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ABSTRACT 
Design by analogy is a design ideation strategy to find 
inspiration from source domains to generate design concepts in 
target domains. Recently, many computational methods were 
proposed to measure similarities between source domains and 
target domains to build connections between them. However, 
most existing methods only explore either visual or semantic cues 
of the concepts in source and target domains but ignore the 
integration of both modalities. In fact, humans have remarkable 
visual reasoning ability to transfer knowledge learned from 
objects in familiar categories (source domains) to recognize 
objects from unfamiliar categories (target domains). In this 
paper, we propose a visual reasoning framework to support 
design by visual analogy. The challenge of this research is how 
computation methods can mimic the process of humans’ visual 
reasoning, which fuses visual and semantic knowledge. In the 
framework, the convolutional neural network (CNN) is applied 
to learn visual knowledge from objects in familiar categories. 
The hierarchy-based graph convolutional network (HGCN) is 
proposed to transfer learned visual knowledge from familiar 
categories to unfamiliar categories by their semantic distances. 
Finally, the unfamiliar objects can be reasoned and recognized 
based on the transferred visual knowledge. Extensive 
experimental results on one mechanical component benchmark 
dataset demonstrate the favorable performance of our proposed 
methods. 

Keywords: Visual reasoning, visual similarity, deep learning, 
design by analogy, semantic knowledge. 

1. INTRODUCTION 
Designers often seek inspirational stimuli during ideation 

at the early stages of the design process. The visual analogy is 
considered as an effective cognitive strategy to stimulate 
designers to create innovative concepts for solving ill-structured 
design problems[1-3]. In our previous work[4, 5], it has been 
shown that visual similarity existing between the source and 
target domains is a precondition to make a visual analogy. A 
visual relationship might not be the only ideal criterion for 
making a visual analogy. For instance, a post-it note is visually 
similar to a map view of the state of New Mexico in that they’re 
both squares, but this does not mean that they have some degrees 
of useful analogical similarity. For accessing more meaningful 
visual stimuli, semantic similarity should also be considered.  

Shapes don’t only refer to geometry but also carry 
semantics. In cognitive science, studies support the idea that 
people first perceive the shape and overall structure of an object 
and then comprehend the semantic details[6, 7]. As visual images 
are stored in memory both verbally and visually, verbal and 
visual descriptions in shape interpretation are possible for people 
to understand the images[8, 9]. One example is given a picture 
of an apple; humans can recognize the object’s name, shape, 
color, texture, infer its taste, and think about how to eat it. In 
engineering design, shapes can arouse complex semantic 
content. That functions fit shapes or structures is one of the basic 
design principles well accepted in the design field, such as 
Structure-Behavior-Function (SBF) approach[10], SAPPhIRE 
model[11], a deep learning model[12], and a structure-function 
patterns approach[13]. Frequently, visual and language-based 
thinkings overlap and interconnect during design. Visual and 
semantic representations can help designers retrieve useful 
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analogies and increase the probability of successful designs[14-
17]. However, in recent years, the majority of visual analogy 
research in the engineering design field focus on capturing and 
analyzing the visual information of an image[4, 5, 18, 19], few 
lines of work focus on utilizing semantics as a reasoning source 
to support visual analogy making. 

Visual reasoning is possible as humans can interpret 
shapes’ semantic meanings. Consider a “binding barrel” in 
Figure 1. Assume we have never heard of this category or seen 
visual examples in the past, and we would like to find a most 
functionally and geometrically similar object to the query from 
the support images. As the query image consists of a barrel and 
a binding screw that threads into the barrel, we can visually 
reason that it might be a type of fastener as it is very similar to a 
screw with threads and a crosshead. Even its shape is visually 
similar to a bike pump and a fire hydrant; however, we know that 
it semantically belongs to a mechanical component. Humans are 
capable of inferring unknown objects on a higher-level category 
(a binding barrel and a screw are different types of fasteners), 
considering visual and semantic information at the same time. 
This visual reasoning capability is helpful for design by visual 
analogy, as the relationships between a binding barrel (a target 
domain) with the four related objects (source domains) are built 
during this process. Also, before the visual inference, humans 
already have some prior knowledge of relevant objects (support 
images in Figure 1) and transfer the knowledge to comprehend 
and describe the unfamiliar object (the query image in Figure 1). 
Therefore, the main research problem in this paper: how to 
semantically weight visual knowledge transferred from the 
source domains and recommend semantically meaningful visual 
analogies. 

 

 
Figure 1 A visual reasoning example 

In this work, we propose a visual reasoning framework to 
infer the category of an unfamiliar object using visual knowledge 
from familiar objects in different categories and semantic 
knowledge of categories. Specifically, we first use a 
convolutional neural network (CNN) to learn visual features of 
familiar objects. Then, we build a hierarchy-based graph 
convolutional network (HGCN) in which each node corresponds 
to a category. Each node is represented by a word embedding. 
These nodes are linked via semantic relationship edges. The 
weights of the edges are determined by the similarities of the 
hierarchical semantics between these nodes. The HGCN is 
trained to transfer visual knowledge from familiar categories to 
unfamiliar categories. Finally, the category of the unfamiliar 
object can be inferred based on the transferred visual knowledge. 

