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ABSTRACT 
The advancement of artificial intelligence and machine 

learning technologies has led to significant changes in work 

processes. The computer agents are applied to perform not only 

routine and repetitive jobs but also highly complex tasks such as 

driving a car and steering a ship. Given the sensory information 

of the environment, a reinforcement learning method has been 

applied for agents to learn how to perform complex tasks by trial 

and error through interactions with the environment. To 

overcome the issues such as limited and sparse training data, 

researchers are attempting to reuse the previously learned 

knowledge in new task situations. In this paper, we investigate 

how feature extraction and finetuning methods can be combined 

to allow computer agents to perform transfer reinforcement 

learning more effectively and efficiently in the context of ship 

collision avoidance. Taking a computer simulation-based 

empirical approach, we first develop a ship collision avoidance 

gameplay environment by introducing the own ship, target ships, 

and the base case and target cases. A deep neural network 

including four convolutional layers and three fully connected 

layers is devised for work process feature capturing through 

deep reinforcement learning. The case study results have shown 

that features do exist in work processes, and they can be 

captured and reused. The similarity between the source case and 

the target case is a key factor that determines how the feature 

extract and finetuning methods should be combined for effective 

task results and efficient learning processes.  

Keywords: Deep learning, transfer reinforcement 

learning, collision avoidance, similarity measures. 

1 INTRODUCTION 
Engineering work processes span a wide range of domains, 

expertise, maturities, and complexities. Some work processes, 

such as machine processes, are well understood and often 

hardcoded into machining programs. Other work processes, such 

as driving a car in a crowded area or steering a ship in congested 

waterways, can be difficult to prescribe and require human 

intelligence to complete the associated tasks. As the market 

demands more and better sophisticated products, robotic 

applications will increase in both the amount and the level of 

sophistication. The challenge arises: how can we train the robots 

to learn various work processes easily, quickly, and accurately.  

Recent advents in artificial intelligence and machine 

learning have provided technological means for developing 

solutions to the problems that used to require the involvement of 

human beings. Deep learning, among many other techniques, has 

led to high-quality image recognition, making face recognition a 

function in today’s consumer mobile phones. For learning from 

past experiences as humans do, reinforcement learning has been 

adopted for computers to learn to play various games such as 

Atari [1] and Go [2]. Furthermore, to increase the efficiency of 

learning and take advantage of the previously learned knowledge, 

researchers have explored transfer learning to utilize the 

previously trained neural networks in new task situations [3, 4, 

5, 6]. From a perspective of learning work processes, both deep 

reinforcement learning and transfer learning approaches are 

fundamental for robots or computer agents to learn and expand 

their operational knowledge in workplaces. The goal of this 

research is to develop mechanisms for work process transfer 
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reinforcement learning so that the training for computer agents 

can be more effective and efficient. 

Collision avoidance problems in both vehicle and robotics 

domains have attracted attention for years due to their practical 

utility and varying levels of complexity. Kahn et al. proposed 

and applied an uncertainty-aware model-based learning 

algorithm to a quadrotor and an RC car obstacle avoidance task 

[7]. Chen et al. proposed a decentralized multi-agent collision 

avoidance algorithm based on reinforcement learning, leading to 

more than 26% improvement in paths quality compared to a 

state-of-the-art strategy [8]. In this research, the problem of ship 

collision avoidance is treated as an example of work processes. 

Our previous work proposed a belief-based transfer learning 

method to apply previously learned neural networks to solve the 

ship collision avoidance problem in different new encounter 

situations [8]. After copying the whole network resulting from 

the previous training cases, the training process in the target 

situation (i.e., finetuning) is controlled by two parameters, 

transfer belief (i.e., how much the expert’s suggested actions 

should be trusted) and transfer period (i.e., how long the expert’s 

network will be consulted). Although this method sports 

efficiency and simplicity of implementation, its drawback is that 

the unit of transfer is the whole network, leaving few parameters 

to adjust to adapt to different new task situations.  

To further expand our transfer learning framework, we take 

a combined feature extraction and finetuning approach to 

transfer reinforcement learning for work processes. More 

specifically, we seek to address two research questions: 1) do 

work processes possess some kind of features? And if they do, 2) 

how can we extract these features and apply them to make the 

learning process more effective and efficient? We are rather 

positive about answering the first question, given that deep 

learning-based image feature extraction has prevailed for years. 

We expect similar deep learning neural networks can be applied 

to extract work features in a reinforcement learning context. For 

the second question, once the feature extraction can be realized, 

there will be a large space of variables that can be composed and 

adjusted to deal with different target task cases. In this research, 

an empirical approach is taken to investigate the effect of 

different combinations of the transfer parameters.  

The rest of the paper is organized as follows. The related 

work is reviewed in Section 2, and the details of the methods of 

this study are described in Section 3. In Section 4, the case study 

design is described, and the experiment results are presented and 

discussed. The conclusions are drawn in Section 5, together with 

future research directions. 

