is better on the assump-
tion of using the equipment in outer space.

Conditions:

1. Spur gears that have teeth with a 208 pressure angle
are utilized in this system.

2. The input power and speed of rotation are 10.0 kW
and 500 rpm, respectively.

Our monitoring system including Gear-CAD and knowl-
edge capturing system were developed in Windows 98 OS.
The demo system was written in Visual Basic 6.0.

5.2. Know-howknowledge

A user who has enough knowledge on this problem de-
signed the double-reduction gear system using Gear-CAD.
From the design log,know-howknowledge was captured as
follows.

5.2.1. Event

Gear-CAD stores a list of events captured during the de-
sign process. The list consists of the event ID and the asso-
ciated action, for example, “Event-ID 5; See document No.2”
and “Event-ID 150; Input the number of gear teeth of pin-
ions.” Events are recorded by the event ID and supplemen-
tary comment if needed. Table 4 shows an event log with a
total of 472 events.

5.2.2. Operation

By using GEDP, 150 operations were captured from 472
events, as shown in Table 5. For example, the event se-

Table 3. Example of key indexes of design operations

Design operation ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Emergence frequency 2 3 1 1 3 2 1 1 2 1 1 2 2
Average of position 5.0 2.3 5.3 5.5 6.5 7.5 8.5
Average of position in total process 0.45 0.21 0.48 0.50 0.59 0.68 0.77
Standard deviation of position 1.0 0.47 2.1 1.5 1.5 1.5 1.5

Acquiring engineering knowledge from design processes 83

quence from 35 to 43,S0 5 @E93, E94, E96, E91, E93, E94,
E96, E95, E97# , was obtained as a meaningful sequence by
the grammar approach; thenS1 5 @E93# , S2 5 @E94, E96# ,
andS3 5 @E91, E93, E94, E96, E95, E97# were captured by

EDP as@Op155: Adjust Y-Positions of Z1 and Z2 Gears# ,
@Op156: Adjust X-Positions of Z2 and Z3 Gears# , and
@Op155: Adjust Y-Positions of All Gears# , respectively. In
this case, the templateP1 5 @E91, E93# for S1, P2 5 @E94,

Fig. 10. An example of a gear-CAD screen.

Fig. 11. The structure of the gear design problem. The
input by humans is contained in the dark-edged circles
and that calculate automatically is contained in the light-
edged circles.

84 Y. Ishino and Y. Jin

E96# for S2, andP3 5 @E91, E93, E95, E97# for S3 were
applied. Because the longer template had the higher value
score,S3 was found at first, and thenS1 andS2 were found
from the rest. It turned out that the GEDP was flexible
against a deletion, an insertion, and an exchange of ele-
ments by comparing templates and the obtained sequences.

5.2.3. Product model

From the viewpoint of parametric design, eight product
models were obtained. The parent–child relationships among
product models are shown in Figure 8, where the param-
eters for measuring the relationship were the number of
gear teeth, the gear materials, the face width of the gears,
and the shaft materials. Finally, product model 8 was cho-
sen as the best.

5.2.4. Knowledge

According to the relationships among product models,
the path PM1–PM5–PM6–PM8 led to the ideal solution as
a main path. By comparing the operations captured by GEDP
and the history of the product model, theknow-how~i.e.,
procedure information! in Table 6 was acquired.

The product models that were obtained and the main pa-
rameters are shown in Table 7.

The procedure features were found by a search using the
design process meta-knowledge rules described in Sec-
tion 4.4. Examples of actually obtained procedure features
are presented.

F1. The determination on the gear properties might have
priority, because the gear teeth numbers, gear mate-
rials, and gear positions were determined in the early
stage of design by the time PM5 was formed.

F2. The determination on shaft materials might be a light-
weighted activity, because it still changed frequently
in the latter stage~from PM5 to PM8!.

F3. The Y-Position of the gears might be important to
finalize the design, because “Adjust Y-Positions of
Z3, Z4 Gears” was repeated at three times in proce-
dures for PM8.

