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any manufacturing or power plant is that 
plant systems should always be available to 
support plant function, without ever limiting 
plant production. More precisely, the cost of 
any maintenance activity should be less than 
the expected marginal value of production 
enabled by the planned activity. In planning 
maintenance to meet this time-varying objec- 
tive, a plant’s operating engineers and owner 
need to share information about current plant 
component status and the business situation. 

Supporting this objective is difficult. 
Assessing the risk posed by an observed non- 
critical problem to future production is chal- 
lenging. There are multiple goals, goals 
change and conflict, and indicator data are 
almost never completely reliable or adequate. 
Furthermore, the problem has multiple 
aspects: interpretation of observed data, 
problem diagnosis, repair and maintenance 
planning, and business evaluation of differ- 
ent repair and maintenance options. Finally, 
interpreting available engineering and busi- 
ness data demands good judgment, and the 
ability to define the value of maintenance 
requires a clear business policy. 

As this article shows, our Intelligent Real- 
Time Maintenance Management (IRTMM) 
system helps process-plant owners perform 

THE INTELLIGENT REAL- TIME MAINTENANCE 
MANAGEMENT SYSTEM HELPS PROCESS-PLANT ENGINEERS 

WITH IRTMM, THEY CAN INSPECT SUBSYSTEMS, IDENTIFY 
AND OWNERS PERFORM VALUE-BASED PLANT MAINTENANCE. 

COMPONENT OPERATING PARAMETERS, AND REVIEW AND 
MAKE NOTES REGARDING COMPONENT PERFORMANCE OR 

OPERATIONAL AND MAINTENANCE HISTORY; 

value-based plant maintenance-not simply 
periodic maintenance or repairs following a 
breakdown, but maintenance motivated by 
engineering or business concerns. Imple- 
mented using object-oriented software with 
associated objects: displays: and systems- 
interface utilities, rules, and methods, the 
system performs three coupled functions- 
situation assessment, planning, and value 
analysis-each implemented as an indepen- 
dent software module. The modules share a 
symbolic plant model that describes plant 
components, their attributes, and their con- 
nectivity. IRTMM has performed success- 
fully on test cases from power company util- 
ities and from a large process plant. 

Three-module design 

The IRTMM system provides integrated 
subsystems for three aspects of the mainte- 
nance and repair planning problem: 

Situation assessment. The SA module 
interprets observed data as normal or 
abnormal, and diagnoses causes and 
effects of plant equipment problems. It 
also analyzes system performance to 
identify indications for condition-based 
maintenance. 
Planning. Given a set of problems to 
repair, provided by the SA or by a user 
who is considering maintenance, the 
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Figure 1. IRTMM architecture. Each module has a copy of 
the generic plant model. When it receives control from 
the user, a module requests data from its data source. 
The querying module receives and stores the requested 
data, specifically the attribute values of instance obiects. 

planner builds plans of the activities 
needed to repair a diagnosed problem. It 
can also merge related plans for the same 
or different components that can be per- 
formed during the same plant outage. 
Value analysis. The VA module identifies 
the monetary costs and the predicted ben- 
efits of performing every selected repair 
plan at different times. Using predicted 
power demand and plant operating and 
maintenance cost data, this subsystem 
assesses the net unit operating costs asso- 
ciated with performing plans at different 
possible times. 

The IRTMM system provides interactive 
analyses to facilitate engineering decision 
making, not automate it. Given data from a 
data-acquisition system, the system identi- 
fies candidate problem causes and predicted 
effects. The user selects one or more com- 
ponents to analyze in more detail. After 
reviewing the system-generated plans and 
value analysis, the user selects the one or 
more components for repair, indicating both 
the desired repair activity and the planned 
repair time, after coilsidering the systcm- 
generated options. 

Designed to reside on a computer network, 
IRTMM can receive component status infor- 
mation from an on-line data-acquisition sys- 
tem or any available diagnostic expert sys- 
tems; staff- and equipment-availability 
information from a computerized mainte- 
nance management system (CMMS); and 
projected product demand, cost, and selling 
price data from a business database. Users 
can log recommended work in the CMMS. 
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At the heart of the system is a shared sym- 
bolic plant model, used by the three IRTMM 
modules. The model explicitly represents the 
form, function, and behavior of the plant sys- 
tems, components, and processes. Form 
describes the layout and part composition of 
components and systems. If the application 
were extended to support other purposes, the 
form model would also represent component 
features, dimensions and tolerances, and 
materials. Function describes design intent 
for the component or system-for example, 
for pumping-and specifies methods to 
compute the simulated values of component 
output parameters, given values of input 
parameters. Behavior describes the possible, 
measured, and simulated values of parame- 
ters, including states (operating, startup, or 
failed), engineering parameters such as 
vibration and temperature, and relationships. 

IRTMM processing control involves shift- 
ing the system’s focus of attention from the 
SA to the planner to the VA modules (see 
Figure 1). Each module requests data from 
its information source. 

