
 1 © 2022 by ASME

Proceedings of the ASME 2022

International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE2022
August 14-17, 2022, St. Louis, Missouri

DETC2022-91145

WORK PROCESS TRANSFER REINFORCEMENT LEARNING:
FEATURE EXTRACTION AND FINETUNING IN SHIP COLLISION AVOIDANCE

Xinrui Wang
Dept. of Aerospace & Mechanical Engineering

University of Southern California
Los Angeles, USA

xinruiw@usc.edu

Yan Jin*
Dept. of Aerospace & Mechanical Engineering

University of Southern California
Los Angeles, USA

yjin@usc.edu
(*corresponding author)

ABSTRACT
The advancement of artificial intelligence and machine

learning technologies has led to significant changes in work

processes. The computer agents are applied to perform not only

routine and repetitive jobs but also highly complex tasks such as

driving a car and steering a ship. Given the sensory information

of the environment, a reinforcement learning method has been

applied for agents to learn how to perform complex tasks by trial

and error through interactions with the environment. To

overcome the issues such as limited and sparse training data,

researchers are attempting to reuse the previously learned

knowledge in new task situations. In this paper, we investigate

how feature extraction and finetuning methods can be combined

to allow computer agents to perform transfer reinforcement

learning more effectively and efficiently in the context of ship

collision avoidance. Taking a computer simulation-based

empirical approach, we first develop a ship collision avoidance

gameplay environment by introducing the own ship, target ships,

and the base case and target cases. A deep neural network

including four convolutional layers and three fully connected

layers is devised for work process feature capturing through

deep reinforcement learning. The case study results have shown

that features do exist in work processes, and they can be

captured and reused. The similarity between the source case and

the target case is a key factor that determines how the feature

extract and finetuning methods should be combined for effective

task results and efficient learning processes.

Keywords: Deep learning, transfer reinforcement

learning, collision avoidance, similarity measures.

1 INTRODUCTION
Engineering work processes span a wide range of domains,

expertise, maturities, and complexities. Some work processes,

such as machine processes, are well understood and often

hardcoded into machining programs. Other work processes, such

as driving a car in a crowded area or steering a ship in congested

waterways, can be difficult to prescribe and require human

intelligence to complete the associated tasks. As the market

demands more and better sophisticated products, robotic

applications will increase in both the amount and the level of

sophistication. The challenge arises: how can we train the robots

to learn various work processes easily, quickly, and accurately.

Recent advents in artificial intelligence and machine

learning have provided technological means for developing

solutions to the problems that used to require the involvement of

human beings. Deep learning, among many other techniques, has

led to high-quality image recognition, making face recognition a

function in today’s consumer mobile phones. For learning from

past experiences as humans do, reinforcement learning has been

adopted for computers to learn to play various games such as

Atari [1] and Go [2]. Furthermore, to increase the efficiency of

learning and take advantage of the previously learned knowledge,

researchers have explored transfer learning to utilize the

previously trained neural networks in new task situations [3, 4,

5, 6]. From a perspective of learning work processes, both deep

reinforcement learning and transfer learning approaches are

fundamental for robots or computer agents to learn and expand

their operational knowledge in workplaces. The goal of this

research is to develop mechanisms for work process transfer

 2 © 2022 by ASME

reinforcement learning so that the training for computer agents

can be more effective and efficient.

Collision avoidance problems in both vehicle and robotics

domains have attracted attention for years due to their practical

utility and varying levels of complexity. Kahn et al. proposed

and applied an uncertainty-aware model-based learning

algorithm to a quadrotor and an RC car obstacle avoidance task

[7]. Chen et al. proposed a decentralized multi-agent collision

avoidance algorithm based on reinforcement learning, leading to

more than 26% improvement in paths quality compared to a

state-of-the-art strategy [8]. In this research, the problem of ship

collision avoidance is treated as an example of work processes.

Our previous work proposed a belief-based transfer learning

method to apply previously learned neural networks to solve the

ship collision avoidance problem in different new encounter

situations [8]. After copying the whole network resulting from

the previous training cases, the training process in the target

situation (i.e., finetuning) is controlled by two parameters,

transfer belief (i.e., how much the expert’s suggested actions

should be trusted) and transfer period (i.e., how long the expert’s

network will be consulted). Although this method sports

efficiency and simplicity of implementation, its drawback is that

the unit of transfer is the whole network, leaving few parameters

to adjust to adapt to different new task situations.

To further expand our transfer learning framework, we take

a combined feature extraction and finetuning approach to

transfer reinforcement learning for work processes. More

specifically, we seek to address two research questions: 1) do

work processes possess some kind of features? And if they do, 2)

how can we extract these features and apply them to make the

learning process more effective and efficient? We are rather

positive about answering the first question, given that deep

learning-based image feature extraction has prevailed for years.

We expect similar deep learning neural networks can be applied

to extract work features in a reinforcement learning context. For

the second question, once the feature extraction can be realized,

there will be a large space of variables that can be composed and

adjusted to deal with different target task cases. In this research,

an empirical approach is taken to investigate the effect of

different combinations of the transfer parameters.

The rest of the paper is organized as follows. The related

work is reviewed in Section 2, and the details of the methods of

this study are described in Section 3. In Section 4, the case study

design is described, and the experiment results are presented and

discussed. The conclusions are drawn in Section 5, together with

future research directions.