5.3. Discussion

Our GEDP method based on the three-layer design process
model was developed to extractknow-howknowledge with-
out disrupting a normal design process. Although the exper-
iment discussed was only an example to evaluate this method,
the results from the application of the GEDP method to the
double-reduction gear system demonstrated the effective-
ness of the method.

Initially, design procedures were acquired by this
bottom-up method. GEDP had several advantages. First,
the captured operations shown in Table 6 were easy to
understand for a user and the stream of operations repre-
sented sufficient content of a design context. Because 150
operations were captured from 472 events, the average
abridging rate is 3.1. In addition to the trial mentioned
above, several other experiments were carried out and the
rate was similar: 43 operations from 139 events~abridging
rate of 3.0! and 92 operations from 305 events~abridg-
ing rate of 3.3!. Although the rate seems slightly small, it
depends on the CAD system. Because Gear-CAD was de-
veloped to specialize in the double-reduction gear system
problem, an event itself tended to represent specialized
contents, for example, “Input the face width of gear.” If
this method is applied to a general CAD system, events
represent more general actions and the abridging rate must
be increased. Second, GEDP showed flexibility in pattern
recognition. As mentioned in Section 5.2.2, GEDP al-
lowed the deletion, insertion, or exchange of elements in a
target sequence to some extent. Third, this method had the
potential of wide application. In both the grammar ap-

Table 4. Example of event log data

No. Event ID Arguments Time

1 1 # 2.1
2 103 # 2.1
3 104 # 3.6
4 123 # 3.6
5 124 # 5.2
6 5 # 5.7
7 107 # 5.9
8 108 # 11.4
9 21 Z~1!: 17, Z~3!: 17 11.9

10 30 # 12.7
11 129 # 12.9
12 31 GearMaterial~1!:1, GearMaterial~2!:1 17.3
13 130 # 17.3
14 129 # 17.7
15 125 # 17.7
16 126 # 21.7
17 12 # 37.8
18 41 Z1w:60, Z2w:50, Z3w:84, Z4w:74 40.2
19 50 # 42.1
20 131 # 42.1
21 51 ShaftMat~1!:1, ShaftMat~2!:1,

ShaftMat~3!:1
46.1

22 132 # 46.1
23 131 # 46.4
24 127 # 46.4
25 128 # 47.5
26 60 # 47.5
27 91 Move Z1y:222.5 50.6
28 92 F5 1, Move Z1x:465 50.6
29 65 Shorten S1:2274 50.6
30 93 Move Z2y:222.5 51.8
31 94 F5 1, Move Z2x:23 51.8
32 96 F5 1, Move Z3x:23 51.8
33 98 F5 1, Move Z4x:23 51.8

I
468 200 # 907.0
469 87 # 907.1
470 138 # 907.1
471 137 # 907.2
472 201 FinalDgn: 8 913.0

Acquiring engineering knowledge from design processes 85

proach and EDP, renewal of each rule makes it applicable
to generic design problems. It is anticipated that in the
general case the grammar component becomes simple and
the EDP component is extended with many templates.

Further, procedure features were obtained. Three fea-
tures identified as F1–F3 could never be acquired by means
of a mediocre parameter analysis about product models,
because they require the analysis of relationships between
the tree structure and design operations generated by apply-
ing the GEDP. The procedure knowledge such as the exam-
ples in Table 6 contributed largely toward achieving the
procedure features.

Know-howknowledge can be used in practical design.
In practice, it is common for a group of designers to iter-
atively design different versions of the same artifacts such
as cars and electrical appliances. Under these conditions,
understanding other designers’know-how knowledge is
important for managing the effectiveness and efficiency
of collaboration. Furthermore, knowing expert designers’
methods of design can help knowledge transfer. For in-
stance, knowing theknow-howof an expert or veteran
designer may provide other designers with insights about
designing and improve their design process. This knowl-
edge transfer is important, especially when the new design-

Table 5. Example of acquisition of operations from event log

Event
No.