2 RELATED WORK 
To investigate the learning and transferring of work process 

knowledge, in this paper, we take a deep reinforcement learning 

approach and explore various possibilities of retaining and 

reusing the learned knowledge in ship collision avoidance. Our 

work is related to deep learning-based feature extraction in 

image processing, deep reinforcement learning, and transfer 

learning.  

Image feature extraction through deep learning has been 

highly effective, and significant progress has been made since 

the early 2010s, thanks to deep learning techniques such as CNN 

[10]. Nguyen et al. found the off-the-shelf CNN features 

extracted from general classification training can be successfully 

transferred to iris recognition [3]. Razavian et al. [4] used 

features extracted from the Overfeat network [11] to implement 

different recognition tasks using a different dataset, and 

surprisingly the performance exceeds high tuned state-of-art 

method. Singh and Garzon [5] predicted restaurant attributes 

based on the Yelp images by using VGGNet model [12]. The 

training and testing accuracy reached 96.2264% and 93.0189%.  

A Deep transfer learning based model is proposed to predict 

COVID-19 [13]. The classification of COVID-19 was based on 

input chest images. ResNet-50 model [13] was used to extract 

features from input images, and a CNN was used to predict 

positive or negative results [6]. 

Deep learning can be used to solve the problem with high-

dimensional sensory inputs [1, 14]. From a reinforcement 

learning perspective, applying deep learning has some 

challenges. While in supervised learning, the training dataset is 

usually large and independent, the reinforcement learning 

dataset is generated dynamically during the learning process and 

is often sparse, and has delays between action choices and 

rewards. A sequence of states may also have high correlations. 

Furthermore, learning new behaviors may change the previous 

data distribution. Various methods have been proposed to 

overcome such obstacles [7, 15]. One example is to utilize the 

experience replay mechanism that can successfully alleviate the 

training data inefficiency, correlated sequences, and non-

stationary data distribution problems [1]. The goal of the 

learning agent is to maximize the future discounted reward by 

choosing optimal actions while interacting with the environment. 

Transfer learning is a useful technique to solve a new 

problem based on the experience of a different but related 

problem. In the deep learning domain, people rarely train an 

entire model from scratch since it is hard to find a sufficient 

dataset, and the process is time-consuming. Instead, some pre-

trained models based on a very large dataset (such as ImageNet 

[16, 17]) can be reused or partially reused, which significantly 

enhances the training efficiency and accuracy. There are two 

commonly used transfer learning methods in image classification 

cases [18, 19, 20]. One is feature extraction, i.e., for a given 

target case, find a related base case and copy partial or a whole 

CNN model pretrained on a large-scale dataset, and then remove 

the last fully connected layer and add a new one as a classifier 

based on the new training task on the top of the copied 

convolutional layers. The other one is finetuning, i.e., the process 

is similar to feature extraction, but some top copied layers or all 

copied layers are unfrozen for being finetuned through back-

propagation during training in the new target case.   

In this research, the feature extraction and finetuning 

methods are taken within a deep reinforcement learning 

framework. Based on the results of feature extraction, the 

transfer learning cases are composed of different combinations 

of the copied-and-frozen layers and copied-and-unfrozen layers 
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in order to investigate their effectiveness and efficiency. The 

next section provides details of our methods. 

3 METHODS 
A computational empirical approach is taken to investigate 

the issues involved in work process transfer reinforcement 

learning. Specifically, a gameplay simulation environment of 

ship collision avoidance is created, and a set of methods are 

applied to carry out the simulation-based case studies. 

3.1 Task environment design 
In order to investigate how work processes can be learned 

based on feature extraction and finetuning, a Pygame based 

environment of ship collision avoidance was created to conduct 

case studies, as shown in Figure 1. The white polygon in the 

center of the dark circle represents the own ship that learns how 

to avoid the target ships, represented as the green polygons. Only 

the own ship is trained as a learning agent; it would learn 

decision-making strategies to reach the goal and avoid collision 

with target ships. The target ships are assigned with a fixed 

starting point, destination, and moving speed and direction. The 

goal of the own ship is to reach the goal which is on the top of 

the screen.  

The white line in Figure 1 represents the current path of the 

own ship, the length of this line is the exact distance between the 

goal and the own ship. The large red circle around the own ship 

represents the expected distance between the own ship and the 

goal. When the upper end of the white line touches the large 

circle, and the distance between the own ship and its goal equals 

the expected distance, it means the own ship successfully 

reached the goal. The small black circle represents the safe 

distance of the own ship. If any target ship moves into this circle, 

it is considered that a collision has happened. 

 

Figure 1: A game environment for case studies 

 The environment shown in Figure 1 is constructed in a 

relative coordinate of the own ship. Instead of plotting all the 

elements in the absolute coordinate as shown in Figure 2(a), the 

position of the own ship is fixed on the origin, and the direction 

is fixed to be 90 degrees facing North. The positions of the goal 

and target ships are set by converting their absolute coordinates 

to the relative coordinates of the own ship, shown in Figure 2(b). 