2 RELATED WORK
To investigate the learning and transferring of work process

knowledge, in this paper, we take a deep reinforcement learning

approach and explore various possibilities of retaining and

reusing the learned knowledge in ship collision avoidance. Our

work is related to deep learning-based feature extraction in

image processing, deep reinforcement learning, and transfer

learning.

Image feature extraction through deep learning has been

highly effective, and significant progress has been made since

the early 2010s, thanks to deep learning techniques such as CNN

[10]. Nguyen et al. found the off-the-shelf CNN features

extracted from general classification training can be successfully

transferred to iris recognition [3]. Razavian et al. [4] used

features extracted from the Overfeat network [11] to implement

different recognition tasks using a different dataset, and

surprisingly the performance exceeds high tuned state-of-art

method. Singh and Garzon [5] predicted restaurant attributes

based on the Yelp images by using VGGNet model [12]. The

training and testing accuracy reached 96.2264% and 93.0189%.

A Deep transfer learning based model is proposed to predict

COVID-19 [13]. The classification of COVID-19 was based on

input chest images. ResNet-50 model [13] was used to extract

features from input images, and a CNN was used to predict

positive or negative results [6].

Deep learning can be used to solve the problem with high-

dimensional sensory inputs [1, 14]. From a reinforcement

learning perspective, applying deep learning has some

challenges. While in supervised learning, the training dataset is

usually large and independent, the reinforcement learning

dataset is generated dynamically during the learning process and

is often sparse, and has delays between action choices and

rewards. A sequence of states may also have high correlations.

Furthermore, learning new behaviors may change the previous

data distribution. Various methods have been proposed to

overcome such obstacles [7, 15]. One example is to utilize the

experience replay mechanism that can successfully alleviate the

training data inefficiency, correlated sequences, and non-

stationary data distribution problems [1]. The goal of the

learning agent is to maximize the future discounted reward by

choosing optimal actions while interacting with the environment.

Transfer learning is a useful technique to solve a new

problem based on the experience of a different but related

problem. In the deep learning domain, people rarely train an

entire model from scratch since it is hard to find a sufficient

dataset, and the process is time-consuming. Instead, some pre-

trained models based on a very large dataset (such as ImageNet

[16, 17]) can be reused or partially reused, which significantly

enhances the training efficiency and accuracy. There are two

commonly used transfer learning methods in image classification

cases [18, 19, 20]. One is feature extraction, i.e., for a given

target case, find a related base case and copy partial or a whole

CNN model pretrained on a large-scale dataset, and then remove

the last fully connected layer and add a new one as a classifier

based on the new training task on the top of the copied

convolutional layers. The other one is finetuning, i.e., the process

is similar to feature extraction, but some top copied layers or all

copied layers are unfrozen for being finetuned through back-

propagation during training in the new target case.

In this research, the feature extraction and finetuning

methods are taken within a deep reinforcement learning

framework. Based on the results of feature extraction, the

transfer learning cases are composed of different combinations

of the copied-and-frozen layers and copied-and-unfrozen layers

 3 © 2022 by ASME

in order to investigate their effectiveness and efficiency. The

next section provides details of our methods.

3 METHODS
A computational empirical approach is taken to investigate

the issues involved in work process transfer reinforcement

learning. Specifically, a gameplay simulation environment of

ship collision avoidance is created, and a set of methods are

applied to carry out the simulation-based case studies.

3.1 Task environment design
In order to investigate how work processes can be learned

based on feature extraction and finetuning, a Pygame based

environment of ship collision avoidance was created to conduct

case studies, as shown in Figure 1. The white polygon in the

center of the dark circle represents the own ship that learns how

to avoid the target ships, represented as the green polygons. Only

the own ship is trained as a learning agent; it would learn

decision-making strategies to reach the goal and avoid collision

with target ships. The target ships are assigned with a fixed

starting point, destination, and moving speed and direction. The

goal of the own ship is to reach the goal which is on the top of

the screen.

The white line in Figure 1 represents the current path of the

own ship, the length of this line is the exact distance between the

goal and the own ship. The large red circle around the own ship

represents the expected distance between the own ship and the

goal. When the upper end of the white line touches the large

circle, and the distance between the own ship and its goal equals

the expected distance, it means the own ship successfully

reached the goal. The small black circle represents the safe

distance of the own ship. If any target ship moves into this circle,

it is considered that a collision has happened.

Figure 1: A game environment for case studies

 The environment shown in Figure 1 is constructed in a

relative coordinate of the own ship. Instead of plotting all the

elements in the absolute coordinate as shown in Figure 2(a), the

position of the own ship is fixed on the origin, and the direction

is fixed to be 90 degrees facing North. The positions of the goal

and target ships are set by converting their absolute coordinates

to the relative coordinates of the own ship, shown in Figure 2(b).

Distances between the own ship and the goal and target ships are

denoted as goal_dist and target_dist, respectively. The position

of the goal in the relative coordinate is set by 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 and 𝜃2.

The position of a target ship t is set by 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑠𝑡 and 𝜃1. The

direction of the target ship is calculated as 𝜃1 + 𝜃3 + 90°.

Because the coordinate system is relative to the own ship,

the own ship does not move during the goal-reaching and

collision avoidance process. Instead, the goal and target ships

will move relatively around the own ship. This relative

coordinate system design is close to what is employed in the

navigation systems equipped aboard ships.