Figure 2 shows the most important entities 
represented in the shared plant model; char- 
acterizes their roles as form, function, and 
behavior; and identifies the module that uses 
each model constituent. The different IRTMM 
modules use the model constituents, as shown 
by x’s in the rightmost three columns. 

The model explicitly represents each para- 
meter. Each has a value, which is often 
numeric. Numeric parameters also have a 
state. A parameter’s state attribute value is nor- 
mally high, normal, low, or off. The SA and 
planner use the model as a source of the plant’s 
components and their connectivity, engineer- 
ing functions, and possible behaviors. 

Situation assessment 

The SA system diagnoses plant equipment 
problems. Given specialized input data from 
instrumentation (pressures or flow rates, for 
example) and possibly from specialized 
expert diagnostic systems (such as vibration 
analysis), the SA provides a systems diag- 
nosis. It identifies potential root causes and 
effects of component problems, where some 
causes and effects might be in the component 
with a problem and others in subcomponents 
or connected systems. 

The SA uses a combination of methods to 

perform this assessment: model-based diag- 
nosis (MBD) to identify the details of a large 
class of possible problems, heuristic classi- 
fication to identify the presence of a set of 
idiosyncratic problems, and case-based rea- 
soning (CBR) to compare observed data 
with previously identified cases identified 
by the MBD technique. The SA uses the 
shared symbolic plant model of the plant 
systems, components, and parameters. Users 
interact with the system using interactive 
process and instrumentation diagrams 
(P&IDs) for different selected subsystems, 
identify component operating parameters, 
and review and make notes regarding com- 
ponent performance or operational and 
maintenance history. 

The SA provides a systematic monitoring 
and component diagnosis capability for facil- 
ity equipment and systems. Henny Sipma 
implemented the first versions of the SA in 
the BB 1 software environment.’ 

SA purposes. The SA includes the follow- 
ing capabilities: 

Check reported data for consistency The 
SA reports alarm conditions for data that 
is out of the expected range or inconsistent 
with other measured data This process 
checks data value with respect to context- 
dependent limts to classify data as normal, 
high, low, or &fact Plant-momtonng sys- 
tems now largely perform the out-of- 
expected-range test, but the SA includes it 
for those cases in whch a plant momtonng 
system does not do the check 
Hypothesize possible component faults 
For processes that are out of statistical 
control, the SA identifies candidate 
causes and reports evidence for and 
against hypothesized faults. It reports 
causes, effects, supporting data, missing 
data, and recommended actions 
Show a shaved, annotated P&ID to plant 
staff Any IRTMM user can bring up a 
subsystem P&ID and view the following 
information provided by any SA user 
measured data currently in the plant model 
system (such as temperatures), staff com- 
ments (for example, to let one user store 
the fact that a component was repared and 
is now back on line and let another user 
discover the fact), and inferred data (such 
as when the computer concludes that a 
component is unreliable and should not 
be used except in emergencies) 
Use a unlfovm environment (the shared 
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plant model) to describe the cuvvent facil- 
i9,  including components, their roles, and 
their connectivity. The plant model stores 
measured data values, fault possibilities, 
and component history as concluded by 
the SA or reported interactively by staff. 

The SA system operates in either theperi- 
odic or demand mode. In the periodic mode, 
the system queries the monitoring system 
every period (for example, every hour) for 
the current status of all measured parame- 
ters, assesses each component’s diagnostic 
status, and displays a summary status assess- 
ment of all monitored subsystems, including 
trends when available. Plant maintenance 
supervisors, the principal periodic users, 
review the situation assessment at least once 
a week and prepare work orders as appro- 
priate. The SA operates as a maintenance 
advisor, not a control system. 

In the demand mode, when initiated by a 
user or a monitored event reported by the 
data-acquisition system, the SA queries the 
monitoring system for the current status of 
components in a selected subsystem, 
assesses the diagnostic status of that subsys- 
tem, and displays analysis results on an 
annotated subsystem P&ID. When requested 
by a user, it queries or updates the work- 
management system history file. Individual 
plant maintenance staff and management, the 
principal demand users, review outstanding 
work orders; review component status, his- 
tory, trends, and comments; plan mainte- 
nance activities; and log comments about 
their actions, observations, and conclusions. 

SA reasoning. Knowledge systems now rou- 
tinely do diagnostic reasoning using MBD, 
heuristic classification, and CBR. The SA 
uses a combination of these. 

Model-based diagnosis. MBD involves qual- 
itative simulation of system behavior? First, 
a user (or an algorithm) sets up the plant 
model, selecting components to represent in 
the system, their connectivity, their states 
(such as on, off, open, or closed), and their 
assumed behaviors (for example, as-designed 
or leaking). Next, the user injects a change 
into a system model-for example, by clos- 
ing a valve or starting a leak-and runs a sim- 
ulation to propagate the change through the 
system to determine the complete system 
behavior, given the assumed system para- 
meter states. Finally, the user compares the 
simulated and observed data. 

Figure 2. Entities defined in the shared plant model. Shading indicates data items shared among two or more modules. 
The plant model represents numerous classes of plant components, including filters, headers, heat exchangers, instru- 
ments, pipes, process equipment, pumps, and valves. 