2. RELATED WORK 

2.1 Computational methods in design by analogy 
Searching for inspirational stimuli is an essential step in the 

initial stages of the design process. Many empirical studies have 
investigated the impact of external stimuli of inspiration on 
design ideation, such as their ability to promote the designers’ 
imagination and boost the generation of novel concepts[14, 15, 
20]. However, they can contribute to design fixation, which 
means designers could be stuck in mimicking external stimuli 
and unconsciously constrained in a limited set of ideas[21].  
Design by analogy is a way to help designers to explore design 
space and alleviate design fixation. Inspiration can be drawn 
from analogies in source domains to generate creative ideas for 
a target domain.  

The unlimited number of potential inspiration sources are 
around designers to search for. Therefore, databases, along with 
effective retrieval of analogies, have great potential to enhance 
design by analogy. Currently, many computational tools have 
been used to provide inspiration to designers and avoid design 
fixation. Based on the function, behavior, or shape of a device, 
analogies from nature, patents, and images are provided as 
potential sources of inspiration to the designer. In order to 
improve the efficiency of retrieving distantly related stimuli, 
computational methods and tools can be constructed to support 
a less time-consuming search for inspiration with different levels 
of semantic or visual distances to the problem domain[14].  

Many computer-aided ideation methods or tools have been 
developed to retrieve analogies from a text-based database. 
Natural language processing is applied to conduct semantic 
similarity to filter the specific verbal stimulus to be retrieved. 
Shu et al. used natural language analysis to correlate functional 
basis terms with useful biological keywords[22, 23]. Murphy 
proposed a search methodology to identify inspiring patents 
which have functional semantic similarity with design problems 
[24]. Fu et al. created a computation method to cluster patents 
based on their functional and surface similarity, and then 
designers can automatically retrieve analogical stimuli from 
these patents [25]. The WordTree method can re-represent key 
functions of a design problem through the WordNet database, 
and analogous concepts can be identified[26]. 

As designers are skillful in making and using visual 
representations, they have a striking preference for visual 
stimuli. One of the reasons for the efficiency of visual 
stimulation in idea generation is that less cognitive effort is 
required when accessing, storing, and communicating pictorial 
information compared with textual information. Some methods 
have been proposed to retrieve visual analogies[27]. Ji et al. 
created a computational tool to provide image-based stimuli to 
improve creativity and enhance design communication[28]. 
Kwon et al. develop a method to use visually similar images to 
support concept generation for wind-turbine blades[19]. Jiang et 
al. introduced a supervised CNN-based approach for patent 
image vectorization to support visual design stimuli retrieval in 
design-by-analogy[18]. However, these methods assume that 
designers know what to search for and, thus, how to initiate the 

Screw Nut Fire hydrant Bike pumpBinding barrel
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image search by entering keywords. Recently, we put forward an 
unsupervised deep clustering method to retrieve visual stimuli 
based on vague ideas in designers’ mind in sketch forms instead 
of keywords[4, 5]. 

2.2 Reasoning in visual analogy 
Analogies are fundamental for human cognition and creativity in 
which information is transferred from source domains to target 
domains [29]. Reasoning by analogy is considered to be at the 
center of cognitive processes for solving creative problems [30]. 
In engineering design, prolific research has been related to 
provoke visual analogies by displaying a large variety of visual 
representations to designers [3, 15, 31, 32]. Designers can benefit 
more from reasoning by visual analogy than the use of visual 
display [33, 34]. However, little work has been carried out for 
developing computational methods and tools to support design 
by analogy based on visual reasoning.  

Visual perception and cognition are two different but 
interactive mechanisms that operate in vision [35]. Visual 
perception is responsible for discerning what the stimulus input 
is based on the shape. Visual cognition is triggered by the 
perceptual event to understand and reason about the input, such 
as its physical properties and usage [36]. This suggests that 
visual perception may provide an indexical function for 
retrieving long-term memory in the human brain. The stored 
information and knowledge that applies to a particular object can 
be activated and manipulated by a cognition process such as 
reasoning, imagining, memorizing and so on. 

Images can not only display shapes but also carry semantic 
content of the classes of perceptual inputs. Shapes can be 
reasoned because we can decipher their related semantic 
meanings. Much research in cognitive psychology has been done 
to study the relationship between visual and verbal descriptions 
in image interpretation. Visual images can evoke verbal-
propositional memory traces in as little as 100 msec [37]. Human 
long-term memory can be characterized as a network of linked 
semantic concepts [38]. Humans first grasp the shape and spatial 
structure of an object and then understand the details [39]. The 
visual stimulus is linked to the higher-level knowledge, such as 
stored semantic meanings, abstract knowledge, and complex 
beliefs [40].  

2.3 Graph Convolutional Network for Visual 
Reasoning 
Recent graph neural models are showing strong 

performance in their ability to extract node features and learn 
structured relationship between nodes. To extend powerful 
convolutional neural network (CNN) to deal with graph-
structured data, graph convolutional network (GCN) was 
introduced by Kipf and Welling for semi-supervised learning on 
graph structured data [41]. The graph convolutional operation 
aims to generate representations for vertices by aggregating its 
own feature and the features of its neighboring vertices.  

Researchers have leveraged GCN for reasoning on 
pairwise relations to be beneficial to a variety of computer vision 
tasks. Some works have been proposed that leverage scene 
graphs for improving scene understanding [42] and 

generation[43] through visual reasoning. Automatic image 
captioning is another computer vision task supported by GCN to 
reason the visual relationships between objects in the image and 
understand the semantic information[44, 45]. Our work is most 
related to zero-shot learning, which builds GCN using semantic 
information from WordNet, ConceptNet, or Wikipedia texts to 
construct relationships between known and unknown objects and 
then understand unknown objects based on visual features 
learned from some known objects[46, 47].  