Event
ID Ope No Ope-ID Arguments PM_N

1 1 r 1 16 Start CAD 1
2 103 





2 1 M~103!, M~107!, Z~1!:17, Z~3!:17 1

3 104
4 123
5 124
6 5
7 107
8 108
9 21
10 30 




3 2 GearMaterial~1!:1, GearMaterial~2!:1 111 129
12 31
13 130 





4 3 Z1w:60, Z2w:50, Z3w:84, Z4w:74 1

14 129
15 125
16 126
17 12
18 41
19 50 




5 4 ShaftMat~1!:1, ShaftMat~2!:1, ShaftMat~3!:1 120 131
21 51
22 132 





6 17 Start Drawing 1
23 131
24 127
25 128
26 60
27 91  7 151 Move Z1 Formation5 1 1
28 92
29 65 r 8 11 Shorten_S1:274 1
30 93 





9 156 Adjust X-Positions of All Gears 1
31 94
32 96
33 98
34 69 r 10 13 Shorten_S3:182.5 1
35 93 r 11 155 Adjust Y-Positions of Z1,Z2 Gears 1
36 94  12 156 Adjust X-Positions of Z2,Z3 Gears 1
37 96
38 91 





13 155 Adjust Y-Positions of All Gears 1

39 93
40 94
41 96
42 95
43 97

I
472 201r 150 6 FinalDgn: 8 8

86 Y. Ishino and Y. Jin

Table 6. Acquired know-howknowledge

Operations for PM 1 Operations for PM 5 Operations for PM 6 Operations for PM 8

Start CAD Z~1!:19, Z~3!:21 ShaftMat~1:3, ShaftMat~2:3, ShaftMat~3!:3 Z~1!:19, Z~3!:21
M ~103!, M~107!, Z~1!:17, Z~3!:17 GearMaterial~1!:3, GearMaterial~2!:6 Z1w:52, Z2w:42, Z3w:60, Z4w:50 GearMaterial~1!:3, GearMaterial~2!:6
GearMaterial~1!:1, GearMaterial~2!:1 Z1w:52, Z2w:42, Z3w:60, Z4w:50 Start Drawing Z1w:52, Z2w:42, Z3w:60, Z4w:50
Z1w:60, Z2w:50, Z3w:84, Z4w:74 ShaftMat~1!:1, ShaftMat~2!:1, ShaftMat~3!:1 Adjust Y-Positions of Z1,Z2 Gears ShaftMat~1!:1, ShaftMat~2!:1, ShaftMat~3!:1
ShaftMat~1!:1, ShaftMat~2!:1, ShaftMat~3!:1 Start Drawing Adjust X-Positions of Z2,Z3 Gears Start Drawing
Start Drawing Move Z1 Formation5 1 Adjust Y-Positions of Z3,Z4 Gears Adjust X-Positions of All Gears
Move Z1 Formation5 1 Shorten_S1:250 Adjust X-Positions of All Gears Adjust Y-Positions of Z3,Z4 Gears
Shorten_S1:274 Move Z1 Formation5 0 Move Z4 Formation5 0 Move Z4 Formation5 0
Adjust X-Positions of All Gears Prolong_S1:250 Shorten_S1:296,25, Shorten_S2:292.5 Shorten_S1:333.75, Shorten_S2:322.5
Shorten_S3:182.5 Adjust X-Positions of All Gears Prolong_S1:3.75 Prolong_S1:11.25
Adjust Y-Positions of Z1,Z2 Gears Move Z1 Formation5 0 Shorten_S1:11.25, Shorten_S3:292.5 Shorten_S3:322.5
Adjust X-Positions of Z2,Z3 Gears Adjust Y-Positions of All Gears Prolong_S1:11.25 See the Parameters
Adjust Y-Positions of All Gears Adjust Y-Positions of Z1,Z2 Gears Prolong_S1:18.75 See the PMs
Prolong_S3:78.75 Adjust X-Positions of All Gears Adjust Y-Positions of Z3,Z4 Gears See the previous PMs
Shorten_S1:157.5 Shorten_S1:247.5 Shorten_S2:18.75 Adjust Y-Positions of Z3,Z4 Gears
Adjust X-Positions of Z2,Z3 Gears Prolong_S1:247.5 Shorten_S3:18.75 Adjust Y-Positions of Z3,Z4 Gears
Adjust Y-Positions of Z3,Z4 Gears Shorten_S1:292.5, Shorten_S2:281.25,