 (a) (b)

Figure 2: A relative coordinate system

A high-dimensional sensory input deep learning approach

[21] is taken, and the pixel values of the game window shown in

Figure 1 are treated as the input state. The action choices of the

learning agent, i.e., the own ship, are defined in Table 1. Each

action is assigned with a pair of linear velocity 𝑣 (𝑚/𝑠) and

angular velocity 𝝎 (𝒓𝒂𝒅/𝒔) for the agent.

Table 1: Agent Actions

Action 𝒗 (𝒎/𝒔) 𝝎 (𝒓𝒂𝒅/𝒔)

𝒂𝟏

𝒂𝟐

𝒂𝟑

7.5

12

12

0.1

0.02

0.01

𝒂𝟒 15 0

𝒂𝟓 12 -0.01

𝒂𝟔 12 -0.02

𝒂𝟕 7.5 -0.1

3.2 Deep reinforcement learning
Based on the gameplay environment described above, a

deep reinforcement learning algorithm is devised to allow the

own ship to learn from its experiences.

Deep reinforcement learning (Deep RL) is a powerful

algorithm to deal with sensory inputs. It utilizes the experience

replay mechanism [15], successfully alleviating the training data

inefficiency, correlated sequences, and non-stationary data

distribution problems. The goal of the learning agent is to

maximize the future discounted reward by choosing optimal

actions and interacting with the environment. For the 𝑖𝑡ℎ

iteration, the agent chooses an action based on

𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 as shown below, where 𝑠, 𝑎, 𝑟, 𝑠ʹ denote the

current state, action, current reward, and next state, respectively.

 4 © 2022 by ASME

𝑄∗(𝑠, 𝑎) = 𝔼[𝑟 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′,𝑎′)|𝑠, 𝑎)] (1)

In practice, a Q-network is used as a function approximator

to estimate the above action-value function. A Q-network with

weight 𝜃 can be trained by minimizing the loss function 𝐿𝑖(𝜃𝑖)

at each iteration 𝑖,

𝐿𝑖(𝜃𝑖) = 𝔼[(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))2] (2)

where 𝑦𝑖 = 𝔼[𝑟 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′,𝑎′;𝜃𝑖−1)|𝑠, 𝑎)] is the target for

the 𝑖𝑡ℎ iteration. The weights are updated by gradient descent.

Differentiating the loss function gives the gradient as follows,

∇𝜃𝑖

𝐿𝑖(𝜃𝑖) = 𝔼[(𝑟 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

𝑄(𝑠′,𝑎′;𝜃𝑖−1) − 𝑄∗(𝑠, 𝑎; 𝜃𝑖))∇𝜃𝑖
𝑄(𝑠, 𝑎; 𝜃𝑖)]

 (3)

In this research, a combined model is applied [9]. The

training model is constructed by combining Deep RL [1], double

Deep Q network [22], and dueling Deep Q network [23]. The

double Deep Q network algorithm is able to reduce common

overestimations. Dueling Deep Q network architecture separates

the Q value into two estimators: the state value and the state-

dependent action advantage, which leads to a better

approximation of the state values.

3.3 Reward function design
Informative shaping rewards can improve the agent's

learning speed by allowing a learning signal to be obtained, even

when exploration strategies are simple. [24, 25]. For Deep RL, a

composite shaping reward function consisting of piecewise

constant and smoothly varying parts is widely used [9, 24, 26].

For vehicle collision avoidance tasks, the ending reward often

works as the constant reward. It is obtained when a single

episode is ended. A large positive reward is given if the learning

agent succeeds, and a large negative reward for failures. The

shaping reward is given for every step in the process, based on

the task execution. For instance, the distance from the goal or the

deviation from the ideal path can be used. It can make the agent

explicitly learn more efficient strategies. In this paper, the reward

function is designed to be a compound containing sparse

components and shaping rewards, as shown below.

𝑅𝑡𝑜𝑡 = 𝑤1 ∗ 𝑅𝑔𝑜𝑎𝑙 + 𝑤2 ∗ 𝑅𝑐𝑜𝑙 + 𝑤3 ∗ 𝑅𝑔𝑜𝑎𝑙−𝑑𝑖𝑠𝑡 + 𝑤4 ∗ 𝑅𝑑𝑒𝑣 (4)

In the above equation, we set 𝑤1 = 1, 𝑤2 = 1, 𝑤3 =
0.01, 𝑤4 = 0.01 and they represent the weight of each

component. 𝑤3 and 𝑤4 are relatively small because a small

negative reward is given for every step of action during the

process in order to penalize the agent for staying in the game.

 𝑅𝑔𝑜𝑎𝑙 = 200 and 𝑅𝑐𝑜𝑙 = −200 are two large sparse rewards

that happen only on the final state of each episode: arriving at the

goal with 200 rewards or colliding with a target ship with a -200

penalty. The shaping reward 𝑅𝑔𝑜𝑎𝑙−𝑑𝑖𝑠𝑡 is proportional to the

distance between the own ship and the goal (i.e., 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 in

Figure 2), reflecting the moving process of the own ship.

𝑅𝑑𝑒𝑣 relates to the deviation angle between the own ship's

moving direction and the shortest path to the goal (i.e., 𝜃2 in

Figure 2); it is designed to force the agent to avoid obvious

deviations from the shortest path to the goal. The shortest path is

simply a line connecting the current position of the own ship and

the goal.

The shaping rewards are defined as shown below.