With consistent data, users assume that the 
physical system and model states are con- 
sistent. If the observed and simulated data 
are inconsistent, users vary their assumptions 
about the model until simulated and observed 
data become consistent. Any abnormalities 
in the model state are sufficient to explain 
abnormalities in the observed system. 

The SA uses MBD to analyze the behav- 
ior of a process plant’s process cooling water 
(PCW) system. The method generally 
applies to situations in which relatively sim- 
ple rules describe the propagation of behav- 
ior from one system component to another. 

Heuristic classification. This method is the 
basis for classic expert systems3 It abstracts 
evidence in the form of measured data and 
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relates it to a predefined potential problem. 
Heuristic classification matches the problem 
with a solution and refines the solution. The 
SA uses this method to analyze situations 
having idiosyncratic causal behavior-for 
example, the causes and effects of bearing 
failure and shaft imbalance. 

Case-based reasoning. CBR is the basis for 
some diagnostic systems and many recent 
help-desk applications! An expert creates a 
set of cases, each including descriptions of a 
situation (a case) and an associated statement 
of a cause and suggested repair. Thus, the 
CBR method aggregates the heuristic classi- 
fication steps. Diagnosis involves simple 
matching of observed data with the data of 
each case. This method reports relevant cases 
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as appearing similar to the observed situation. 

Integrating MBD and CBR. MBD uses no 
notion of fault. Systems simply have behav- 
ior. Observed and simulated behaviors either 
do or do not compare. Separate from the 
MBD technique, a user might choose to mod- 
ify a system (physical or model) to change 
its behavior. In the SA, the MBD technique 
generates a set of cases. The user then anno- 
tates each case with a recommended change 
and an expected outcome if the change is 
applied. The SA diagnostic procedure then 
matches observed data with case data and 
reports the cases that best match the obser- 
vation, the evidence for and against each 
case, the recommended action, and the 
expected outcome. 

Reasoning procedures. The SA model per- 
forms the following reasoning procedures: 

Set up a test case. The SA lets a user intro- 
duce a problem into the model and record 
both a description of the problem and the 
appropriate repair. This setup method then 
identifies consequences of the introduced 
problem (by invoking the Propagate ! 
method) and collects these secondary 
parameter values into the case record (by 
invokmg the Snapshot ! method). 
Propagate a component’s qualitative 
behavior to its downstream components 
(Propagate-Behavior !). For example, 
the SA checks the component-inlets state 
parameter and determines the component 
discharge state parameters. For a normally 
functioning component, the propagation 
method sets a component’s discharge state 
parameters to be the same as the states 
of corresponding inlet parameters-for 
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example, high, normal, or low temperature 
for the inlet gets propagated to high, nor- 
mal, or low outlet temperature. Heating 
components, for instance, set the discharge 
temperature to high if fluid inlet is high. 
Record subsystem snapshot values 
(Snapshot !). The SA records a user’s 
parameter state assignments and the asso- 
ciated states of all abnormal parameters 
after behavior propagation. The user can 
(and should) check that the case makes 
sense and also annotate the case with sug- 
gested repair actions and the expected 
result if the suggested action is taken. The 
SA adds the snapshot to a library of cases. 
Perform system situation assessment 
(Diagnose !). The SA compares a set of 
observed parameter data with the cases in 
the library and reports cases having val- 
ues closest to the observed set of para- 
meter status observations. 

We developed and tested the SA with test 
cases from industrial plant operators: a bent 
shaft in the main boiler feedwater pump, leaks 
in a boiler and a process component, an inad- 
vertently closed valve that reduced chilling 
capacity of a chilled water system, and block- 
age of a filter in a process flow system. 

Figure 3 shows part of the SA module’s 
graphic user interface. The interface is an 
interactive P&ID that records and reports 
user notes, component history, and measures 
of success; shows parameters of any selected 
component; and invokes a diagnostic routine 
to diagnose problems that can cause any 
observed parameter abnormality. 

SA testing. Figure 4 shows two test cases for 
the SA module. In Test Case 1, the system 
identifies two possible causes for the 

observed low PCW discharge (return) pres- 
sure. Compared to the selected explanation, 
the other explanation has less significant evi- 
dence in favor and more evidence against it. 
Thus, between the possible causes shown in 
the figure, the first is more likely and should 
be confirmed first. 

In Text Case 2, the system has cases that 
allow it to identify two possible causes for 
the observed high process-supply water tem- 
perature. Compared to the selected explana- 
tion, the other explanation has less signifi- 
cant evidence in favor and more evidence 
against it. Thus, between the possible causes 
shown in the figure, the first is more likely 
and should be confirmed first. 

r 

The engineering planning process involves 
generating work procedures that workers and 
machines should follow to achieve an engi- 
neering goal and that planners need to esti- 
mate costs and manage projects. From a plan- 
ning viewpoint, the engineering planning 
problem is likely to be complex, because it is 
highly contextual and might involve many 
types of objects, actions, and resources. 