Shorten_S3:285
See the Parameters Adjust Y-Positions of Z3,Z4 Gears

Adjust X-Positions of All Gears Prolong_S1:11.25, Prolong_S3:3.75 See the PMs Shorten_S1:22.5, Shorten_S2:15
Move Z4 Formulation5 1 See the Parameters See the previous PMs Prolong_S1:7.5
Move Z1 Formation5 1 See the Parameters Shorten_S3:15
Prolong_S1:26.25 See the PMs
Adjust X-Positions of All Gears See the previous PMs
Shorten_S1:8.75, Shorten_S2:281.25,
Shorten_S3:281.25

See the previous PMs

See the Parameters
See the PMs

A
cq

u
irin

g
e

n
g

in
e

e
rin

g
kn

o
w

le
d

g
e

fro
m

d
e

sig
n

p
ro

ce
sse

s
8

7

Table 7. Obtained product models

Value of parameters

Product Model No. Teeth No.
Width
~cm!

Pitch
~cm! Material

Length A
~cm!

Length B
~cm! Position

Length
~cm!

Diameter
~cm! Material

Length X
~cm!

Length Y
~cm!

Length Z
~cm!

1
Gear No. 1 17 60.0 6.0 1 40.0 45.0 1 Shaft No. 1 105.0 4.6 1 Case 744.0 218.0 541.0
Gear No. 2 61 50.0 6.0 1 40.0 177.8 — Shaft No. 2 238.0 6.2 1
Gear No. 3 17 84.0 9.0 1 160.8 57.0 — Shaft No. 3 134.0 7.3 1
Gear No. 4 46 74.0 9.0 57.0 57.0 1

2
Gear No. 1 20 52.0 5.0 2 54.8 128.3 0 Shaft No. 1 203.0 4.5 2 Case 892.0 183.0 532.0
Gear No. 2 72 42.0 5.0 2 54.8 128.3 — Shaft No. 2 203.0 5.9 2
Gear No. 3 20 76.0 8.0 2 126.3 56.8 — Shaft No. 3 203.0 6.9 2
Gear No. 4 54 66.0 8.0 2 126.3 56.8 0

3
Gear No. 1 25 54.0 4.0 3 40.8 43.3 1 Shaft No. 1 104.0 4.2 3 Case 837.0 188.0 569.0
Gear No. 2 90 44.0 4.0 3 40.8 147.5 — Shaft No. 2 208.0 5.6 3
Gear No. 3 25 68.0 7.0 3 143.0 45.3 — Shaft No. 3 208.0 6.7 3
Gear No. 4 67 58.0 7.0 3 143.0 45.3 1

4
Gear No. 1 25 44.0 4.0 3 35.8 29.5 1 Shaft No. 1 85.0 4.2 3 Case 837.0 166.0 569.0
Gear No. 2 90 34.0 4.0 3 35.8 130.0 — Shaft No. 2 186.0 5.6 3
Gear No. 3 25 68.0 7.0 3 124.3 41.5 — Shaft No. 3 186.0 6.7 3
Gear No. 4 67 58.0 7.0 3 124.3 41.5 1