In most of the previous works, one node in the GCN can 
only be able to obtain the nearest neighbors’ information directly 
and needs a multilayer structure to acquire long-distance 
neighbors’ information indirectly through graph propagations. 
However, feature representations of the dataset in GCN will 
become more similar as the depth increases if they come from 
the same cluster[48]. In our visual reasoning setting, it means 
visual classifiers sharing the same parent or grandparent 
category will be indistinguishable. Considering this limitation, 
we build a novel hierarchy-based graph convolutional network 
(HGCN) by adding semantic weights on the edges in the graph 
structure, which can directly obtain the short and long-distance 
neighbors’ information using only one layer. In this way, while 
retaining the inherent advantages of GCN, the number of layers 
in the model can be reduced. 

3. METHODS 
The recent progress of deep learning has advanced design 

by analogy. Despite the success, the state-of-the-art models are 
notoriously data hungry, requiring tons of samples for parameter 
learning. In real cases, however, the visual phenomena follows a 
long-tail distribution where only a few categories are data-rich 
and the rest are with limited training samples[20]. 

Compared with machines, people are far better learners as 
they are capable of learning models from previous seen samples 
and accuratly infer a new category accordingly. An intuitive 
example is that a baby learner can learn to recognize a wolf that 
he/she has been able to successfully recognize a dog. The key 
mystery making the difference is that people have strong prior 
knowledge to generalize across different categories[21]. It means 
that people do not need to learn a new classifier (e.g. wolf) from 
scratch as most machine learning methods, but generalize and 
adapt the previously learned classifiers (e.g. dog) towards the 
new category.  

In the design by analogy scenario, learning to make 
analogy refers to the mechanisms that learn how to transfer 
previous knowledge from source domains to target domains. The 
purpose of our proposed visual reasoning framework is to 
explore how machines can capture the learning to make analogy 
ability. Similarly, in the previous example of dog and wolf, we 
have a plausible explanation on the fast reasoning and learning 
of wolf that a human learner selects dog from the source domains 
and transfers its classification parameters for wolf classification. 
In this sense, visual reasoning provides effective and informative 
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clue for generalizing image classifiers in a way of making visual 
analogy. In particular, when the samples in the target domain 
have a limited number and hard to learn the visual classifer, how 
to transfer the classification parameters from selected source 
domains is highly non-trivial. 

As depicted in Figure 2, there two phases to use visual 
reasoning to support design by analogy. In the training phase, the 
seen images, their labels’ word embeddings and a hierarchy 
structure including seen and unseen categories are the inputs to 
our proposed visual reasoning framework. The seen and unseen 
categories mean source and target domains in the design by 
analogy scenario. The outputs of the visual reasoning framework 
are learned visual classifiers and a visual analogy database. The 
seen visual classifiers are learned by seen images and other 
corresponding labels, which is introduced in section 3.2. The 
unseen visual classifiers are transferred from the seen visual 
classifiers based on the hierarchy structure, which is illustrated 
in sections 3.3 and 3.4. The visual analogy database includes 
seen images and their corresponding labels. In the inference 
phase, an unseen image can be a sketch/image in the target 
domain generated by a designer. The label of the unseen image 
will be predicated by our learned visual classifiers. According to 
our proposed semantic distance 𝑑! , which is demonstrated in 
section 3.3, we can determine the long- and short- distance 
analogies in the hierarchy structure and visual analogies can be 
retrieved to stimulate the designer. 

3.1 A visual reasoning framework 
A rich body of research on computational methods for 

design by analogy only supports identifying analogies based on 
one modality, either linguistic or geometrical similarity. Based 
on a strong psychological cognition understanding of visual 
analogy, the process to identify similarities between source 
domains and target domains is fulfilled by reasoning. Our 

hypothesis for visual reasoning in design by analogy is that once 
an object in a target domain is perceived and cognized, related 
concepts, such as categories and attributes, will be activated and 
brought to the level of working memory, other objects in source 
domains can be energized from long-term memory based on 
similarities of the related concepts, and semantic information and 
knowledge of the objects in the source domains can be retrieved 
to working memory to understand and comprehend the object in 
the target domain. Therefore, computational tools can consider 
semantic and visual similarity at the same time when identifying 
visual analogies is needed. Advanced deep learning 
technologies, such as CNN and GCN, provide us with ways to 
figure out the semantic and visual relationships between source 
domains and target domains to realize the visual reasoning 
process. In this research, our goal is to propose a computational 
method to use visual and semantic knowledge to support visual 
reasoning for design by analogy. In order to approach to this 
goal, we set up a visual reasoning setting as follows. 

Suppose we have source domain datasets 𝔻" =
{𝕍", 𝕐"} which have 𝑁" labeled images, where each image 
𝑉" ∈ 𝕍" is associated with a label 𝑌" ∈ 𝕐". Similarly, there are 
target domains 𝔻# = {𝕍# , 𝕐#}consisting of 𝑁#images from target 
categories 𝕐# . Here, 𝕐" ∪ 𝕐# = 𝕐, 𝕐" ∩ 𝕐# = ∅ . All the 
categories in source and targets domains are called seen and 
unseen categories, respectively. The processes of visual 
reasoning are as follows: images and their corresponding labels 
in the source domain datasets are used for training to learn visual 
features and classifiers of the seen categories by CNN; 
meanwhile, visual features of the images in the unseen categories 
can be recognized and extracted by the learned CNN; we assume 
there is a shared semantic hierarchy covering both seen and 
unseen categories. The visual classifiers of the unseen categories 
can be reasoned by building semantic relationships to the visual 

 
Figure 2 The phases of visual reasoning supported design by analogy 
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classifiers of the seen categories via a hierarchy relationship 
graph; finally, the extracted visual features of unseen images can 
be input into the reasoned unseen visual classifiers and predict 
the labels. Note that the labels of unseen images are only used 
for testing the performance of the reasoned visual classifiers of 
unseen images.  