Early AI planners showed that computers 
could identify plan activities and infer activ- 
ity pre~edence.~ While such early Strips-style 
planners evolved by the mid 1970s, they 
remain ill-suited to most engineering 
domains because of the limited activity rep- 
resentation these planners adopted.6 General- 
purpose planners in the tradition of Strips 
(Stanford Research Institute Problem Solver) 
still have not found broad use for generating 
realistic engineering plans. Conversely, nar- 
rowly scoped expert planning systems work 
for specific domains but have little applica- 
bility to even slightly different domains. 

The engineering planning research we 
describe here attempts to address the short- 
comings of overly general or overly specific 
planning approaches by modeling the behav- 
ior of plan elements. Oarplan (Object-Action 
Resource Planner), a model-based planner, 
defines activities in an engineering plan by 
their constituent objects, actions, and 
resources.’ That is, an activity specifies an 
object-action-resources set, as well as tradi- 
tional attributes of times (start and end) and 
relationships (for example, successors). It 
generates a plan by reasoning about objects, 
actions, and resources of a specific engi- 
neering domain. 
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Oarplan uses generic models of objects 
(pumps and valves) contained in the shared 
plant model. In addition, it uses models of 
actions (for example, close or remove) and 
resources (plumbers and cranes). 

Planning in Oarplan involves activity gen- 
eration and activity ordering. Oarplan plan- 
ning is hierarchical because it recursively 
generates activities at lower planning levels 
by elaborating those at higher levels, based 
on object-action-resource models. Activity 
ordering proceeds after all required activities 
are generated and is based on satisfying con- 
straints represented in the form of relations 
among components and methods. A final 
plan results after Oarplan performs all elab- 
oration and examines and satisfies all con- 
straints. 

Planner purposes. The planner can clear a 
component, generate activities based on elab- 
oration and refinement of a top-level activ- 
ity, order planned activities, and merge plans 
that are mergeable. 

Planner reasoning. The planner uses a 
model-based approach to engineering plan- 
ning. Planning explicitly considers the form 
and function of plant components. The clear- 
ance procedure identifies fluid inlet valves 
to close and discharge and drain valves to 
open for isolating a component and safe- 
guarding workers. If a valve is disabled, the 
procedure searches upstream from the com- 
ponent for other valves to close or open. 

Activity generation builds on planning 
knowledge of how actions elaborate. Actions 
can have relationships that specify how they 
elaborate into more detailed actions; objects 
can have relationships that specify how they 
decompose into parts. For example, the activ- 
ity-generation procedure recursively gener- 
ates detailed subactivities to elaborate a given 
top-level activity (see Figure 5 ) .  

In this example, the diagnosis was that the 
pump required maintenance to repair a bent 
shaft, and aplanner chose to send the shaft out 
for repair (rather than replace the pump or 
repair the shaft in-house.) In the model, 

M B F P - P ~ P ,  and the repair action elaborates 
into five more detailed actions. The generation 
procedure takes a given top-level task, 
(Repair UNIT_3_MBFP_Pump Some- 
Resources) and elaborates an activity (Fig- 
ure 5). By exploiting the component compo- 
sition constraints with a relatively simple 
reasoning algorithm, the planner hierarchically 

UNIT-3-MBFP-Shaft is part ofUNITp3p 
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Figure 4. Two SA module test cases. 

generates required activities for achieving a 
given project goal. The final plan includes the 
leaf activities that cannot be expanded further, 
shown as boxes in the figure. 

Activity ordering now has a simple pro- 
cedure that places and orders these activities 
in a way that constructively satisfies the par- 
allel or sequential elaboration constraints. 
The plan-merge procedure will offer to 
merge two plans if they have activities that 
work on components within the same clear- 
ance boundary or if some activities are 
shared-if they have the same object, action, 
and resources. Merging plans is desirable 
when users can perform a merged plan faster 
than several independent plans and when 
they can perform opportunistic maintenance 
relatively inexpensively while also perform- 
ing another required maintenance activity. 

Planner testing. The SA reported that the 
main boiler feedwater pump (MBFP) re- 
quired maintenance because vibration indi- 
cated a bent shaft problem. Figure 5 shows 
the generated repair activity tree. The plan 
itself is a linearized list of boxed activities. 

Value analysis 

Decision analysis recognizes that making 
choices means taking chances. Given a choice 
of time to maintain a component, the failing 
component might break at any time prior to 
scheduled maintenance, with likelihood given 
by a prescribed probability distribution, or it 
might survive to the scheduled maintenance. 
The VA uses a decision-theoretic approach- 
decision analysis-to analyze the expected 
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Figure 5. Oarplan plan activity tree. Oarplan builds activities with object-action-resources triples. The top-level repair 
activity elaborates into a set of mare detailed activities, based on the composition of the pump and the elaboration of 
the repair action. Similarly, the repair shaft activity eloborates into o set of more detoiled activities based on the elobo 
ration’of the repair action’ Boxes indicate activities that ai 

value of each choice on the basis of each pos- 
sible chance’s likelihood and the value of its 
outcomes. 