5
Gear No. 1 19 52.0 5.0 3 39.8 146.0 0 Shaft No. 1 206.0 4.7 1 Case 770.0 186.0 442.0
Gear No. 2 68 42.0 5.0 3 39.8 146.0 — Shaft No. 2 206.0 6.4 1
Gear No. 3 21 60.0 6.0 6 122.0 63.8 — Shaft No. 3 206.0 7.4 1
Gear No. 4 57 50.0 6.0 6 122.0 63.8 0

6
Gear No. 1 19 52.0 5.0 3 39.8 116.0 0 Shaft No. 1 176.0 4.3 3 Case 770.0 156.0 442.0
Gear No. 2 68 42.0 5.0 3 39.8 116.0 — Shaft No. 2 176.0 5.7 3
Gear No. 3 21 60.0 6.0 6 114.5 41.3 — Shaft No. 3 176.0 6.7 3
Gear No. 4 57 50.0 6.0 6 114.5 41.3 0

7
Gear No. 1 19 52.0 5.0 3 32.3 108.3 0 Shaft No. 1 160.0 4.4 2 Case 769.0 141.0 441.0
Gear No. 2 68 42.0 5.0 3 32.3 108.3 — Shaft No. 2 160.0 5.8 2
Gear No. 3 23 56.0 5.5 6 97.5 43.0 — Shaft No. 3 160.0 6.9 2
Gear No. 4 62 46.0 5.5 6 97.5 43.0 0

8
Gear No. 1 19 52.0 5.0 3 32.3 97.3 0 Shaft No. 1 150.0 4.4 2 Case 770.0 130.0 442.0
Gear No. 2 68 42.0 5.0 3 32.3 97.3 — Shaft No. 2 150.0 5.8 2
Gear No. 3 21 60.0 6.0 6 88.3 41.3 — Shaft No. 3 150.0 6.9 2
Gear No. 4 57 50.0 6.0 6 88.3 41.3 0

8
8

Y
.

Ish
in

o
a

n
d

Y
.

Jin

ers deal with the same or similar design tasks as the expert
designer.

On the other hand, there are some limitations of our
method. The first one relates to the types of design prob-
lems to which our method can be applied and the require-
ments that need to be imposed on the CAD systems.
Generally, we need to develop specific rule sets used in
GEDP for specific types of design problems. More rules
will be needed to increase the applicability of GEDP. At the
same time, the number of rules that need to be developed
and how easily they can be developed depend on what events
can be captured by the CAD system being used. Our ap-
proach requires that individual components and their pa-
rameters be recognizable and monitorable by the CAD
system. Although the domain-specific rules would be suf-
ficient for our method to operate, design task specific rules
will be needed to capture more useful knowledge. In gen-
eral, parametric design and routine design are most suitable
for our method.

The second limitation is that the obtainedknow-how
knowledge is usually domain specific and context specific.
For example, we cannot applyknow-howfor a gear system
as it is to a problem of designing a robot arm. To further
generalize theknow-howknowledge, we plan to deal with
the problem of capturingknow-whyknowledge.

6. RELATED WORK

Recently knowledge management are the key words in en-
terprises and business organizations to create value from an
organization’s intangible assets~Davenport, 1998; Liebow-
itz, 1999!. Generally speaking, knowledge management con-
sists of knowledge capturing, securing, retrieving, and
distributing steps, and a great deal of research on each step
has been executed. We focus on the engineering and tech-
nology aspects of knowledge management and especially
address the issue of knowledge capturing.

While many researchers in engineering and artificial in-
telligence focused their knowledge capturing research on
documented domain knowledge~Bradshaw et al., 1997!,
research on capturingknow-howknowledge received little
attention. That is becauseknow-howknowledge seems do-
main specific and there is much difficulty in formalizing
how to capture genericknow-howknowledge. Despite the
difficulty, some researchers point its importance out and
struggle to capture and manage it; for example, Knowledge
Infrastructure for Collaborative and Agent-Based Design
was proposed for the agent system to use procedure knowl-
edge and process knowledge in collaborative design~Jin &
Zhou, 1999; Jin et al., 1999!. However, the general way to
captureknow-howknowledge remains a research topic.