Our visual reasoning framework is illustrated in .  The 
proposed framework contains three main modules: visual 
features and classifiers learning module, hierarchy-based GCN 
learning module, and visual reasoning module.  

3.2 Visual features and classifiers learning module 
Before visual reasoning, humans have some basic visual 

knowledge of objects they have seen. Visual knowledge can help 
them recognize visual features from some unseen or unfamiliar 
objects. In recent years, many visual feature extraction, 
detection, and recognition issues can be addressed by CNN, 
which are affected by the structure of the human visual system. 
ResNet[22] is a type of CNN that uses a residual network to solve 
the problem that the CNN is difficult to train due to the increase 
of network layers. In this module, we use pre-trained ResNet-50 
as a backbone and train the model with images from seen 
categories for learning visual features and classifiers as visual 
knowledge. The last fully connected (FC) layer includes the 
learned weights which are the seen visual classifiers. The outputs 
before the FC layer are the feature representations of the input 
images. The trained ResNet-50 model can be used for extracting 
visual features of objects in unseen categories. 

3.3 Hierarchy-based GCN module  
In traditional neural networks (such as multilayer 

perceptron with fully connected layers), there is no explicit 

relations between the data samples, and they are assumed to be 
independent. GCN aims to take the neighborhood relationships 
into consideration and create the feature representation of each 
node not only by its own features but also using its 
neighbors[23]. More specifically, given a graph with 𝑁 nodes 
and 𝑆 features per node, 𝑋	 ∈ ℝ$×&	denotes the feature matrix. 
Here each node represents one distinct category, and each 
category is represented by the word embedding of the category 
name. The connections between the categories in the knowledge 
graph are encoded in form of a symmetric adjacency matrix 𝐴	 ∈
ℝ$×$ . GCN employs a simple propagation rule to perform 
convolutions on each layer of the model, which is shown below. 

 𝐻(𝑙+1) = 𝜎(𝐷5−
1
2𝐴5𝐷5−

1
2𝐻(𝑙)𝑊(𝑙)) (1) 

 Where 𝐴) = 𝐴 + 𝐼(  is the adjacency matrix of the 
undirected graph G with added self-connection of each 
node. 𝐼( is an identity matrix. 𝐷5)) ∈ ∑ 𝐴8)**  is a degree matrix. 

𝐷5+
!
"  is used to normalize rows in 𝐴) . 𝐻(𝑙)  represents the 

activations in the 𝑙#- layer and 𝑊 ∈	ℝ&×. denotes the trainable 
weight matrix for layer 𝑙 with 𝐹 corresponding to the number of 
the learned visual classifiers. For the first layer, 𝐻(0) = X. 𝜎(∙) 
denotes a nonlinear activation function, in our case a Leaky 
ReLU.  

 
Figure 4 the visual reasoning framework 
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However, feature fusion on one layer of GCN only 
considers the nearest neighborhood dependency. When the 
features of neighbors from 𝑘 distances are required for further 
relation extraction, they can only be indirectly acquired through 
a multilayer GCN propagation, which has a high tendency of 
over-smoothing and makes nodes from the different classes 
indistinguishable[24]. To avoid this limitation and realize a long-
distance feature fusion in one single layer, we propose a 
hierarchy-based graph convolutional network (HGCN). In the 
proposed model, we use the semantic similarity to construct a 
weighted adjacency matrix (WAM), which can directly figure out 
far neighborhood dependence with only one layer. The 
comparison between GCN and our proposed HGCN is shown in 
Figure 5. The main difference is we use a weighted adjacency 
matrix to propagate information in one shot. The method to 
obtain those weights is illustrated below. 

For an acyclic graph 𝐺(𝑉, 𝐸), where 𝑉 denotes the nodes 
and E denotes the edges specifying the hyponymy relations 
between semantic concepts. In other words, an edge (𝑢, 𝑣) 	∈
	𝐸	means that 𝑣 is a sub-class of 𝑢. An example for such a graph 
with the special property of being a tree is given in Figure 6.  

 
Figure 6 A toy hierarchy structure 

Classes of interest (seen and unseen classes) are leaf nodes in the 
tree. The semantic distance 𝑑! between two leaf classes is given 
as below. 
𝑑𝐺(𝑢, 𝑣)

= 2 ∗ 	ℎ𝑒𝑖𝑔ℎ𝑡#𝑙𝑐𝑠
(𝑢, 𝑣)$−ℎ𝑒𝑖𝑔ℎ𝑡(𝑢)−ℎ𝑒𝑖𝑔ℎ𝑡(𝑣)

2 ∗	max
𝜔∈𝑉

ℎ𝑒𝑖𝑔ℎ𝑡(𝜔)+1  (2) 

 
where the height of a node is defined as the length of the longest 
path from that node to any of its descendants. The lowest 
common subsumer (lcs) of two nodes is the ancestor of both 
nodes that does not have any child being an ancestor of both 
nodes as well. One node can be its own ancestor. The semantic 
similarity 𝑠! between semantic concepts can be calculated as: 

 𝑠𝐺(𝑢, 𝑣) = 1− 𝑑𝐺(𝑢, 𝑣) (3) 

where 𝑠! is bounded between 0 and 1 as 𝑑𝐺 is in the range (0, 
1]. 