Distances between the own ship and the goal and target ships are 

denoted as goal_dist and target_dist, respectively. The position 

of the goal in the relative coordinate is set by 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 and 𝜃2. 

The position of a target ship t is set by 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑠𝑡 and 𝜃1. The 

direction of the target ship is calculated as 𝜃1 + 𝜃3 + 90°.  

Because the coordinate system is relative to the own ship, 

the own ship does not move during the goal-reaching and 

collision avoidance process. Instead, the goal and target ships 

will move relatively around the own ship. This relative 

coordinate system design is close to what is employed in the 

navigation systems equipped aboard ships. 

 
               (a)                            (b) 

Figure 2: A relative coordinate system 

A high-dimensional sensory input deep learning approach 

[21] is taken, and the pixel values of the game window shown in 

Figure 1 are treated as the input state. The action choices of the 

learning agent, i.e., the own ship, are defined in Table 1. Each 

action is assigned with a pair of linear velocity 𝑣 (𝑚/𝑠)  and 

angular velocity 𝝎 (𝒓𝒂𝒅/𝒔) for the agent. 

Table 1:  Agent Actions 

Action 𝒗 (𝒎/𝒔) 𝝎 (𝒓𝒂𝒅/𝒔) 

𝒂𝟏 

𝒂𝟐 

𝒂𝟑 

7.5 

12 

12 

0.1 

0.02 

0.01 

𝒂𝟒 15 0 

𝒂𝟓 12 -0.01 

𝒂𝟔 12 -0.02 

𝒂𝟕 7.5 -0.1 

3.2 Deep reinforcement learning 
Based on the gameplay environment described above, a 

deep reinforcement learning algorithm is devised to allow the 

own ship to learn from its experiences.  

Deep reinforcement learning (Deep RL) is a powerful 

algorithm to deal with sensory inputs. It utilizes the experience 

replay mechanism [15], successfully alleviating the training data 

inefficiency, correlated sequences, and non-stationary data 

distribution problems. The goal of the learning agent is to 

maximize the future discounted reward by choosing optimal 

actions and interacting with the environment. For the 𝑖𝑡ℎ 

iteration, the agent chooses an action based on 

𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 as shown below, where 𝑠, 𝑎, 𝑟, 𝑠ʹ denote the 

current state, action, current reward, and next state, respectively. 
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𝑄∗(𝑠, 𝑎) =  𝔼[𝑟 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′,𝑎′)|𝑠, 𝑎)]             (1) 

In practice, a Q-network is used as a function approximator 

to estimate the above action-value function. A Q-network with 

weight 𝜃 can be trained by minimizing the loss function 𝐿𝑖(𝜃𝑖) 

at each iteration 𝑖, 
 

𝐿𝑖(𝜃𝑖) =  𝔼[(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))2]                   (2) 

 

where 𝑦𝑖 =  𝔼[𝑟 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′,𝑎′;𝜃𝑖−1)|𝑠, 𝑎)] is the target for 

the 𝑖𝑡ℎ iteration. The weights are updated by gradient descent. 

Differentiating the loss function gives the gradient as follows, 

 
∇𝜃𝑖

𝐿𝑖(𝜃𝑖) =  𝔼[(𝑟 + 𝛾 ∗ 𝑚𝑎𝑥
𝑎′

𝑄(𝑠′,𝑎′;𝜃𝑖−1) − 𝑄∗(𝑠, 𝑎; 𝜃𝑖))∇𝜃𝑖
𝑄(𝑠, 𝑎; 𝜃𝑖)]   

         (3) 

In this research, a combined model is applied [9]. The 

training model is constructed by combining Deep RL [1], double 

Deep Q network [22], and dueling Deep Q network [23]. The 

double Deep Q network algorithm is able to reduce common 

overestimations. Dueling Deep Q network architecture separates 

the Q value into two estimators: the state value and the state-

dependent action advantage, which leads to a better 

approximation of the state values. 

3.3 Reward function design 
Informative shaping rewards can improve the agent's 

learning speed by allowing a learning signal to be obtained, even 

when exploration strategies are simple. [24, 25]. For Deep RL, a 

composite shaping reward function consisting of piecewise 

constant and smoothly varying parts is widely used [9, 24, 26]. 

For vehicle collision avoidance tasks, the ending reward often 

works as the constant reward. It is obtained when a single 

episode is ended. A large positive reward is given if the learning 

agent succeeds, and a large negative reward for failures. The 

shaping reward is given for every step in the process, based on 

the task execution. For instance, the distance from the goal or the 

deviation from the ideal path can be used. It can make the agent 

explicitly learn more efficient strategies. In this paper, the reward 

function is designed to be a compound containing sparse 

components and shaping rewards, as shown below. 