𝑅𝑔𝑜𝑎𝑙−𝑑𝑖𝑠𝑡 = 𝑘1 × 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 (5)

𝑅𝑑𝑒𝑣 = 𝑘2 × 𝜃2 (6)

where 𝑘1 = −1, 𝑘2 = −5 . 𝑘1 is set to be smaller than 𝑘2 .

Because 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 is large before the own ship gets closer to the

goal, 𝜃2 is small due to low angular velocity. The penalty for

these two components should be balanced. In this way, the agent

receives a small penalty if it is far from the goal or makes

deviations, forcing it to move closer to the goal and converge to

the shortest path (or almost shortest path) sooner than being

trained without shaping components. All the parameters are

determined based on the experiments, multiple settings are tried,

this combination gave the best training results, and the

cumulated reward converged more quickly and stable compared

to others. Reward function design is crucial to training; more

research will be done in the future to investigate the effect of

different shaping and parameters.

3.4 Measuring similarity
To realize transfer reinforcement learning in work process

applications, an agent needs to learn from a source task situation

and transfer the learned knowledge to the target task situations.

One important relationship between the source task and the

target task is their level of similarity. Typically, the dissimilarity

measure is defined as weighted normalized Euclidian distance

between two points in a specific task complexity space [27, 28],

as shown in Eq. (4),

𝐷𝑖𝑠𝑡𝑎,𝑏 = ∑ 𝑤𝑖 × (𝑥𝑎𝑖 − 𝑥𝑏𝑖)

𝑛
𝑖=1 (7)

where 𝐷𝑖𝑠𝑡𝑎,𝑏 represents the distance between 𝑐𝑎𝑠𝑒 𝑎 and

𝑐𝑎𝑠𝑒 𝑏 . 𝑥𝑎𝑖 and 𝑥𝑏𝑖 are the 𝑖𝑡ℎ characteristic of 𝑐𝑎𝑠𝑒 𝑎 and

𝑐𝑎𝑠𝑒 𝑏 , respectively, and 𝑤𝑖 are the corresponding weights.

There are also other vector distance measures being used to

represent similarity [29, 30]. Autonomous ship collision

avoidance scenarios are often complicated, involving different

ideal paths of the own ship, different number of target ships, as

well as their different destinations and directions. Thus, the base

case and target case may contain different numbers of

components, making it hard to use distance calculation to capture

the similarity between the two cases. On the other hand, when all

the attributes in the two cases can be categorized into common

ones and different ones, the following definition can be taken to

define similarity measures [31].

𝑆𝐼𝑀(𝑎, 𝑏) =
𝛼×𝑐𝑜𝑚𝑚𝑜𝑛

𝛼×𝑐𝑜𝑚𝑚𝑜𝑛+𝛽×𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
 (8)

 5 © 2022 by ASME

where 𝑐𝑜𝑚𝑚𝑜𝑛 represents the number of common attributes

between 𝑐𝑎𝑠𝑒 𝑎 and 𝑐𝑎𝑠𝑒 𝑏 , 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 represents the number

of different or missing attributes between 𝑐𝑎𝑠𝑒 𝑎 and 𝑐𝑎𝑠𝑒 𝑏. 𝛼

and 𝛽 are corresponding weights of common attributes and

different attributes. In this research, an adjusted similarity

measuring method based on the above ratio model is applied as

described in Section 4.

3.5 Feature extraction and finetuning
The goal of this research is to explore whether ship collision

avoidance as a work process possesses some kind of features and,

if these features exist, to assess whether and how the features can

be transferred to similar or dissimilar tasks. For achieving this

goal, a deep reinforcement learning neural network is devised for

transfer reinforcement learning study, as shown in Figure 3.

Figure 3: Structure of transfer reinforcement learning

Source network vs. target network: From a transfer

learning perspective, the neural network resulting from training

in the base case is called the source network, and the target

network is to be developed, through either transferring or

training or both, for the target task cases. In this study, the source

network and target network share the same structure, which is

constructed by four convolutional layers and fully connected

layers, as shown in Figure 3. The first convolutional layer

convolves 32 8 × 8 filters with stride 4. The second convolutional

layer convolves 64 4 × 4 filters with stride 2. The third

convolutional layer convolves 64 3 × 3 filters with stride 1. The

fourth convolutional layer convolves 200 7 × 7 filters with stride

1. The following fully connected layers are designed with a

dueling structure. For source networks, features are learned and

stored in the convolutional layers. For target networks,

convolutional layers are either copied from the source network

or randomly initialized depending on different transfer strategies.

For both the source network and target network, the fully

connected layers, as shown in Figure 3, work for decision-

making in RL cases in similar ways as the fully connected layers

working as a classifier to predict the label of input figures in

supervised learning. Instead of predicting labels, actions are

selected from the predefined action space based on input figures.

Feature extraction: Feature extraction is a method to

transfer learned knowledge (i.e., convolutional layers of the

source network) resulting from training with the base case to a

target case, e.g., coping partial or the whole convolutional layers.

In addition, one also needs to remove the fully connected layers

of the source network and add new ones in the target network as

a classifier, trained for the new task, on the top of the copied

convolutional layers. The copied convolutional layers are treated

as a fixed feature extractor and do not need to be trained again

because they have already contained useful features learned from

the base dataset. In this study, we use the feature extractor to

extract the meaningful features in the base dataset and train the

rest of the model to complete the new task cases.