For example, the toy hierarchy in Figure 6 has a total height 
of 3, the lcs of the classes “a” and “b” is “d” and the lcs of the 
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d

e
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between two nodes.

Figure 5 The comparison of GCN with HGCN. Take the node 𝑥! as an example. At the beginning of GCN, node 𝑥! only contains its own 
feature. After 1-layer GCN, node 𝑥! acquires the features of its one distance neighborhood nodes 𝑥" and 𝑥#. At the same time, node 𝑥"  is 
also updated by the features of its one distance neighbors, so do node 𝑥#. And after 2-layer GCN, node 𝑥! gets the updated features of its one 
distance neighborhood nodes 𝑥" and 𝑥# again. Since the features of nodes 𝑥" and 𝑥# already contain the features of their one distance 
neighbors after the previous GCN, node 𝑥! indirectly obtains the features of the two distance neighborhood nodes. Thus, after 4 layers, node 
𝑥! can merge features from all neighborhood nodes. For HGCN, we add virtual edges between node 𝑥! and nodes indirectly connected to it. 
Hence, after 1-layer HGCN, node 𝑥! can obtain the features of all nodes with paths to it. 



 7 © 2022 by ASME 

classes “a” and “c” is “e”. It follows that 𝑑𝐺(𝑎, 𝑏) =
	2∗2−0−0

2∗3+1
=

4

7
	 , 𝑠𝐺(𝑎, 𝑏) =

3

7
 and 𝑑𝐺(𝑎, 𝑐) = 	

	2∗3−0−0

2∗3+1
= 6

7
, 𝑠𝐺(𝑎, 𝑐) =

1

7
. 

The algorithm of constructing WAM is shown in Algorithm 
1. 
 

Algorithm 1 Calculate Weighted Adjacency Matrix 
(WAM) based on hierarchy similarity 

 Input: 𝐺: a graph represents the hierarchy 
structure of classes; 𝑁 is the number of nodes in G 

 Output: 𝑊𝐴𝑀 

1: initialize 𝑊𝐴𝑀 ∈ 	ℝ$×$, all elements in 𝑊𝐴𝑀 are 
zero 

2: traverse every node 𝑖 in G 
3:     traverse every node 𝑗 in G 

4:         calculate the semantic similarity 𝑠!(𝑖, 𝑗)  
        using (2) and (3) 

5:  Normalization. Set 𝑊𝐴𝑀)* =	𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠!(𝑖, 𝑗)) =
	 ;<=	("#(),*))
∑ ;<=	("#(),*))$
%&'

 

 
After WAM is obtained, a new propagation formula for the 
fusion of hierarchy semantic information shown as follows: 

 𝐻(𝑙+1) = 𝜎(𝐷5−
1
2𝐻𝑊𝐴𝑀R 𝐷5−

1
2𝐻(𝑙)𝑊(𝑙)) (4) 

where 𝐻𝑊𝐴𝑀5 =𝐻𝑊𝐴𝑀 + 𝐼( and 𝐷5)) ∈ ∑ 𝐻𝑊𝐴𝑀R )** . 
In this way, 1-layer HWGCN can integrate short and long-
distance neighborhood information directly without multiple-
layer propagations.  

3.4 Visual reasoning module 
In this work, we perform visual reasoning using semantic 

distances of seen and unseen categories embedded in the 
knowledge graph and the learned visual classifiers from the seen 
classes to predict the categories of unseen objects. More 
specifically, we need to infer the visual classifiers for the unseen 
categories.  

The weights in the last layer of the trained ResNet-50 are 
interpreted as visual classifiers, which can determine the 
categories for the seen images. In order to predict a new set of 
weights for each unseen category, we parse a dependency tree as 
a graph structure on the seen and unseen categories. In the graph, 
a node is represented by the word embedding of each category’s 
name. And if there is a dependency between categories, there is 
an edge between corresponding nodes. The weight on each edge 
is determined by our proposed Algorithm 1. During the graph 
convolutional operation in the layer of HGCN, information of 
each node can be updated by fusing the feature of its short and 
long-distance neighborhood nodes. After training the HGCN, we 
can predict the visual classifiers of unseen categories based on 
the visual classifiers of seen categories. The loss function used 
to train HGCN is shown in Eq.(5).  

 ℒ =
1
2𝑀

88(𝑊*,, −𝑊)*,,)
-

,./

0

*./

 (5) 

where 𝑊5 ∈	ℝ@×A	denotes the predicted visual classifiers of 
HGCN for the seen categories. 𝑀 denotes the number of seen 
categories and 𝑃  denotes the dimensionality of the weight 
vectors. The ground truth weights are obtained by extracting the 
last layer weights of the trained ResNet-50 and denoted as 𝑊 ∈
	ℝ@×A.  

From the loss function, we can see that HGCN is trying to 
align the predicted and ground truth visual classifiers of seen 
categories. This information can be transferred and propagated 
in the graph and used to reason the visual classifiers of unseen 
categories. 