 

𝑅𝑡𝑜𝑡 = 𝑤1 ∗ 𝑅𝑔𝑜𝑎𝑙 + 𝑤2 ∗ 𝑅𝑐𝑜𝑙 + 𝑤3 ∗ 𝑅𝑔𝑜𝑎𝑙−𝑑𝑖𝑠𝑡 + 𝑤4 ∗ 𝑅𝑑𝑒𝑣 (4) 

 

In the above equation, we set 𝑤1 = 1,  𝑤2 = 1,  𝑤3 =
0.01,  𝑤4 = 0.01  and they represent the weight of each 

component. 𝑤3  and   𝑤4  are relatively small because a small 

negative reward is given for every step of action during the 

process in order to penalize the agent for staying in the game. 

 𝑅𝑔𝑜𝑎𝑙 = 200   and 𝑅𝑐𝑜𝑙 = −200 are two large sparse rewards 

that happen only on the final state of each episode: arriving at the 

goal with 200 rewards or colliding with a target ship with a -200 

penalty. The shaping reward 𝑅𝑔𝑜𝑎𝑙−𝑑𝑖𝑠𝑡  is proportional to the 

distance between the own ship and the goal (i.e., 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 in 

Figure 2), reflecting the moving process of the own ship. 

𝑅𝑑𝑒𝑣  relates to the deviation angle between the own ship's 

moving direction and the shortest path to the goal (i.e., 𝜃2  in 

Figure 2); it is designed to force the agent to avoid obvious 

deviations from the shortest path to the goal. The shortest path is 

simply a line connecting the current position of the own ship and 

the goal.  

The shaping rewards are defined as shown below. 

 
𝑅𝑔𝑜𝑎𝑙−𝑑𝑖𝑠𝑡 =  𝑘1 × 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡                        (5) 

𝑅𝑑𝑒𝑣 =  𝑘2 × 𝜃2                                   (6) 

 
where 𝑘1 =  −1, 𝑘2 = −5 . 𝑘1  is set to be smaller than 𝑘2 . 

Because 𝑔𝑜𝑎𝑙_𝑑𝑖𝑠𝑡 is large before the own ship gets closer to the 

goal, 𝜃2 is small due to low angular velocity. The penalty for 

these two components should be balanced. In this way, the agent 

receives a small penalty if it is far from the goal or makes 

deviations, forcing it to move closer to the goal and converge to 

the shortest path (or almost shortest path) sooner than being 

trained without shaping components. All the parameters are 

determined based on the experiments, multiple settings are tried, 

this combination gave the best training results, and the 

cumulated reward converged more quickly and stable compared 

to others. Reward function design is crucial to training; more 

research will be done in the future to investigate the effect of 

different shaping and parameters. 

3.4 Measuring similarity 
To realize transfer reinforcement learning in work process 

applications, an agent needs to learn from a source task situation 

and transfer the learned knowledge to the target task situations. 

One important relationship between the source task and the 

target task is their level of similarity. Typically, the dissimilarity 

measure is defined as weighted normalized Euclidian distance 

between two points in a specific task complexity space [27, 28], 

as shown in Eq. (4), 

 
𝐷𝑖𝑠𝑡𝑎,𝑏 =  ∑ 𝑤𝑖 × (𝑥𝑎𝑖 − 𝑥𝑏𝑖)

𝑛
𝑖=1                      (7) 

 
where 𝐷𝑖𝑠𝑡𝑎,𝑏  represents the distance between 𝑐𝑎𝑠𝑒 𝑎 and 

𝑐𝑎𝑠𝑒 𝑏 . 𝑥𝑎𝑖  and 𝑥𝑏𝑖  are the 𝑖𝑡ℎ  characteristic of 𝑐𝑎𝑠𝑒 𝑎  and 

𝑐𝑎𝑠𝑒 𝑏 , respectively, and 𝑤𝑖  are the corresponding weights. 

There are also other vector distance measures being used to 

represent similarity [29, 30]. Autonomous ship collision 

avoidance scenarios are often complicated, involving different 

ideal paths of the own ship, different number of target ships, as 

well as their different destinations and directions. Thus, the base 

case and target case may contain different numbers of 

components, making it hard to use distance calculation to capture 

the similarity between the two cases. On the other hand, when all 

the attributes in the two cases can be categorized into common 

ones and different ones, the following definition can be taken to 

define similarity measures [31]. 

 

𝑆𝐼𝑀(𝑎, 𝑏) =
𝛼×𝑐𝑜𝑚𝑚𝑜𝑛

𝛼×𝑐𝑜𝑚𝑚𝑜𝑛+𝛽×𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
                 (8) 
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where 𝑐𝑜𝑚𝑚𝑜𝑛  represents the number of common attributes 

between 𝑐𝑎𝑠𝑒 𝑎 and 𝑐𝑎𝑠𝑒 𝑏 , 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 represents the number 

of different or missing attributes between 𝑐𝑎𝑠𝑒 𝑎 and 𝑐𝑎𝑠𝑒 𝑏. 𝛼 

and 𝛽  are corresponding weights of common attributes and 

different attributes. In this research, an adjusted similarity 

measuring method based on the above ratio model is applied as 

described in Section 4. 