Figure 6 shows how decision analysis com- 
putes achoice’s expected value as the sum of 
the values of the chance outcomes, weighted 
by the probability of their occurrence. For a 
study period that is 4 units long, there are q + 
I choice alternatives: schedule repair at the 
ith hour, i = I ,  . , . , q; or defer repair until after 
the end of the study period. Each choice has 
some number of chance outcomes. For the 
ith-hour repair alternative, for example, we 
can represent the possible chance outcomes 
by the tree shown in Figure 6. 

The size of the decision space depends on 
the size of both the study period and the data’s 
grain size: a seven-year study period must 
consider seven outcome possibilities if the 
problem assumes an annual data grain size. 
It considers 84 outcomes if the problem 
assumes data precision of one month. Each 
decision’s impact is measured by the expected 
value of the objective function, weighted by 
the probability of occurrence associated with 
each outcome. The “best” decision is thus the 
one that has the optimal expected value. 

VA purposes. For each maintenance plan 
produced by the planner and selected by the 
user, the VA identifies several timing choices: 
perform the maintenance or repair as soon as 
possible, at the next period of low demand 
that is long enough to do the activity, or a1 
the next scheduled outage that is long 
enough; or defer maintenance until after the 

cluded in the final plan. 

end of the study period. Then it computes the 
expected costs and net value for a given 
repair plan at each time option. 

The VA considers only one failing com- 
ponent at a time, so only one maintenance 
activity at a time passes from the planner for 
study by the VA. The VA assumes that the 
failing component is critical to the system. If 
the component fails unexpectedly or is under 
planned repair, the VA assumes that the sys- 
tem goes down. If repaired or maintained, a 
component will not fail again within the 
study period by the same mechanism. The 
only random aspect of the analysis i s  the fail- 
ing component‘s life. Unplanned repair 
begins immediately following component 
failure, but the VA is built with the assump- 
tion that the time to perform unplanned repair 
includes both a wait time to assemble parts 
and crew plus actual repair time. 

Components deteriorate only during oper- 
ation, so when a component is idle, its per- 
formance does not deteriorate. Once repaired, 
a component retums to an as-good condition 
and will not fail again within the study period. 
The VA assumes that the component failure 
always occurs at the beginning of each hour. 
For example, the component failing at the kth 
hour means that the breakdown happens at 
the beginning of the kth hour. To simplify the 
analysis, the VA computes the benefit of a 
choice relative to a reference value, called the 
baseline. The simplest baseline assumes per- 
forming no maintenance activity during a 
study period and no unexpected failure. 

The VA assumes that a failing component’s 

life distribution is Weibull, the most widely 
used parametric family of failure distribu- 
tions. The Weibull distribution takes the form: 

P I T <  t }  = F(t) = 1 - ehia 
= Probability that a component fails at 
time T 

where 

T = failing component’s life 
X = scale parameter 
a = shape parameter 

The VA gets the estimate’s mean-time-to- 
failure and standard deviation from the 
model and converts these parameters to the 
two Weibull distribution parameters. 

VA reasoning. For this discussion, we take 
the time unit to be one hour and the study 
period to be n hours. The benefit of a chance 
B is a value associated with the chance out- 
come computed from the following three parts: 

cost savings S of operational mode rela- 
tive to the baseline operational costs, dur- 
ing a time period; 
cost of downtime CdOwnllme due to buying 
replacement power from other sources 
during a time period. This cost will vary 
depending on duration-whether the 
repair is planned or unplanned. 
cost of repair Crepalr, either planned or 
unplanned, during a time period. 

We can compute a chance occurrence’s 
expected benefit by summing the costs, 
weighted by the probability of failure at each 
time period, to determine the expected net 
benefit of a choice: 

Benefit of a change 

m d  of study pmod 

- - c ( S  - Cd”,,,,,,,, - G p d  

tllllC fl0lU liOM, = I 

Suppose the component fails at the kth 
hour. The total cost of failure would be: 

Total cost if the component fails at the Mh 
hour equals costs due to deterioration 
from the first to the (k-1)th hour (for 
example, the cost of deration, or running 
the component at less than its design 
rating capacting, and marginal costs of 
operating an aged component--cost of 
production loss) 

+ costs due to shutdown (for repair) 
from the kth to the ( k  + t,-1)th hour, 
including the cost of replacement 
power while the plant is down; 
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+ costs of unplanned repair labor and 
materials 

where t, = repair time. 
The total expected repair cost at the kth 

hour also considers the time value of money. 
The user provides the following input to 

the VA module: 

Baseline case with predicted cost out- 
comes-typically an option to continue 
current operational mode throughout the 
study period. 
Choices that can be made immediately- 
modes of operation and corresponding 
cost savings. 
Chances-failure modes and corre- 
sponding relative probabilities following 
each choice. 
Failing component and its lifetime prob- 
ability of failure distribution. 
Demand prediction over a study period. 
Durations and costs for planned and 
unplanned maintenance. 
Discount rate of money. 
Study period duration. 
Time options when the maintenance plan 
could be performed. 