4. EXPERIMENTS  

4.1 Dataset 
We evaluate the performance of our proposed methods on 

one benchmark dataset, which is called CADSketchNet[25]. It 
contains one computer-generated sketch for each representative 
image in the Mechanical Components Benchmark(MCB) 
dataset[26]. This results in 58,696 computer-generated sketches 
across 68 categories. Based on the hierarchy of the MCB dataset 
and the categories in the CADSketchNet. A modified hierarchy 
structure is shown in .The red dots in the Figure 7 are the 68 
categories in CADSketchNet and they are all leaf nodes in the 
hierarchy structure. We randomly adopt 18 categories as unseen 
categories and the remaining 50 categories as seen categories.  
The number of sketches in each category can be found in [25]. 
The number of all nodes in the hierarchy structure is 232. 

4.2 Implementation Details 
We adopt the ResNet-50 model that has been pre-trained 

on the ImageNet 2012 dataset as the backbone. The pretrained 
ResNet-50 can learn some common-sense visual knowledge 
from 1000 categories. Then ResNet-50 is trained for 50 epochs 
using stochastic gradient descent with a learning rate of 0.001 
and momentum of 0.9. The learning rate decays by 0.1 from 0.01 
at every 10 epochs. The ResNet-50 is trained with the images 
from seen categories to learn visual features from mechanical 
component sketches. After the training, we can get visual 
classifiers of seen categories from the last layer of ResNet-50. 
Each visual classifier is represented by a weight vector that has 
2048 dimensions. We extract word vectors to represent semantic 
information of our categories in the graph via the GloVe text 
model[27] trained on the Wikipedia dataset. Each category can 
be presented by a 300-dimensional vector. 232 categories in the 
hierarchy structure are used as the input of our proposed HGCN 
model. The HGCN model consists of one layer as illustrated in 
Eq. (4). For the layer, we make use of Dropout [28] operation 
with a dropout rate of 0.5 and leaky ReLUs with a negative slope 
of 0.2. Each predicted visual classifier of the HGCN model has 
2048 dimensions which correspond to the dimensions of the 
learned visual classifiers of the ResNet-50. We perform L2- 
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Figure 7 The hierarchy taxonomy of mechanical component categories 

Normalization on the predicted visual classifiers of the HGCN 
and the ground truth visual classifiers produced by the ResNet-
50 as it regularizes them into similar ranges. The loss function is 
the mean squared error between them, which is shown in Eq.(5). 
The model is trained for 3000 epochs with a learning rate of 
0.001 and weight decay of 0.0005 using Adam[29]. All 
experiments are implemented with PyTorch[30] and training and 
testing are performed on a GTX 1080Ti GPU.  

4.3 Performance comparison 
Baseline method. We compare our proposed method with 

following methods. Devise[31] learns transformations of visual 
and semantic features to a common space. An unseen image’s 
category can be determined by mapping the image to the 
common space and finding the nearest word-embedding in the 
space. ConSE[32] transforms image features into a semantic 
word embedding space through a weighted combination of 
several closest seen categories’ semantic embeddings. The 
weights are predicted using pre-trained visual classifiers. ConSE 
assigns labels to unseen images according to the nearest 
categories in the semantic embedding space. GCNZ[33] is the 
approach most related to our proposed method. The main 
difference is our HGCN uses a hierarchy structure to determine 
a weighted adjacency matrix, which can quickly propagate 

information and achieve a better performance in visually 
reasoning unseen objects.  

Quantitative results. Our metric is top-k accuracy, which is 
based on the percentage of assigning correct labels on unseen 
images out of top-k predictions. The processes to obtain the 
quantitative results are as follows. Let us assume, we have N 
unseen images, P unseen labels and Q seen labels. The ground 
truth label of an unseen image belongs to one of the P unseen 
labels. The Q seen visual classifiers can be learned based on 
section 3.2. Based on sections 3.3 and 3.4, the P unseen visual 
classifiers can be learned by transferring the learned seen visual 
classifiers through the taxonomy structure in Figure 7. An unseen 
image will be input to Q seen visual classifiers and P unseen 
visual classifiers to have P+Q predicted values. All predicated 
values will be ranked in descending order. If the predicated value 
of the ground truth label of the unseen image is among top k of 
the rank. It is a successful hit. We go through N unseen images 
and count the number of successful hits as M. The top-k accuracy 
is M/N. We set k to be 1, 2, 5, 7, and 10 in the experiments. 
Firstly, we perform evaluations on the task of 18 learned unseen 
visual classifiers and 0 seen visual classifiers. Secondly, we 
perform evaluations on the task of 18 learned unseen and 50 seen 
visual classifiers with the same metric and the same k settings. 
The results are shown in Table 1. We can observe that (1) Our 
model and GCNZ outperform the Devise and ConSE baselines 
by a large margin in two scenarios as these methods require a 
larger dataset to train and learn the connection between visual 
features and semantic features. (2) since the seen class classifiers 
are added to the classifiers in the second scenario, the 
performance of all models drops partly. (3) our model maintains 
comparable performance when comparing with GCNZ in two 
scenarios as our method can include hierarchy relationships 
between seen and unseen categories, which is useful to transfer 
learned knowledge to infer unknown objects. These observations 
further demonstrate the effectiveness of our proposed approach 
to visually reason unseen images. 
Table 1 Top-k accuracy for the different models on the CADSketchNet 
dataset using visual classifiers of unseen categories and unseen 
categories combined with seen categories  