3.5 Feature extraction and finetuning 
The goal of this research is to explore whether ship collision 

avoidance as a work process possesses some kind of features and, 

if these features exist, to assess whether and how the features can 

be transferred to similar or dissimilar tasks. For achieving this 

goal, a deep reinforcement learning neural network is devised for 

transfer reinforcement learning study, as shown in Figure 3. 

 

Figure 3: Structure of transfer reinforcement learning 

Source network vs. target network: From a transfer 

learning perspective, the neural network resulting from training 

in the base case is called the source network, and the target 

network is to be developed, through either transferring or 

training or both, for the target task cases. In this study, the source 

network and target network share the same structure, which is 

constructed by four convolutional layers and fully connected 

layers, as shown in Figure 3. The first convolutional layer 

convolves 32 8 × 8 filters with stride 4. The second convolutional 

layer convolves 64 4 × 4 filters with stride 2. The third 

convolutional layer convolves 64 3 × 3 filters with stride 1. The 

fourth convolutional layer convolves 200 7 × 7 filters with stride 

1. The following fully connected layers are designed with a 

dueling structure.  For source networks, features are learned and 

stored in the convolutional layers. For target networks, 

convolutional layers are either copied from the source network 

or randomly initialized depending on different transfer strategies.  

For both the source network and target network, the fully 

connected layers, as shown in Figure 3, work for decision-

making in RL cases in similar ways as the fully connected layers 

working as a classifier to predict the label of input figures in 

supervised learning. Instead of predicting labels, actions are 

selected from the predefined action space based on input figures. 

Feature extraction: Feature extraction is a method to 

transfer learned knowledge (i.e., convolutional layers of the 

source network) resulting from training with the base case to a 

target case, e.g., coping partial or the whole convolutional layers. 

In addition, one also needs to remove the fully connected layers 

of the source network and add new ones in the target network as 

a classifier, trained for the new task, on the top of the copied 

convolutional layers. The copied convolutional layers are treated 

as a fixed feature extractor and do not need to be trained again 

because they have already contained useful features learned from 

the base dataset. In this study, we use the feature extractor to 

extract the meaningful features in the base dataset and train the 

rest of the model to complete the new task cases. 

Finetuning: Finetuning is a method similar to feature 

extraction. The difference is that instead of freezing all the 

copied convolutional layers, some higher-level layers (i.e., the 

right-hand side convolutional layers in Figure 3) or all copied 

layers are unfrozen for being finetuned by backpropagation 

during training in the target task case. When the similarity 

between the base case and target cases is low, it is necessary to 

use the finetuning method. The copied convolutional layers may 

contain some dataset-specific features because of the big 

difference between the two datasets; thus, it might work better to 

be updated together with added randomly normalized fully 

connected layers. One should be cautious about using finetuning 

method when the new training dataset is small; it may lead to 

overfitting issues [16]. 

If the work process does have features, it will be captured 

and stored in convolutional layers of the source network. If the 

extracted features, as well as decision-making strategies in fully 

connected layers, can be copied and reused in the target network 

in a proper way, the learning efficiency and accuracy can be 

enhanced. 

4 CASE STUDY 
With the methods described above, a set of experiments 

have been conducted. In this section, we first illustrate the three 

pairs of transfer learning cases and then present the results and 

the ensuing discussions. 

4.1 Base cases and target cases 
In Figure 4, each row represents a pair of a base case (on the 

left) and a target case (on the right). There are three rows, hence 

three pairs of cases. The target cases are created by adding a 

target ship to base cases. Thus, target cases are more complex 

than base cases. Assuming the own ship and target ships have the 

same speed, for 𝑐𝑎𝑠𝑒3  and 𝑐𝑎𝑠𝑒4 , if the own ship doesn’t 

change its direction, collision will happen in the center of the 

screen between the own ship and the common target ship in the 

two cases. The same thing happens for 𝑐𝑎𝑠𝑒5 and 𝑐𝑎𝑠𝑒6; the 

collision between the own ship and upper target ship will happen 

if keeping the initial direction. Thus, only the ideal (shortest) 

path of the own ship in 𝑐𝑎𝑠𝑒1 and 𝑐𝑎𝑠𝑒2 is the direct straight 

line connecting the starting point of own ship and its goal on the 

top of the screen. The ideal paths in other cases are curves to 

avoid collision with target ships. These curves are different from 

each other based on the target ship settings. 
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Figure 4: Base cases and target cases 