Finetuning: Finetuning is a method similar to feature

extraction. The difference is that instead of freezing all the

copied convolutional layers, some higher-level layers (i.e., the

right-hand side convolutional layers in Figure 3) or all copied

layers are unfrozen for being finetuned by backpropagation

during training in the target task case. When the similarity

between the base case and target cases is low, it is necessary to

use the finetuning method. The copied convolutional layers may

contain some dataset-specific features because of the big

difference between the two datasets; thus, it might work better to

be updated together with added randomly normalized fully

connected layers. One should be cautious about using finetuning

method when the new training dataset is small; it may lead to

overfitting issues [16].

If the work process does have features, it will be captured

and stored in convolutional layers of the source network. If the

extracted features, as well as decision-making strategies in fully

connected layers, can be copied and reused in the target network

in a proper way, the learning efficiency and accuracy can be

enhanced.

4 CASE STUDY
With the methods described above, a set of experiments

have been conducted. In this section, we first illustrate the three

pairs of transfer learning cases and then present the results and

the ensuing discussions.

4.1 Base cases and target cases
In Figure 4, each row represents a pair of a base case (on the

left) and a target case (on the right). There are three rows, hence

three pairs of cases. The target cases are created by adding a

target ship to base cases. Thus, target cases are more complex

than base cases. Assuming the own ship and target ships have the

same speed, for 𝑐𝑎𝑠𝑒3 and 𝑐𝑎𝑠𝑒4 , if the own ship doesn’t

change its direction, collision will happen in the center of the

screen between the own ship and the common target ship in the

two cases. The same thing happens for 𝑐𝑎𝑠𝑒5 and 𝑐𝑎𝑠𝑒6; the

collision between the own ship and upper target ship will happen

if keeping the initial direction. Thus, only the ideal (shortest)

path of the own ship in 𝑐𝑎𝑠𝑒1 and 𝑐𝑎𝑠𝑒2 is the direct straight

line connecting the starting point of own ship and its goal on the

top of the screen. The ideal paths in other cases are curves to

avoid collision with target ships. These curves are different from

each other based on the target ship settings.

 6 © 2022 by ASME

Figure 4: Base cases and target cases

The similarity measures between base cases and target cases

are defined following Eqn (8). Since we aim to measure the

similarity between two cases, more weight should be given to the

common category. For this reason, 𝛼 should be larger than 𝛽. In

this research we set 𝛼 = 1, 𝛽 = 0.5. Although for general ratio-

based similarity measures, the value of 𝑐𝑜𝑚𝑚𝑜𝑛 and

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 represents the number of same and different

components in between two cases, in this research, the effect of

components differs. For example, the white line representing the

path between the own ship and the goal takes more space and

looks more obvious than the target ships; it should take more

weight intuitively. And according to experiment results,

transferring the source network pretrained by images containing

only the path can make the target network converge sooner and

achieve a higher reward than transferring the source network

pretrained by images only containing the target ship based on the

same target case. The path component should be assigned more

weight than the target ship component since it plays a guiding

role in the ship driving scenario. What is more, when adding an

extra target ship, even if the target ship is less important, its

direction may affect the direction of the path. It is more likely for

the own ship to change the path if the added target ship does not

follow the same direction as the existing target ship. More weight

should be assigned to the target ship with a new direction than

following the existing direction when calculating 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 .

For these reasons, 𝑐𝑜𝑚𝑚𝑜𝑛 and 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 calculation in

similarity measures should not simply be the number of common

and different components. The corresponding weights should be

taken into consideration. The modification of Eqn (8) follows the

rules below:

• 𝑐𝑜𝑚𝑚𝑜𝑛 = 0, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 = 0 initially, since no attributes

are categorized yet. Then these two categories will be

added with different value when comparing all attributes

one by one.

• If the base case and target case have the same ideal path

(like in 𝑐𝑎𝑠𝑒1 and 𝑐𝑎𝑠𝑒2), 𝑐𝑜𝑚𝑚𝑜𝑛 ← 𝑐𝑜𝑚𝑚𝑜𝑛 + 1,

otherwise 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 + 1.

• If the base case and target case contain the same target

ship, 𝑐𝑜𝑚𝑚𝑜𝑛 ← 𝑐𝑜𝑚𝑚𝑜𝑛 + 0.5

• If the target case has an extra target ship than the base case,

the direction of this target ship exists in the base case,

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 + 0.2. If the direction of the

extra target ship doesn’t exist in the base case,

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 + 0.4.

The value of 𝛼 and 𝛽, as well as the weights of different

components, are assigned due to the above considerations and

multiple trials. Based on the modified formula, similarities

between 3 pairs of cases are calculated as shown in Table 2.

Since similarity is sensitive to the parameter settings, more

investigation should be done in the future to figure out the

relationship between these parameters and the resulting

similarity, deriving the more accurate expression for similarity

measures.

Table 2: Similarity between base cases and target cases

Base case Target case Similarity

𝒄𝒂𝒔𝒆𝟏

𝒄𝒂𝒔𝒆𝟑

𝒄𝒂𝒔𝒆𝟓

𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒4

𝑐𝑎𝑠𝑒6

0.83

0.45

0.42

Both feature extraction and finetuning methods are

employed in studying transfer reinforcement learning in ship

collision avoidance work processes. Details of realization in 3

pairs of transfer learning cases are as follows:

• Feature extraction: Pretrain the source network in the base

cases (𝑐𝑎𝑠𝑒1, 𝑐𝑎𝑠𝑒3, 𝑐𝑎𝑠𝑒5), copy the weight of 𝑛 (1 ≤ 𝑛 ≤
4) convolutional layers to the target network and freeze them.