Visual 
classifiers Models Hit@k(%) 

1 2 5 7 10 

Unseen 
categories 

Devise 4.2 13.0 34.3 49.0 67.4 
ConSE 4.8 13.2 38.2 50.4 70.5 
GCNZ 6.3 33.6 49.4 57.1 71.5 
HGCN 16.5 46.3 65.7 68.4 75.4 

Unseen + 
seen 

categories 

Devise 3.6 5.0 11.5 13.7 15.9 
ConSE 5.6 9.4 11.6 16.3 23.6 
GCNZ 7.8 13.6 23.3 27.2 32.1 
HGCN 13.9 16.9 38.6 43.9 50.4 

 
Qualitative results. Example images from unseen 

categories are displayed, and we compare the performance of our 
proposed HGCN with Devise, ConSE and GCNZ to predicate 
the top 5 categories from 18 unseen categories. For HGCN and 
GCNZ, we use the learned 18 unseen visual classifiers to classify 
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example images and obtain the top 5 highest probability among 
18 unseen classes. For ConSE and GCNZ, we infer the word 
embedding of the example images and find the nearest 5 word 
embeddings from 18 unseen categories. We observe that HGCN 
and GCNZ generally provide coherent top-5 results and Devise 
and ConSE also offer similar top-5 results. Our proposed method 
can have better performance compared with other models. All 
models struggle to predict the “wingnut” and tend to predict 
detail features, such as threads and cylindrical shapes; however, 
HGCN does include the wingnut category in the top-5 results. 
The reason is HGCN takes advantage of semantic distances to 
weight visual features and considers visual and semantic 
similarity at the same time when predicting labels.  
 
 

Test Image Devise ConSE GCNZ HGCN 

 

1. Screws 
and bolts with 
hexagonal 
head,  
2. Screws 
and bolts with 
cylindrical 
head,  
3. Cylindrical 
pins,  
4. Threaded 
rods,  
5. Grooved 
pins 

1. Wheel, 
2. Cylindrical 
pins, 
3. Radial 
contact ball 
bearings,  
4. Plugs,  
5. Threaded 
rods 

1. Radial 
contact ball 
bearings,  
2. Right 
angular 
gearings,  
3. Elbow 
fitting,  
4. Grooved 
pins,  
5. Chain 
drives 

1. Radial 
contact ball 
bearings,  
2. Fan,  
3. Impeller,  
4. Cylindrical 
pins,  
5. Chain 
drives 

 

1. Cylindrical 
pins,  
2. Threaded 
rods,  
3. Screws 
and bolts with 
cylindrical 
head,  
4. Screws 
and bolts with 
hexagonal 
head,  
5. Grooved 
pins 

1. Cylindrical 
pins, 2. 
Grooved 
pins,  
3. Radial 
contact ball 
bearings,  
4. Screws 
and bolts with 
cylindrical 
head, 
5. Threaded 
rods 

1. Radial 
contact ball 
bearings,  
2. Chain 
drives, 3. 
Cylindrical 
pins,  
4. Fan,  
5. Elbow 
fitting 

1. Elbow 
fitting,  
2. Right 
angular 
gearings,  
3. Chain 
drives,  
4. Radial 
contact ball 
bearings,  
5. T-shape 
fitting 

 

1. Right 
angular 
gearings,  
2. Radial 
contact ball 
bearings,  
3. Impeller,  
4. Grooved 
pins,  
5. Elbow 
fitting 

1. Radial 
contact ball 
bearings,  
2. Threaded 
rods,  
3. Chain 
drives,  
4. Cylindrical 
pins,  
5. Elbow 
fitting 

1. Screws 
and bolts with 
cylindrical 
head,  
2. Screws 
and bolts with 
hexagonal 
head,  
3. Cylindrical 
pins, 
4. Wheel, 
5. Grooved 
pins 

1. Wheel,  
2. Radial 
contact ball 
bearings,  
3. Cylindrical 
pins,  
4. Chain 
drives,  
5. Screws 
and bolts with 
cylindrical 
head 

 

1. Screws 
and bolts with 
cylindrical 
head,  
2. Cylindrical 
pins,  
3. Screws 
and bolts with 
hexagonal 
head,  
4. Threaded 
rods,  
5. Grooved 
pins 

1. Screws 
and bolts with 
cylindrical 
head,  
2. Cylindrical 
pins,  
3. Screws 
and bolts with 
hexagonal 
head,  
4. Threaded 
rods, 
5. Lock 
washers 

1. Threaded 
rods, 
2. Elbow 
fitting,  
3. Right 
angular 
gearings,  
4. Impeller,  
Lock  
5. Washers 

1. Lock 
washers, 
2. Elbow 
fitting, 
3. Impeller, 
4. Grooved 
pins, 
5. Wingnuts 

Figure 8 Test images from CADSketchNet and their corresponding top 
5 labels predicted by learned 18 unseen visual classifiers four different 
models. The correct labels are shown in bold. Examples are randomly 
picked from 18 unseen categories. 