The similarity measures between base cases and target cases 

are defined following Eqn (8). Since we aim to measure the 

similarity between two cases, more weight should be given to the 

common category. For this reason, 𝛼 should be larger than 𝛽. In 

this research we set 𝛼 = 1, 𝛽 = 0.5. Although for general ratio-

based similarity measures, the value of 𝑐𝑜𝑚𝑚𝑜𝑛  and 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  represents the number of same and different 

components in between two cases, in this research, the effect of 

components differs. For example, the white line representing the 

path between the own ship and the goal takes more space and 

looks more obvious than the target ships; it should take more 

weight intuitively. And according to experiment results, 

transferring the source network pretrained by images containing 

only the path can make the target network converge sooner and 

achieve a higher reward than transferring the source network 

pretrained by images only containing the target ship based on the 

same target case. The path component should be assigned more 

weight than the target ship component since it plays a guiding 

role in the ship driving scenario. What is more, when adding an 

extra target ship, even if the target ship is less important, its 

direction may affect the direction of the path. It is more likely for 

the own ship to change the path if the added target ship does not 

follow the same direction as the existing target ship. More weight 

should be assigned to the target ship with a new direction than 

following the existing direction when calculating 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 . 

For these reasons, 𝑐𝑜𝑚𝑚𝑜𝑛  and 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  calculation in 

similarity measures should not simply be the number of common 

and different components. The corresponding weights should be 

taken into consideration. The modification of Eqn (8) follows the 

rules below: 

• 𝑐𝑜𝑚𝑚𝑜𝑛 = 0, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 = 0 initially, since no attributes 

are categorized yet. Then these two categories will be 

added with different value when comparing all attributes 

one by one. 

• If the base case and target case have the same ideal path 

(like in 𝑐𝑎𝑠𝑒1 and 𝑐𝑎𝑠𝑒2), 𝑐𝑜𝑚𝑚𝑜𝑛 ← 𝑐𝑜𝑚𝑚𝑜𝑛 + 1, 

otherwise 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 + 1. 

• If the base case and target case contain the same target 

ship, 𝑐𝑜𝑚𝑚𝑜𝑛 ← 𝑐𝑜𝑚𝑚𝑜𝑛 + 0.5 

• If the target case has an extra target ship than the base case, 

the direction of this target ship exists in the base case, 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 + 0.2. If the direction of the 

extra target ship doesn’t exist in the base case, 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ← 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 + 0.4. 

The value of 𝛼 and 𝛽, as well as the weights of different 

components, are assigned due to the above considerations and 

multiple trials. Based on the modified formula, similarities 

between 3 pairs of cases are calculated as shown in Table 2. 

Since similarity is sensitive to the parameter settings, more 

investigation should be done in the future to figure out the 

relationship between these parameters and the resulting 

similarity, deriving the more accurate expression for similarity 

measures. 

Table 2: Similarity between base cases and target cases 

Base case Target case Similarity 

𝒄𝒂𝒔𝒆𝟏 

𝒄𝒂𝒔𝒆𝟑 

𝒄𝒂𝒔𝒆𝟓 

𝑐𝑎𝑠𝑒2 

𝑐𝑎𝑠𝑒4 

𝑐𝑎𝑠𝑒6 

0.83 

0.45 

0.42 

Both feature extraction and finetuning methods are 

employed in studying transfer reinforcement learning in ship 

collision avoidance work processes. Details of realization in 3 

pairs of transfer learning cases are as follows: 

• Feature extraction: Pretrain the source network in the base 

cases (𝑐𝑎𝑠𝑒1, 𝑐𝑎𝑠𝑒3, 𝑐𝑎𝑠𝑒5), copy the weight of 𝑛 (1 ≤ 𝑛 ≤
4) convolutional layers to the target network and freeze them. 

Randomly initialize and train other layers in corresponding 

target cases (𝑐𝑎𝑠𝑒2, 𝑐𝑎𝑠𝑒4, 𝑐𝑎𝑠𝑒6). 

• Finetuning: Copy 𝑛 (1 ≤ 𝑛 ≤ 4)  layers or the whole 

network, including fully connected layers (for feature 

extraction, copying and freezing the whole model is 

meaningless) to the target network and unfrozen the copied 

layers. Randomly initialize the rest and update the whole 

target network in the target cases. 

4.2 Results and discussion 
Feature extraction and finetuning methods were applied on 

three pairs of base case and target case; the similarity of each pair 

changes from high to low, as indicated in Table 2. In order to 

verify the existence of features in the ship's goal-reaching and 

collision avoidance working process, the transfer reinforcement 

learning, or TRL for short, training results are compared with 

three bootstrap target cases training results which are trained 

from scratch (randomly initialize the whole network without 
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transferring weights from the source network, explore the 

environment following 𝜀-greedy policy). In order to investigate 

the transferability of features through each layer, different layer 

transfer from the bottom (closer to the input images) to the top 

(closer to the output actions) is applied. For example, “2layers” 

shown in the plotting means transferring the parameters of the 

first and second layers on the bottom from the source network to 

the target network. To control the variable, exploration 

probability 𝜀 is set to be 1 at the beginning and 0.0001 at the end 

for both learning from scratch and TRL approaches. Training 

results are shown in Figures 5, 6, and 7. The horizontal axis in 

the figures represents the number of training episodes, and the 

vertical axis represents the total reward for each episode. Each 

result is obtained by running with 15 different random seeds; the 

average reward is represented by the solid line, and the variation 

is shown with the shaded area. 