Using this information, the VA generates - 
a decision tree with each branch represent- 
ing a possible chance outcome. It then com- 
putes backwards to obtain the expected ben- 
efit for each choice option compared to the 
baseline option. For each choice, the retumed 
values from VA include probability of sur- 
vival to the start of maintenance; expected 
cost savings, replacement power cost, repair 
cost, and benefit; best- and worst-case ben- 
efits; and break-even probability between 
two selected timing options. 

VA testing. While investigating excessive fan 
motor vibration, an engineer recommends 
that a component needs its bearing oil 
changed. If the oil is not changed, the bear- 
ings might fail and bring down the plant. 
Arbitrarily, the engineer chooses to analyze 
the economic value of maintenance options 
for a one-week study period. The engineer 
identifies the following choices: (1) change 
oil off line as soon as possible, bringing down 
the plant during the procedure; (2) change oil 
on line ASAP, keeping the plant operating 
during the procedure; or (3) defer to the end 
of the study period. 

Each choice has a set of chance occur- 
rences: ( I )  unexpected bearing failure prior 
to any maintenance; (2) oil spill during oil 
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Figure 6. A choice-chance tree. The expected benefit of a choice, such as the choice to repair at time i, is the probability 
weighted sum of the benefits of the chances. P, = probability of failure during the dh hour; B, = net benefit of repair 
and revenue loss if the component fails in the i t  h hour, i <  1 and CP, B, = expected benefit of  choice of repairing at 
the ah hour. Summation takes place over each of the chance occurrences: 1 4 j <  i. 

change, requiring immediate plant shutdown 
until the problem is corrected; or (3) survival 
of the bearing until the next planned outage 
(after the end of the study period). 

The engineer makes a number of assump- 
tions: 

Oil spill and unexpected bearing failure 
are independent. 
Oil spill can only occur at the beginning 
of an on-line oil change, assumed to be 
planned for the first period, with a prob- 
ability of Pspill. 
If oil spill occurs, engineers must shut 
down the system and change oil com- 
pletely. 
After oil is changed, no failure occurs 
within the study period. 
The material costs for changing oil offline 
and changing oil on line are the same. 
The time to change oil on line is short 
enough so that no bearing failure will 
occur during the work. 

The time unit for this test case was one hour, 
with a study period of one week and 168 peri- 
ods to analyze during the study period. 

We define the baseline case as the defer 
case: schedule oil change after the end of the 
study period. The baseline has no downtime 
cost, only the cost of the off-line oil change. 
The benefit for the baseline is zero. 

Figure 7 shows the best alternative and 
associated expected benefit, relative to the 
ASAPloff-line alternative, as a function of the 
probability of bearing failure and the proba- 
bility of an oil spill. For examplc, when the 
oil-spill probability is high and the bearing- 
failure probability is low, the best strategy is to 
defer the off-line oil change. When both prob- 
abilities are high-the riskiest situation- 
engineers should immediately shut the system 
down and change the oil off line. Otherwise, 
the best strategy is to change the oil on line. 
Figure 7 shows the optimal decision for the 
bearing-failure and oil-spill probabilities. It 
also lists each decision’s expected benefit (K$) 
relative to the second best’s expected benefit. 

Discussion 

This section comments on the use of the 
model, each ofthe modules individually, and 
then the system as an integrated whole. 

Integrated system. An important part of the 
IRTMM system’s power comes from the 
model’s engineering content, specifically the 
representation of plant function, form, and 
behavior in the shared plant model, and from 
the reasoning about these issues by the appli- 
cations. As Figure 2 suggests, the function, 
form, and behavior describes common engi- 
neering knowledge about a system. Thus, it 
is readily available from knowledgeable plant 
engineers. It is also very general, applicable 
to a broad class of process plants. For exam- 
ple, we initially implemented SA for a power 
plant and later for a process plant’s water- 
handling subsystem, and we needed to make 
only minor extensions to the generic plant 
model’s functional definitions. 

Similarly, we have used the planner for 
both maintenance planning and building- 
construction planning, with only minor 
extensions to define actions for the new 
applications area. The form model represents 
relatively standard content of a product 
model, such as would be built using the IS0  
STEP standard. However, an important part 
of the total system power comes from the 
behavioral methods defined in the function 
models. While such methods are standard 
capabilities of object-oriented technology, 
they are outside the normal capabilities of 
STEP-style product models. 