Randomly initialize and train other layers in corresponding

target cases (𝑐𝑎𝑠𝑒2, 𝑐𝑎𝑠𝑒4, 𝑐𝑎𝑠𝑒6).

• Finetuning: Copy 𝑛 (1 ≤ 𝑛 ≤ 4) layers or the whole

network, including fully connected layers (for feature

extraction, copying and freezing the whole model is

meaningless) to the target network and unfrozen the copied

layers. Randomly initialize the rest and update the whole

target network in the target cases.

4.2 Results and discussion
Feature extraction and finetuning methods were applied on

three pairs of base case and target case; the similarity of each pair

changes from high to low, as indicated in Table 2. In order to

verify the existence of features in the ship's goal-reaching and

collision avoidance working process, the transfer reinforcement

learning, or TRL for short, training results are compared with

three bootstrap target cases training results which are trained

from scratch (randomly initialize the whole network without

 7 © 2022 by ASME

transferring weights from the source network, explore the

environment following 𝜀-greedy policy). In order to investigate

the transferability of features through each layer, different layer

transfer from the bottom (closer to the input images) to the top

(closer to the output actions) is applied. For example, “2layers”

shown in the plotting means transferring the parameters of the

first and second layers on the bottom from the source network to

the target network. To control the variable, exploration

probability 𝜀 is set to be 1 at the beginning and 0.0001 at the end

for both learning from scratch and TRL approaches. Training

results are shown in Figures 5, 6, and 7. The horizontal axis in

the figures represents the number of training episodes, and the

vertical axis represents the total reward for each episode. Each

result is obtained by running with 15 different random seeds; the

average reward is represented by the solid line, and the variation

is shown with the shaded area.

Figure 5: Case 2 training results with TRL from Case 1

High-level similarity cases (case1 to case 2): As shown in

Figure 5, when the similarity between the base case and target

case is high, both TRL approaches, on average, perform better

than learning from scratch except for two specific layers. The

average reward converges earlier, and the variation is less, which

implies the training is more stable. The comparison shows that

even though the target case is more complex than the base case,

there still exist some common features in both cases. The

features were extracted and stored in the source network when it

was being trained in 𝑐𝑎𝑠𝑒 1. The target network learned these

features by copying the parameters from the source network,

accelerating the convergence in 𝑐𝑎𝑠𝑒 2. And also, because of the

high similarity between the two cases, decision-making

strategies in 𝑐𝑎𝑠𝑒 1are also useful for 𝑐𝑎𝑠𝑒 2. Finetuning the

copied whole model, including the fully connected layers

method, allows the decision-making strategies to be transferred

to the target network, leading to better performance than all other

transfers.

Feature extraction makes the average reward higher and

converges earlier compared to the finetuning approach. It

indicates that the copied layers contain most of the transferred

features, and not much updating is needed for high similarity

cases. For finetuning method, except for 1-layer finetuning, the

average reward and converging rate increase with the number of

transferred layers. It implies features were stored in all four

layers. More useful features will be transferred to the target

network if more layers are transferred from the source network.

The average reward of 3-layers feature extraction is higher in the

process and converges earlier than 4-layers feature extraction

when utilizing the feature extraction method, and it is also more

stable. This phenomenon shows us the fourth convolutional layer

is more specific to 𝑐𝑎𝑠𝑒 1. The copied features of 𝑐𝑎𝑠𝑒 1 in the

fourth layer do not work well for 𝑐𝑎𝑠𝑒 2 due to the difference

between the two cases. Finetuning the fourth layer to make it

more specific to 𝑐𝑎𝑠𝑒 2 is needed. So, copying and freezing all

convolutional layers may not be a good idea, even when

similarity is high.

Regarding the undesired performance of 2-layer feature

extraction and 1-layer finetuning, it may be caused by a fragile

co-adapted structure on successive layers because the drop can

be fixed by adding or removing one copied layer. For 2-layer

feature extraction, two layers on the bottom were copied from

the source network and kept frozen, and the third layer was

randomly initialized and updated. As a result, the features cannot

be relearned by updating the third layer alone because the second

and the third layers are highly co-adapted, and features in these

two layers interact in a complex way. Finetuning is needed due

to this co-adaption issue. The 2-layer finetuning achieves

optimal performance because the second and third layers were

jointly trained.

For 1-layer finetuning, the reason for the sharp drop of

performance is the highly co-adapted structure between the first

and second layers on the bottom. The first layer was transferred

from the source task, and the second layer, as well as the rest of

the model, were randomly initialized. As we know, the first layer

was well-trained in the base case; it does not need to be updated

a lot, although in this case, the transferred first layer was jointly

trained with the second layer, which was randomly initialized

and needed to be updated. Features in these two layers may

interact in a particular way, which cannot be relearned if the

training process starts with one well-trained layer and another

random layer, making the performance worse than learning from

scratch. Freezing the well-trained layers can solve this kind of

co-adaption, as shown in the 1-layer feature extraction method.

 8 © 2022 by ASME

Figure 6: Case 4 training results with TRL from Case 3

Low-level similarity cases (case 3 to case 4): For 𝑐𝑎𝑠𝑒 3

and 𝑐𝑎𝑠𝑒 4, the similarity becomes lower. TRL approaches still

enhance the learning efficiency compared to learning from

scratch, except for 4-layer feature extraction. The sharp drop

caused by co-adaption disappears. The finetuning method has a

higher and more stable average reward compared to the feature

extraction method. Due to the lower similarity, finetuning is

needed for the copied layers to become more specific to the

target case.