On the other hand,design rationaleitself was studied
from different point of views~Moran & Carroll, 1996!.
There are three major models: argumentation-based
design rationale, action-based design rationale, and model-
based design rationale. In the first approach the rationale
is represented as a set of arguments~pros and cons! at-

tached to issues, and the issues are interconnected. The
Issue-Based Information System~IBIS!, developed by Rit-
tel ~Kunz & Rittel, 1970!, is an example of such method-
ologies. Various implementations of the IBIS concept were
developed, for example, gIBIS~Conklin & Begeman, 1988!,
PHI ~McCall, 1991!, and DRL~Lee, 1990!. However, the
argumentation-based approach focused only on the design
rationale;know-howknowledge is not considered.

Next the action-based rationale was developed. The claims
are that actions can be explained by themselves~Lakin et al.,
1989!. Although this approach includesknow-howknowl-
edge in its target, it creates a new problem in managing the
large volume of information recorded.

Model-based design rationale was the last to be pro-
posed. TheActive Design Document system~Garcia & How-
ard, 1992! is based on a certain computational model of
design rationale, which is developed for parametric design
tasks. Although this system works effectively, its model
and method are limited to a certain subject. In contrast, we
propose a much more general model to apply to broad de-
sign problems. The Design History Tool~Chen et al., 1991!
is proposed, which has both action-based and model-based
features. The system stores structured and hierarchical rep-
resentations of design based on what designers said and
performed. Although their system can provide more infor-
mation about design rationale, it interrupts the designers’
design process and involves a huge analysis cost for each
design case.

Recently several studies about action- and model-based
design rationale were tackled withknow-howand know-
whyknowledge capturing. Ganeshan et al.~1994! proposed
the framework to capturehow andwhy, in which the core
idea is to model design as a selection from predefined trans-
formation rules. When a rule is selected, the choice is re-
corded along with the rationale associated with that rule. In
their approach, the designers’ activities are constrained and
they are translated into the predefined rules beforehand.
They did not address the issues of capturingknow-how
knowledge from the bottom-level information such as events
in CAD systems.

Myers et al.~1999! proposed the framework to capture
design rationales from general CAD data. They developed
an experimental system, the Rationale Construction Frame-
work ~RCF!, which automatically acquires rationale infor-
mation for the detailed design process. It is valuable that
they aim to develop a framework to apply to a general
design problem. Although their research purpose is very
similar to ours, there are some differences between us in
both conceptualization and approach. In RCF they regarded
design history as a conglomerate of detailed design ratio-
nales and focused on capturing many partly isolated design
rationales in detail. Their focus is different from finding
usefulknow-how, especially procedure features. On the other
hand, our goal is to captureknow-howknowledge, includ-
ing procedure information and procedure features as men-
tioned above. Therefore, the approaches taken in Myers
et al.’s research were different from ours. In their research,

Acquiring engineering knowledge from design processes 89

simple pattern matching is executed to detect design proce-
dures using general predefined rules called design meta-
phors and qualitative reasoning is used to capture design
rationale. In our research, complex pattern recognition
~GEDP! is conducted to detect design procedures and a
search based on rules derived from design principle knowl-
edge is used to acquire procedure features.

In addition, some of the industrial Case-Based Reason-
ing ~CBR! systems can be considered as capturing design
process knowledge in terms of ways to fix problems. Sev-
eral recent publications addressed specific issues of apply-
ing CBR to design~Maher & Pu, 1997!. The application of
CBR to design domains that involve mechanical and other
physical devices has extended the notion of design cases to
include a representation of general knowledge in the form
of causal or heuristic knowledge. Goel et al.~1997! directly
addressed the representation of causal behavior through the
use ofstructure–behavior–function~SBF! models. SBF mod-
els are useful to diagnose products. However, they focus on
states of product models rather than design history.