 

 

Figure 5: Case 2 training results with TRL from Case 1 

High-level similarity cases (case1 to case 2): As shown in 

Figure 5, when the similarity between the base case and target 

case is high, both TRL approaches, on average, perform better 

than learning from scratch except for two specific layers. The 

average reward converges earlier, and the variation is less, which 

implies the training is more stable. The comparison shows that 

even though the target case is more complex than the base case, 

there still exist some common features in both cases. The 

features were extracted and stored in the source network when it 

was being trained in 𝑐𝑎𝑠𝑒 1. The target network learned these 

features by copying the parameters from the source network, 

accelerating the convergence in 𝑐𝑎𝑠𝑒 2. And also, because of the 

high similarity between the two cases, decision-making 

strategies in 𝑐𝑎𝑠𝑒 1are also useful for 𝑐𝑎𝑠𝑒 2. Finetuning the 

copied whole model, including the fully connected layers 

method, allows the decision-making strategies to be transferred 

to the target network, leading to better performance than all other 

transfers. 

Feature extraction makes the average reward higher and 

converges earlier compared to the finetuning approach. It 

indicates that the copied layers contain most of the transferred 

features, and not much updating is needed for high similarity 

cases. For finetuning method, except for 1-layer finetuning, the 

average reward and converging rate increase with the number of 

transferred layers. It implies features were stored in all four 

layers. More useful features will be transferred to the target 

network if more layers are transferred from the source network. 

The average reward of 3-layers feature extraction is higher in the 

process and converges earlier than 4-layers feature extraction 

when utilizing the feature extraction method, and it is also more 

stable. This phenomenon shows us the fourth convolutional layer 

is more specific to 𝑐𝑎𝑠𝑒 1. The copied features of 𝑐𝑎𝑠𝑒 1 in the 

fourth layer do not work well for 𝑐𝑎𝑠𝑒 2 due to the difference 

between the two cases. Finetuning the fourth layer to make it 

more specific to 𝑐𝑎𝑠𝑒 2 is needed. So, copying and freezing all 

convolutional layers may not be a good idea, even when 

similarity is high. 

Regarding the undesired performance of 2-layer feature 

extraction and 1-layer finetuning, it may be caused by a fragile 

co-adapted structure on successive layers because the drop can 

be fixed by adding or removing one copied layer. For 2-layer 

feature extraction, two layers on the bottom were copied from 

the source network and kept frozen, and the third layer was 

randomly initialized and updated. As a result, the features cannot 

be relearned by updating the third layer alone because the second 

and the third layers are highly co-adapted, and features in these 

two layers interact in a complex way. Finetuning is needed due 

to this co-adaption issue. The 2-layer finetuning achieves 

optimal performance because the second and third layers were 

jointly trained.  

For 1-layer finetuning, the reason for the sharp drop of 

performance is the highly co-adapted structure between the first 

and second layers on the bottom. The first layer was transferred 

from the source task, and the second layer, as well as the rest of 

the model, were randomly initialized. As we know, the first layer 

was well-trained in the base case; it does not need to be updated 

a lot, although in this case, the transferred first layer was jointly 

trained with the second layer, which was randomly initialized 

and needed to be updated. Features in these two layers may 

interact in a particular way, which cannot be relearned if the 

training process starts with one well-trained layer and another 

random layer, making the performance worse than learning from 

scratch. Freezing the well-trained layers can solve this kind of 

co-adaption, as shown in the 1-layer feature extraction method. 
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Figure 6: Case 4 training results with TRL from Case 3 

Low-level similarity cases (case 3 to case 4): For 𝑐𝑎𝑠𝑒 3 

and 𝑐𝑎𝑠𝑒 4, the similarity becomes lower. TRL approaches still 

enhance the learning efficiency compared to learning from 

scratch, except for 4-layer feature extraction. The sharp drop 

caused by co-adaption disappears. The finetuning method has a 

higher and more stable average reward compared to the feature 

extraction method. Due to the lower similarity, finetuning is 

needed for the copied layers to become more specific to the 

target case.  

For the feature extraction method, 4-layer feature extraction 

has the worst performance because all the convolutional layers 

were frozen, and the difference between the base and target case 

was fixed. For finetuning method, the whole model finetuning 

has the highest reward at the beginning because the decision-

making layer contains collision avoidance strategies is 

transferred. As introduced in section 4.1, a collision with a target 

ship will happen if the own ship keeps the original direction. 

Transferring the decision-making layer as well as convolutional 

layers containing collision avoidance features helped the agent 

avoid the penalty of hitting target ships, and 1-layer finetuning 

converged earliest instead of the whole model finetuning. 