For the feature extraction method, 4-layer feature extraction

has the worst performance because all the convolutional layers

were frozen, and the difference between the base and target case

was fixed. For finetuning method, the whole model finetuning

has the highest reward at the beginning because the decision-

making layer contains collision avoidance strategies is

transferred. As introduced in section 4.1, a collision with a target

ship will happen if the own ship keeps the original direction.

Transferring the decision-making layer as well as convolutional

layers containing collision avoidance features helped the agent

avoid the penalty of hitting target ships, and 1-layer finetuning

converged earliest instead of the whole model finetuning.

General features were learned by transferring the first layer, and

there was no need to fix the difference in other layers, so 1-layer

finetuning has the highest convergence rate.

Figure 7: Case 6 training results with TRL from Case 5

Lowest-level similarity cases (case 5 to case 6): For the

lowest similarity pair 𝑐𝑎𝑠𝑒 5 and 𝑐𝑎𝑠𝑒 6, the benefits of TRL

still exist for some low-level transfer. Finetuning methods

converge to a higher value compared to the feature extraction

method; like in the pair of 𝑐𝑎𝑠𝑒 3 and 𝑐𝑎𝑠𝑒 4 , differences

between the base case and target case need to be fixed.

Unlike the higher similarity cases, where the average reward

increases with the number of transferred layers, the average

reward decreases when more layers are transferred. For the

feature extraction method, 4-layer feature extraction works even

worse than learning from scratch since the differences in frozen

layers are not able to be fixed. For the finetuning method, there

is a drop at around 3000 episodes caused by the penalty of

collision except for the whole model finetuning. Similar to the

pair of 𝑐𝑎𝑠𝑒 3 and 𝑐𝑎𝑠𝑒 4, the whole model finetuning method

transfers collision avoidance strategies in the decision-making

layer, allowing the agent to evade the collision penalties during

the early episodes. Because the agent cannot experience and

learn from the early penalty phase, it loses the chance for a sharp

reward increasing as the agent in other cases did after the penalty.

Target cases were retained in the case base and can be

further used as base cases. The capability of the system was

improved by the extension of stored experiences.

 9 © 2022 by ASME

Figure 8: A new collision avoidance case

As shown in Figure 8, given a new task that is different from

all cases, cases 1 to 6 can be selected as the base case based on

similarity. The similarity between 𝑐𝑎𝑠𝑒 2 and the new case is

higher than others, 𝑐𝑎𝑠𝑒 2 is considered to be the base case. The

network trained by the whole model finetuning method has the

best performance; it can be used as a representative case solution

in 𝑐𝑎𝑠𝑒 2. For solving the given new task, the representative

network in 𝑐𝑎𝑠𝑒 2 is used as the source network.

For previous cases, the existence and transferability of

features were investigated by comparing to learning from scratch

that follows a 𝜀-greedy policy (𝜀 drops from 1 to 0.001). The

training for TRL also uses the same 𝜀 value. For this new case,

the purpose is to test the reusability of the representative source

network from case 2. Therefore, 𝜀 can be set smaller at the

beginning to shorten the exploration period and decrease the

randomness when applying TRL. Since the similarity between

case 2 and the new case is high, 𝜀 is set to be 0.1. As shown in

Figure 9, the average reward of the reused network converges

much earlier than learning from scratch and converges to the

same value as learning from scratch. It indicates that the reuse of

stored cases is applicable and efficient.

Figure 9: Reuse the saved finetuned model

5 CONCLUSIONS AND FUTURE WORK
Computer agents, including vehicles and robots, can learn

complex work processes through reinforcement learning. In

order to increase the learning effectiveness and efficiency, the

agents need to employ a transfer reinforcement learning

methodology in which they reuse the previously learned neural

networks and adapt them to the new task situations through much

more efficient training processes. In this paper, a computer

simulation-based empirical approach is taken to investigate how

the feature extraction and finetuning methods can be properly

combined to achieve successful transfer reinforcement learning

in the context of ship collision avoidance. Through the findings

revealed from the results of the experiments, the following

conclusions can be drawn.

1. There are features in the work process, and they can be

captured and reused by transfer reinforcement learning.

2. When the similarity between the base case and target case is

high, the feature extraction method is more efficient, and the

average reward increases with the number of transferred

layers. Conversely, in low similarity cases, the average

reward decreases when more layers are transferred, and

applying the finetuning method becomes more important.

3. For the feature extraction method, at least the last

convolutional layer should be unfrozen and trained with the

target case for avoiding slow convergence and inferior

results.

4. High-level feature co-adaption in successive layers happens

when the similarity is high, causing the performance to drop

when separating the layers. Introducing more convolutional

layers may alleviate this issue.

5. Transferring fully connected layers allows agents to speed

up early learning but deprives their chances to learn from

making mistakes.

It is worth mentioning that the findings and conclusions

described above are limited to the ship collision avoidance type

of work processes and the level of complexity of testing cases.

Our ongoing work expands the testing cases into more realistic

collision avoidance situations and will also consider the work

processes with heterogeneous agents. Furthermore, both the

feature extraction and the co-adaption can be sensitive to the

similarity measure. We plan to explore different similarity

measures in future studies.