7. SUMMARY AND FUTURE WORK

Because engineering design is highly knowledge intensive,
capturing, managing, and utilizing knowledge can yield sig-
nificant benefits for both designers and enterprises. In this
paper we categorized design knowledge, focused onknow-
howknowledge capturing, and proposed a novel model and
methods. The three-layer design process model represents a
generic design process by differentiating process informa-
tion at different levels of detail. The GEDP method devel-
oped based on the process model acquires design procedures
in a bottom-up way by extracting knowledge layer by layer
through grammar and DP based analysis. Moreover, analyz-
ing the relationships between the hierarchical tree structure
of product models and design operations generated from
the application of GEDP enables us to acquire the proce-
dure features. The effectiveness of the proposed approach
was demonstrated by a gear design prototype system
Gear-CAD.

Because the aim of our approach is to acquireknow-how
knowledge without disrupting a normal design process, we
adopted a bottom-up approach. In general, a bottom-up ap-
proach involves the difficulty that design events can be too
minute and complicated to manage unitarily. To conquer
this difficulty, we devised an approach in which two meth-
ods of pattern recognition are combined. We showed that
our approach is effective in dealing with the low-level in-
formation management problem. In general, parametric de-
sign and routine design are most suitable for our method.

A limitation of our approach is that, although we can
capture what a designer does asknow-howknowledge, the
reasonwhy the designer did his or her design this way is
still weak. Know-whyknowledge is needed to profoundly
understandknow-howknowledge. To deal with the limita-
tion, we plan to focus onknow-whyknowledge capturing as
the next step of our research. We also plan to integrate the

current system in an environment of networked design sup-
port agents to further support collaborative design through
effective knowledge capturing and management.

ACKNOWLEDGMENTS

This research was supported in part by a NSF CAREER Award
under Grant DMI-9734006. The authors are grateful to the NSF
for its support.

REFERENCES

Bellman, R.~1957!. Dynamic Programming. Princeton, NJ: Princeton Uni-
versity Press.

Bradshaw, J.M., Carpenter, R., Cranfill, R., Jeffers, R., Poblete, L., Robin-
son, T., Sun, A., Gawdiak, Y., Bichindaritz, I., & Sullivan, K.~1997!.
Roles for agent technology in knowledge management: Examples from
applications in aerospace and medicine.Proc. AAAI Spring Sympo-
sium on Artificial Intelligence in Knowledge Management (AIKM’97),
pp. 9–16.

Chen, A., Dietterich, T.G., & Ullman, D.G.~1991!. A computer-based
design history tool.NSF Design and Manufacturing Conference, pp.
985–994.

Chikada, T., Yoshimura, M., et al.~1999!. An off-line signature verifica-
tion method based on a hidden Markov model using column images as
features.Proc. 9th Biennial Conference of the International Grapho-
nomics Society (IGS’99), pp. 79–82.

Conklin, E.J., & Begeman, M.~1988!. gIBIS: A hypertext tool for explor-
atory policy discussion.Proc. Conf. Computer-Supported Cooperative
Work (CSCW’88), pp. 140–152.

Davenport, T.H., & Prusak, L.~1998!. Working Knowledge: How Organi-
zations Manage What They Know. Boston: Harvard Business School
Press.

Ganeshan, R., Garrett, J., & Finger, S.~1994!. A framework for represent-
ing design intent.Design Studies 15(1), 59–84.

Garcia, A.C.B., & Howard, H.C.~1992!. Acquiring design knowledge
through design decision justification.Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing 6(1), 59–71.

Goel, A., Bhatta, S., & Stroulia, E.~1997!. KRITIK: An early case-based
design system. InIssues and Applications of Case-Based Reasoning in
Design ~Maher, M., & Pu, P., Eds.!, pp. 87–132. Mahwah, NJ: Er-
lbaum.

Graham, A.S.~1994!. String Searching Algorithms. River Edge, NJ: World
Scientific.