General features were learned by transferring the first layer, and 

there was no need to fix the difference in other layers, so 1-layer 

finetuning has the highest convergence rate. 
 

 

 

Figure 7: Case 6 training results with TRL from Case 5 

Lowest-level similarity cases (case 5 to case 6): For the 

lowest similarity pair 𝑐𝑎𝑠𝑒 5 and 𝑐𝑎𝑠𝑒 6, the benefits of TRL 

still exist for some low-level transfer. Finetuning methods 

converge to a higher value compared to the feature extraction 

method; like in the pair of 𝑐𝑎𝑠𝑒 3 and 𝑐𝑎𝑠𝑒 4 , differences 

between the base case and target case need to be fixed. 

Unlike the higher similarity cases, where the average reward 

increases with the number of transferred layers, the average 

reward decreases when more layers are transferred. For the 

feature extraction method, 4-layer feature extraction works even 

worse than learning from scratch since the differences in frozen 

layers are not able to be fixed. For the finetuning method, there 

is a drop at around 3000 episodes caused by the penalty of 

collision except for the whole model finetuning. Similar to the 

pair of 𝑐𝑎𝑠𝑒 3 and 𝑐𝑎𝑠𝑒 4, the whole model finetuning method 

transfers collision avoidance strategies in the decision-making 

layer, allowing the agent to evade the collision penalties during 

the early episodes. Because the agent cannot experience and 

learn from the early penalty phase, it loses the chance for a sharp 

reward increasing as the agent in other cases did after the penalty. 

Target cases were retained in the case base and can be 

further used as base cases. The capability of the system was 

improved by the extension of stored experiences.  
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Figure 8: A new collision avoidance case 

As shown in Figure 8, given a new task that is different from 

all cases, cases 1 to 6 can be selected as the base case based on 

similarity. The similarity between 𝑐𝑎𝑠𝑒 2 and the new case is 

higher than others, 𝑐𝑎𝑠𝑒 2 is considered to be the base case. The 

network trained by the whole model finetuning method has the 

best performance; it can be used as a representative case solution 

in 𝑐𝑎𝑠𝑒 2. For solving the given new task, the representative 

network in 𝑐𝑎𝑠𝑒 2 is used as the source network.  

For previous cases, the existence and transferability of 

features were investigated by comparing to learning from scratch 

that follows a 𝜀-greedy policy (𝜀 drops from 1 to 0.001). The 

training for TRL also uses the same 𝜀 value. For this new case, 

the purpose is to test the reusability of the representative source 

network from case 2. Therefore, 𝜀  can be set smaller at the 

beginning to shorten the exploration period and decrease the 

randomness when applying TRL. Since the similarity between 

case 2 and the new case is high, 𝜀 is set to be 0.1. As shown in 

Figure 9, the average reward of the reused network converges 

much earlier than learning from scratch and converges to the 

same value as learning from scratch. It indicates that the reuse of 

stored cases is applicable and efficient. 

 
 

Figure 9: Reuse the saved finetuned model 

5 CONCLUSIONS AND FUTURE WORK 
Computer agents, including vehicles and robots, can learn 

complex work processes through reinforcement learning. In 

order to increase the learning effectiveness and efficiency, the 

agents need to employ a transfer reinforcement learning 

methodology in which they reuse the previously learned neural 

networks and adapt them to the new task situations through much 

more efficient training processes. In this paper, a computer 

simulation-based empirical approach is taken to investigate how 

the feature extraction and finetuning methods can be properly 

combined to achieve successful transfer reinforcement learning 

in the context of ship collision avoidance. Through the findings 

revealed from the results of the experiments, the following 

conclusions can be drawn. 

1. There are features in the work process, and they can be 

captured and reused by transfer reinforcement learning.  

2. When the similarity between the base case and target case is 

high, the feature extraction method is more efficient, and the 

average reward increases with the number of transferred 

layers. Conversely, in low similarity cases, the average 

reward decreases when more layers are transferred, and 

applying the finetuning method becomes more important. 

3. For the feature extraction method, at least the last 

convolutional layer should be unfrozen and trained with the 

target case for avoiding slow convergence and inferior 

results. 

4. High-level feature co-adaption in successive layers happens 

when the similarity is high, causing the performance to drop 

when separating the layers. Introducing more convolutional 

layers may alleviate this issue. 

5. Transferring fully connected layers allows agents to speed 

up early learning but deprives their chances to learn from 

making mistakes. 

It is worth mentioning that the findings and conclusions 

described above are limited to the ship collision avoidance type 

of work processes and the level of complexity of testing cases. 

Our ongoing work expands the testing cases into more realistic 

collision avoidance situations and will also consider the work 

processes with heterogeneous agents. Furthermore, both the 

feature extraction and the co-adaption can be sensitive to the 

similarity measure. We plan to explore different similarity 

measures in future studies. 
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