5. DISCUSSION 
Fusion of visual and semantic similarity: The key point 

of visual reasoning is to transfer the visual knowledge from seen 
categories (source domains) to understand unseen categories 
(target domains). To achieve this purpose, it is usually necessary 
to explicitly explore the connections between seen categories 
and unseen categories for knowledge transformation. GCNZ has 
powerful capabilities in exploiting category relationships. 
However, it is weak in coalescing visual and semantic 
information when learning the visual classifiers. In other words, 
some visual classifiers may be tightly clustered together in the 
feature space because of their high visual similarities. However, 
these visual classifiers may not be semantically related to each 
other. We propose HGCN, which can manipulate the feature 
representation of a visual classifier by fusing its neighbors’ 
representation with different weights based on the hierarchy 
relationships using semantic distance 𝑑!, which can be regarded 
as the “knowledge distance”[3] or “semantic distance”[4] to 
measure the proximity between the source and target domains. 
The effect of semantic distance 𝑑! to the cross-category 
reasoning is pull images having both high visual and semantic 
similarities to the neighborhood of a certain visual classifier. In 
the qualitative results of the experiment, HGCN can include 
categories sharing the same parent or grandparent with the 
category of the test image. The reason is they have shorter 
knowledge distances. In Figure 8, for the test image “fan”, 
HGCN predicts “impeller” label which shares the same parent 
“rotor” with “fan”; “T-shape fitting” label is predicated for the 
test image “elbow fitting”, as they are children categories of 
“fittings”; “Chain drive” is predicated for the test image “wheel”, 
as “chain drive” is a nephew of “wheel”. However, GCNZ ranks 
visually similar categories higher and misses those semantically 
similar categories. The knowledge distance information provides 
the basis for guiding reasoning by fusing different degrees of 
visual knowledge from near and far distance categories. 

Analysis of the number of layers in HGCN: We perform 
an empirical evaluation to verify our motivation which is 
applying multiple layers to the GCN could cause a drop in 
performance. Table 2 illustrates the performance when using one 
layer or multiple layers to GCNZ and HGCN for top k accuracy 
evaluation using unseen visual classifiers. The dimensions of one 
layer or multiple layers in HGCN are the same as the dimensions 
of GCNZ. For GCNZ, multiple layers perform better than one 
layer. The reason is one layer can only mix the features of a node 
and its one-distance neighbors’ features. Meanwhile, multiple 
layers can integrate the features of neighbors from a long 
distance. However, for HGCN, multiple layers perform worse 
than one layer. The reason is HGCN utilizes a weighted 
adjacency matrix (WAM) to mix the features of a node and its 
short and long-distance neighbors’ features in one shot and uses 
different weights to determine the magnitude to integrate 
information from its neighbors. Therefore, multiple layers can 
bring potential concerns of making categories indistinguishable 
through redundant propagations. We can see that to have better 
performance of GCNZ, some experiments need to be done to 
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find an optimal number of layers. This effort is not necessary for 
HGCN.  
Table 2 Results for GCNZ and HGCN models with different sizes of 
layers when using unseen visual classifiers 

Models Hit@k(%) 
1 2 5 7 10 

GCNZ(6 layers) 6.3 33.6 49.4 57.1 71.5 
GCNZ(one layer) 5.2 20.3 44.5 52.8 69.9 
HGCN(6 layers) 14.4 41.7 61.4 66.3 74.8 

HGCN(one layer) 16.5 46.3 65.7 68.4 75.4 
 

Visual reasoning for design by analogy: Analogical 
reasoning applies the knowledge from a well-known domain (the 
source domain) to another less-known domain (the target 
domain). In this paper, visual reasoning is a type of analogical 
reasoning. Our proposed visual reasoning framework provides a 
way to transfer visual knowledge (visual classifiers) from the 
familiar (seen) objects to unfamiliar (unseen) objects using 
semantic knowledge (semantic embeddings and the hierarchy 
structure of different categories) to link these objects. Few 
researchers have developed a computational framework to 
support design by visual analogy through a semantic modality. 
With enormous amounts of labeled image data, deep learning 
methods have achieved impressive breakthroughs in various 
tasks. However, the need for large quantities of labeled images 
is still a bottleneck in the engineering design field. Our proposed 
framework can fulfill the need by learning the transferable visual 
knowledge from the seen dataset where ample labeled images 
are available and the semantic knowledge from seen and unseen 
categories to generalize to another dataset which includes 
labeled unseen images. By enlarging the image dataset, design 
by analogy can be empowered by exploring more domains. 

6. CONCLUSION 
In this paper, we propose a visual reasoning framework that 
unifies both visual and semantic modalities for design by 
analogy. In engineering design, many researchers have proven 
that a large assortment of visual displays can stimulate designers 
to make visual analogies and generate creative design 
concepts[3, 15, 34, 35]. The processes of visual reasoning are 
happening in designers’ minds. However, our research has 
demonstrated the potential of using convolutional neural 
networks and graph neural networks to mimic the visual 
reasoning processes. Through the model building and the 
experiment results, the following conclusions are drawn. 

1. The integration of CNN and HGCN are introduced to learn 
visual knowledge from source domains and transfer the 
visual knowledge to target domains based on their semantic 
distances. 

2. Hierarchy weighted adjacency matrix is proposed to mix 
short and long-distance neighbors’ information using only 
one layer in the HGCN, which can help distinguish neighbors 
based on semantic similarities. 

3. The visual reasoning framework can be utilized to create 
more labels for engineering component images to support 
data-driven design by analogy. 

A drawback of the proposed framework is the need to 
predefine the hierarchy structure of the categories every time we 
have a new dataset. In future work, we aim to investigate more 
semantic information about mechanical components, not only 
the category names but also attributes, such as functions. 
Meanwhile, advanced weighting mechanisms will be explored to 
further improve the performance of HGCN.  
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