Jin, Y., & Zhou, W.~1999!. Agent-based knowledge management for col-
laborative engineering.Proc. Design Engineering Technical Confer-
ences (DETC’99) in ASME.

Jin, Y., Zhao, L., & Raghunath, A.~1999!. ActivePROCESS: A process-
driven and agent-based approach to collaborative engineering.Proc.
Design Engineering Technical Conferences (DETC’99) in ASME.

Krogh, A., Brown, M., Mian, I.S., Sjolander, K., & Haussler, D.~1994!.
Hidden Markov models in computational biology: Application to pro-
tein modeling.Journal of Molecular Biology 235, 1501–1531.

Kunz, W., & Rittel, W.~1970!. Issues as elements of information systems.
Working paper 131. Center for Planning and Development Research,
University of California, Berkeley.

Lakin, F., Wambaugh, J., Leifer, L., et al.~1989!. The electronic design
notebook: Performing medium and processing medium.Visual Com-
puter: International Journal of Computer Graphics 5, 214–226.

Lee, J. ~1990!. SIBYL: A qualitative decision management system. In
Artificial Intelligence at MIT: Expanding Frontiers~Winston, P., &
Shellard, S., Eds.!, Vol. 1, pp. 104–133. Cambridge, MA: MIT Press.

Liebowitz, J.~Ed.!. ~1999!. Knowledge Management Handbook. Boca Ra-
ton, FL: CRC Press.

Maher, M.L., & Pu, P.~Eds.!. ~1997!. Issues and Applications of Case-
Based Reasoning in Design. Mahwah, NJ: Erlbaum.

McCall, R. ~1991!. PHI: A conceptual foundation for design hypermedia.
Design Studies 12(1), pp. 30–41.

Moran, T.P., & Carroll, J.M.~1996!. Design Rationale: Concepts, Tech-
niques, and Use. Mahwah, NJ: Erlbaum.

90 Y. Ishino and Y. Jin

Myers, K.L., Zumel, N.B., & Garcia, P.~1999!. Automated capture of
rationale for the detailed design process.Proc. 11th Conf. Innovative
Applications of Artificial Intelligence (IAAI’99).

Pahl, G., & Beitz, W.~1996!. Engineering Design: A Systematic Ap-
proach. New York: Springer–Verlag.

Sakoe, H., & Chiba, S.~1990!. Dynamic programming algorithm optimi-
zation for spoken word recognition. InReadings in Speech Recogni-
tion ~Waibel, A., & Lee, K., Eds.!, pp. 159–165. San Mateo, CA:
Morgan Kaufmann.

Suh, N.P.~1990!. The Principles of Design. Oxford Series on Advanced
Manufacturing, Vol. 6. New York: Oxford University Press.

Dr. Yoko Ishino is a Research Associate in the IMPACT
Laboratory at the University of Southern California. She
received her PhD degree in Information Engineering from
the University of Tokyo in 1999. In her doctoral disserta-
tion she investigated computer-aided strategic concept for-
mation based on knowledge acquisition from questionnaire
data. Her research interests are primarily in computer–

human interactions that facilitate human intellectual activ-
ities, for example, engineering design. Since she joined the
IMPACT Laboratory in the fall of 1999, she has studied
knowledge acquisition in mechanical engineering and agent-
based collaborative engineering support.

Dr. Yan Jin is Associate Professor of Mechanical Engineer-
ing at the University of Southern California and the Direc-
tor of the USC IMPACT Laboratory. He received his PhD
degree in Naval Engineering from the University of Tokyo
in 1988. Since then Dr. Jin has done research on knowledge-
based systems, distributed problem solving, and organiza-
tion modeling, along with their applications to computer-
integrated manufacturing, collaborative engineering, and
project management. His current research interests include
design process modeling, agent-based collaborative engi-
neering support, and computational organization modeling.
He is a recipient of a 1998 National Science Foundation
CAREER Award.

Acquiring engineering knowledge from design processes 91