As Figure 1 shows, each application module 
has a copy of the generic plant model. Thus, 
each module shares the complete plant model 
ontology. In fact, as Figure 2 illustrates, two or 
more modules share only very limited form 
and behavior data items, and no functional 
methods are shared among modules. Rather 
than sharing the complete model ontology, it 
would have been sufficient for each module to 
share only a top-level ontology-the classes 
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Figure 7. Best olternotive ond associated expected benefit, relotive to the ASAP/off-line alternative, as a function of  
beoring-failure and ail-spill probabilities. The patterns indicate three preferred repair alternotives. Numbers in boxes 
show relotive expected benefit (KS) of the preferred olternative over the second-best olternotive. 

in which mutually referenced slots are defined. 
One knowledge-sharing architecture is to 

share a complete ontology with the entire 
form, function, and behavior of every class 
and instance object. The simplest alternative 
is to share minimal data-values of selected 
slots of a few instances-with each module 
maintaining its own ontology of classes to 
describe generic form, function, and behav- 
ior in support of its own perspective. The cur- 
rent IRTMM implementation uses the for- 
mer alternative, but we conclude in retrospect 
that the latter would have been adequate. 

In general, two different applications can 
use different representations of the same infor- 
mation. An integration architecture needs to 
support appropriate transformation of the data 
generated by one application into the per- 
spective and actual data structure expected by 
a successor application. For example, in 
IRTMM, the planner produces activity start 
and end times. The VA needs activity dura- 
tions; the planner transforms these times into 
durations. Either module could report the 
same information under two names or make 
any other appropriate parametric transforma- 
tion. In an altemative integration architecture, 
an external agent could do the transformation 
after one module registers that it can produce 
particular data and another module registers 
its interest in the data.* 

We are reluctant to generalize our limited 
results to some of the major efforts to share 
large ontologies, such as STEP.9 However, 
our work does let us conclude that it is prob- 
ably very worthwhile to identify the engi- 

neering problem to be solved as clearly as 
possible-that is, our formulation of the 
maintenance problem-and then assess the 
information that needs to be shared and how 
different integration architectures can sup- 
port the defined need. We have found that the 
sharing mechanism can easily become far 
more complex than necessary to support the 
engineering objective. 

Situation assessment. The SA hybrid MBD, 
heuristic classification, and CBR approach 
offers a number of benefits; it 

Uses knowledge of plant design, specifi- 
cally of the form, function, and behavior 
of the plant, because the MBD approach 
reasons about component definitions, 
processes, and topologies explicitly. 
Uses diagnostic knowledge of plant oper- 
ators, because operators can add impor- 
tant cases at will, using the CBR tech- 
nique or heuristic classification rules, and 
because they can annotate all cases with 
the proper engineering response to the sit- 
uation, again using the CBR approach. 
Identifies implications of situations, 
because the MBD technique predicts 
behavior. 
Does not require staff to identify all fail- 
ure modes, because the MBD technique 
can be invoked exhaustively to find the 
behaviors that emerge from various input 
conditions. 

On-line data-acquisition systems are find- 
ing broad use in the process industry. While 

engineers always want more sensory data 
points, the monitoring systems often have 
valuable information that is not always easy 
to use for maintenance management. The SA 
supports maintenance management by inte-. 
grating and interpreting the available data from 
multiple sensors and multiple components. 

The SA is designed to assist with systems 
diagnosis, not perform specialized diagno- 
sis of individual isolated components. Poten- 
tially, it can accept input from specialized 
expert system diagnostic routines, such as a 
vibration expert diagnostic system. The VA 
analyzes an entire system to identify the 
potential system-level causes and effects of 
problems with individual components. The 
SA does not now do any data trending or 
quantitative prediction of the seventy or tim- 
ing of predicted degradation. 

Planner. Oarplan represents the object, 
action, and resources of planned activities. 
Both planning and merging plans consider 
these entities and their attributes. The num- 
ber of such entities in the model is far fewer 
than the number of activities that would 
otherwise need to be represented-the sum 
of the numbers of objects, actions, and 
resources is far less than the product of those 
three numbers. 

In addition, the descriptions of objects, 
actions, and resources and the topological 
and compositional relationships among 
objects describe fundamental knowledge 
about designed systems. Reasoning from 
such engineering principles gives generality 
to the planning procedure. 

Also, the action elaboration and refine- 
ment lets the planning become specialized to 
support a particular planning purpose. Our 
experience indicates that Oarplan shows both 
power and generality not previously found 
in AI planning systems. 

Oarplan does hierarchical planning. How- 
ever, it is good engineering practice to aggre- 
gate some activities in a nonhierarchical 
order-for example, to do resource-leveling 
in support of scheduling and to avoid undo- 
ing useful setup activities. Rather than 
attempt to compromise the conceptual sim- 
plicity of hierarchical planning and consider 
special cases during the initial plan genera- 
tion, the IRTMM planner uses a second 
pass to merge activities and to introduce 
efficiencies and remove conflicts that are 
possible with hierarchical planning. The 
first pass gives the generality to the planner; 
the second pass allows it to accommodate 
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specialized engineering details. 
The IRTMM planner’s effectiveness is 

limited by the quality of the plant and action 
models on which it works. As with all model- 
based applications, the quality of the plan- 
ning model limits the quality of the gener- 
ated plans. Thus, the model builder controls 
both the object abstraction at which the plan- 
ner works and the abstraction of the action 
details generated during plan elaboration. 