6 ACKNOWLEDGEMENTS
This paper is based on the work supported by the

Autonomous Ship Consortium (ASC) with members of BEMAC

Corporation, ClassNK, MTI Co. Ltd., Nihon Shipyard Co. Ltd.

(NSY), Tokyo KEIKI Inc., and National Maritime Research

Institute of Japan. The authors are grateful for their support and

collaboration on this research.

7 REFERENCES
[1] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex

Graves, Ioannis Antonoglou, Daan Wierstra, and Martin

Riedmiller. “Playing atari with deep reinforcement learning.”

arXiv preprint arXiv:1312.5602 (2013).

 10 © 2022 by ASME

[2] Greenemeier, Larry. “AI versus AI: Self-Taught AlphaGo

Zero Vanquishes Its Predecessor”. Scientific American.

Retrieved 20 October 2017.

[3] Nguyen, K., Fookes, C., Ross, A., & Sridharan, S. (2017).

Iris recognition with off-the-shelf CNN features: A deep

learning perspective. IEEE Access, 6, 18848-18855.

[4] Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson,

S. (2014). CNN features off-the-shelf: an astounding

baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition

workshops (pp. 806-813).

[5] Singh, D., & Garzon, P. (2015). Using CNN and transfer

learning to perform yelp restaurant photo classification. http:

//cs231n.stanford.edu/reports/2016/pdfs/001_Report.pdf

[6] Pathak, Y., Shukla, P. K., Tiwari, A., Stalin, S., & Singh, S.

(2020). Deep transfer learning based classification model

for COVID-19 disease. Irbm.

[7] Kahn, G., Villaflor, A., Pong, V., Abbeel, P., & Levine, S.

(2017). Uncertainty-aware reinforcement learning for

collision avoidance. arXiv preprint arXiv:1702.01182.

[8] Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017, May).

Decentralized non-communicating multiagent collision

avoidance with deep reinforcement learning. In 2017 IEEE

international conference on robotics and automation (ICRA)

(pp. 285-292). IEEE.

[9] Liu, X., & Jin, Y. (2020). Reinforcement learning-based

collision avoidance: impact of reward function and

knowledge transfer. AI EDAM, 34(2), 207-222.

[10] Manjunath Jogin; Mohana; M S Madhulika; G D Divya; R

K Meghana; S Apoorva (2018), Feature Extraction using

Convolution Neural Networks (CNN) and Deep Learning,

3rd IEEE Int’l Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT).

[11] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,

& LeCun, Y. (2013). Overfeat: Integrated recognition,

localization and detection using convolutional networks.

arXiv preprint arXiv:1312.6229.

[12] Simonyan, K., & Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.

[13] Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., & De

Geus, P. (2017, December). Malicious software

classification using transfer learning of resnet-50 deep

neural network. In 2017 16th IEEE International Conference

on Machine Learning and Applications (ICMLA) (pp. 1011-

1014). IEEE.

[14] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural

networks. Advances in neural information processing

systems, 25.

[15] Lin, L. J. (1992). Reinforcement learning for robots using

neural networks. Carnegie Mellon University.

[16] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei,

L. (2009, June). Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition (pp. 248-255). IEEE

[17] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural

networks. Advances in neural information processing

systems, 2

[18] Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson,

S. (2014). CNN features off-the-shelf: an astounding

baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition

workshops (pp. 806-813).

[19] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,

Tzeng, E., & Darrell, T. (2014, January). Decaf: A deep

convolutional activation feature for generic visual

recognition. In International conference on machine

learning (pp. 647-655). PMLR.

[20] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).

How transferable are features in deep neural networks?.

Advances in neural information processing systems, 27.

[21] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).

Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602.

[22] Van Hasselt, H., Guez, A., & Silver, D. (2016, March).

Deep reinforcement learning with double q-learning. In

Proceedings of the AAAI conference on artificial

intelligence (Vol. 30, No. 1).

[23] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,

& Freitas, N. (2016, June). Dueling network architectures

for deep reinforcement learning. In International conference

on machine learning (pp. 1995-2003). PMLR.

[24] Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-Maron,

G., Vecerik, M., ... & Riedmiller, M. (2017). Data-efficient

deep reinforcement learning for dexterous manipulation.

arXiv preprint arXiv:1704.03073.

[25] Badnava, B., & Mozayani, N. (2019). A new potential-

based reward shaping for reinforcement learning agent.

arXiv preprint arXiv:1902.06239.

[26] Ji, H., & Jin, Y. (2021). Evaluating the learning and

performance characteristics of self-organizing systems with

different task features. AI EDAM, 1-19.

[27] Changchien, S. W., & Lin, M. C. (2005). Design and

implementation of a case-based reasoning system for

marketing plans. Expert systems with applications, 28(1),

43-53.

[28] Liao, T. W., Zhang, Z., & Mount, C. R. (1998). Similarity

measures for retrieval in case-based reasoning systems.

Applied Artificial Intelligence, 12(4), 267-288.

[29] Tadrat, J., Boonjing, V., & Pattaraintakorn, P. (2012). A

new similarity measure in formal concept analysis for case-

based reasoning. Expert Systems with Applications, 39(1),

967-972.

[30] Duverlie, P., & Castelain, J. M. (1999). Cost estimation

during design step: parametric method versus case based

reasoning method. The international journal of advanced

manufacturing technology, 15(12), 895-906.

[31] Tversky, A. (1977). Features of similarity. Psychological

review, 84(4), 327.