Value analysis. The fan bearing problem fits 
the VA framework naturally. As shown by 
this and several other power industry test 
cases, the VA handles many power plant 
maintenance problems very well. Given the 
power demand prediction, monetary infor- 
mation, and component failure modes, the 
VA can provide maintenance choices regard- 
ing timing, probability of survival, and the 
break-even analysis. 

However, the calculation rests on the sim- 
plifying assumption that the maintenance 
returns the failing component to a new con- 
dition such that it will not fail again by the 
same mechanism within the study period. 
That is, the maintenance is assumed to be 
perfect. This assumption is plausible for 
those (frequent) cases when the study period 
is short compared with the expected life of 
the repaired component. If it is not short, the 
VA will return an overly optimistic result, 
because it will underestimate the effects of 
recurrent failure. 

The perfect repair assumption also implies 
that the VA does not accurately assess benefits 
of partial repairs. In both recurring failure and 
partial repair cases, theVA produces an overly 
optimistic net benefit because it normally 
ignores the cost of recurring repairs, the 
expected cost of failure introduced by an ini- 
tial repair, and the cost of continued degraded 
performance following a partial repair. 

The VA system has a forms-based graphic 
user interface that allows users to input 
required information. Thus, the VA user 
requires a knowledge of plant operational 
design and current status details. It is impor- 
tant to understand the concepts of decision 
analysis, but the system protects the user 
from both its theory and the details of tree 
generation and expected-value computation. 

Implications for process plant operations. 
Successful implementation of integrated 
maintenance systems such as IRTMM can 
favorably affect the following risk factors for 
plant downtime: 
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Procedure errors-reduce their inci- 
dence, so that operators can predict the 
effects of planned operations, which rep- 
resent direct risk of downtime. 
False alarms (proper response is to 
ignore)-reduce their incidence, because 
they waste time, indicate a process that is 
not well managed, divert attention from 
real problems, and contribute to staff 
insensitivity to true alarms. 
Phone calls to technicians and engineers 
at home-reduce their incidence, be- 
cause they indicate that staff lacks the 
access to knowledge or data to perform a 
job properly. 
Phone trouble calls to teclznicians and 
engineers in the plant-reduce their inci- 
dence, because they indicate that staff 
lacks the access to knowledge or data to 
perform a job properly. 
Alarms that do not indicate production 
impact (proper response is to fix a com- 
ponent, but production is not affected}- 
increase their incidence, because they 
indicate effective predictive maintenance. 
Rework-reduce its incidence, because it 
detracts from effective maintenance and 
is costly. 
Timeliness-reduce the time from the 
decision to perform maintenance or repair 
to the time that repair is successfully com- 
pleted, because delayed definitive repair 
simply adds breakdown risk. 
Personnel and equipment use-by reduc- 
ing equipment downtime and helping 
technicians to do the work right the first 
time with fewer calls for help, the system 
should help improve personnel and 
equipment use. 

We expect the following collateral, quali- 
tative benefits to facility operation following 
implementation of a system with the capa- 
bilities of IRTMM: improved continuous 
training in details of as-built design, diagno- 
sis, planning, and evaluation procedures; 
reduced stress for engineers and technicians, 
especially on short-staffed 12-hour shifts; 
qualitatively decreased time to design facil- 
ity retrofit projects; and startup and help 
operators to bring new plant facilities to peak 
production capacity faster. As the “Desktop 
engineering” sidebar describes, the IRTMM 
system also affords great ease of use. 

Plant engineers have suggested some pos- 
sible extensions. Imminent faults should be 
predicted on the basis of statistical process- 
control trend analysis and potential failure 

modes. Also, P&ID objects should be able to 
highlight themselves in layout diagrams, and 
components in layout diagrams should be able 
to highlight themselves in the P&ID. Finally, 
P&ID objects should be able to show compo- 
nent schematics and disassembly sketches. 

nal IRTMM research, we have done several 
studies of the potential feasibility of imple- 
menting some of the IRTMM ideas. 

We did major detailed studies of current 
maintenance management practices and 
methods in two industrial and governmental 
agencies. Both organizations had plans to 
implement a CMMS, a database system that 
would collect plant operational data from a 
distributed control system and make it avail- 
able in a database. The CMMS will provide 
the operational plant data needed for the SA 
operation, and it could hold generic plan and 
current demand and cost data for the Planner 
and VA. Thus, current CMMSs provide an 
enabling technology for IRTMM, and 
IRTMM provides services that are not 
included in any CMMS considered by our 
clients. 

The IRTMM system requires an accurate 
symbolic plant model. In one case, a plant 
had reasonably accurate P&IDs, but because 
they were available only in CAD vector 
form, the IRTMM system could not inter- 
pret them as a symbolic model. In the other 
case, the owner did not have accurate 
P&IDs. Creating an accurate P&ID would 
have involved a significant cost. Some of us 
have since started a promising research pro- 
ject to build symbolic models from P&IDs in 
CAD format. Finally, most plant engineers 
and technicians were highly enthusiastic 
about adding IRTMM capabilities to their 
technology-support infrastructure. 
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