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ABSTRACT 
Path planning and collision avoidance are common 

problems for researchers in vehicle and robotics engineering 
design domains. In the case of autonomous ships, the navigation 
is guided by the Regulations for Preventing Collisions at Sea 
(COLREGs). However, COLREGs do not provide specific 
guidance for collision avoidance, especially for multi-ship 
encounter situations, which is a challenging task even for 
humans. In short-range path planning and collision avoidance 
problems, the motion of target ships is often considered as 
moving at a constant velocity and direction, which cannot be 
assumed in long-range planning and complex environments. The 
research challenge here is how to factor in the uncertainty of the 
motion of the target ships when making long-range path plans. 
In this paper, we introduce a long-range path planning algorithm 
for autonomous ships navigating in complex and dynamic 
environments to reduce the risk of encountering other ships 
during the future motion. Based on the information of position, 
speed over ground, and course over ground of other ships, our 
algorithm can estimate the intentions and future motions of them 
based on the probabilistic roadmap algorithm and use a risk-
aware A* algorithm to find the optimal path that has low 
accumulated risk of encountering other ships. A case study is 
carried out on the real Automatic Identification Systems (AIS) 
datasets, and the result shows that our algorithm can help reduce 
multi-ship encounters in long-term path planning. 

Keywords: Autonomous ship, path planning, probabilistic 
roadmap, dynamic environment, risk assessment 

1 INTRODUCTION 
Maritime transport is the most economical way of 

transporting goods globally. Over 80% of international trading is 
carried out by sea [1]. Among all types of accidents, ship 
collisions are the main type on the ocean [2]. The International 
Maritime Organization (IMO) has carried out the International 
Regulations for Preventing Collisions at Sea (COLREGs) [3] to 
guide collision avoidance actions. COLREGs have defined three 
different situations of ship encounters, which are overtaking, 
head-on, and crossing. The responsibility of the encountered 
ships is also defined in COLREGs, which helps a ship determine 
whether it is a give-way ship or a stand-on ship and what action 
it should take to avoid collisions. However, COLREGs do not 
provide specific guidance for collision avoidance, and mariners 
must tell themselves what the situation is and what action they 
should take. In addition, the three situations defined in 
COLREGs only cover two-ship encounters. This leaves the 
multi-ship encounter a complex and risky situation, where a ship 
can be the give-way ship to one ship and be the stand-on ship to 
another ship at the same time. The safety of navigation still 
highly depends on the mariner’s experience and judgment. 
Nevertheless, human errors are the main cause of ship collisions 
[2].  

To overcome the human error in collision avoidance of 
ships, the autonomous or unmanned ship has become an 
important direction of research in the shipping industry. In most 
cases, the state of a ship can be described on a 2-D plane with its 
position and course (orientation). Many algorithms have been 
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carried out to do path planning and collision avoidance in 
dynamic environments where other ships are detected. Although 
these algorithms can make a short-range plan and avoid collision 
with the existence of other dynamic obstacles, most of them 
assume that all target ships are moving at a constant direction 
and velocity, which may be violated in long-range cases. Another 
common assumption is that the encounter of ships happens in the 
open area, which is not true in complex environments, such as 
San Francisco Bay area. 

In this paper, we propose a path planning algorithm to 
reduce the risks of the autonomous ship encountering other ships 
in long-range motion in complex and dynamic environments. 
Our approach does not rely on the constant direction and velocity 
assumption, and the path planned by our algorithm is based on 
the estimation of the intentions of other ships. Our algorithm can 
help autonomous ships, as well as human mariners, to avoid 
complex encountering situations and thus improve the safety of 
navigation. 

The rest of the paper is organized as follows: Section 2 
provides a review of related work in path planning in complex 
and dynamic environments, including their assumptions and 
limitations. Section 3 describes our proposed method to estimate 
the intention and future position of target ships and plan the path 
with a probabilistic roadmap and risk-aware A* algorithm to 
reduce the risk of encountering target ships. Section 4 shows the 
case study conducted on the real Automatic Identification 
Systems (AIS) data. In Section 5, a detailed discussion on the 
result of the case study is presented. The last section concludes 
and points out the limitation and future directions. 
 
2 RELATED WORK 

Path planning has been a hot research topic for years. The 
collision avoidance of ships and Autonomous Surface Vehicles 
(ASV) can be modeled as a path planning problem in dynamic 
environments. Due to the limited control capability of ships and 
ASVs, constraints on ship dynamics are usually considered in the 
planning, which makes the problem more complicated.  

Many researchers used variants of a rapidly-exploring 
random tree (RRT) to do the planning. RRT is a sampling-based 
algorithm that is efficient at finding a feasible path from the 
starting point to the goal. By adding constraints in the process of 
tree growth, RRT can be used to produce a smooth path that is 
friendly to the ship dynamics. Sun, Zhao, and Zhang used bi-
directional RRT and Dijkstra’s algorithm to plan the path in 
narrow water areas [4]. Zaccone and Martelli designed a multi-
objective cost function of RRT* and generated a collision-free 
path in dynamic environments [5]. This work is later expanded 
to find COLREGs-compliance path by introducing the vector 
representation of collision avoidance rules in the RRT* 
algorithm [6]. Chiang and Tapia stored the joint state of ships in 
each RRT node, so a forward simulation can be conducted to find 
a COLREGs-compliance path [7]. Assuming that the target ships 
are moving at constant velocities, RRT can be used to find a 
collision-free path that satisfies the COLREGs regulations and 
ship kinematic or dynamic constraints. 

As a popular path planning algorithm in the robotics area, 
the artificial potential field (APF) algorithm can also be applied 
to find safe trajectories for ships. Naeem, Henrique, and Hu 
introduced the COLREGs zones to the target ships so that the 
trajectory produced by APF can adhere to the COLREGs 
regulations [8]. Mei and Arshad proposed a smart algorithm that 
can identify the encounter situation and determine whether the 
ASV should obey the COLREGs while avoiding other ships [9]. 
Lyu and Yin modified the repulsion potential field function and 
their algorithm showed impressive performance in simulation 
with 5 static obstacles and 11 target ships randomly changing 
courses in a large open area [10].  

Some other researchers modeled the path planning problem 
as an optimization problem and use heuristic methods to solve it. 
Evolutionary algorithms can be applied to find an optimized path 
in complex or dynamic environments. Lazarowska proposed an 
approach of path planning in dynamic environments based on the 
Ant Colony algorithm [11]. Tam and Bucknall designed a path-
planning algorithm based on an evolutionary algorithm to find a 
collision-free trajectory when the future motions of all obstacles 
are known [12]. Wang, Yao, and Duo developed a trajectory 
optimization algorithm with an improved grey wolf optimizer 
[13]. The algorithm can find the optimal path in complex 
situations with multiple statical obstacles and known 
environmental disturbances such as water current. Kang and his 
team carried out a ship domain model and used particle swarm 
optimization to find the collision-free trajectory in two-ship 
encounters [14]. A path optimization method using a genetic 
algorithm is introduced by Kim and his team, which considers 
the environmental loads [15]. These studies have shown that 
evolutionary algorithms can be used in the path planning of ships 
in different complex situations, and constraints can be applied to 
the problem by setting proper fitness/evaluation functions. 

Recent progress in deep reinforcement learning has pointed 
out a new way to solve collision avoidance problems. Liu and 
Jin studied the knowledge transfer in reinforcement learning-
based collision avoidance [16]. Wu and his team proposed the 
deep reinforcement learning method ANOA and achieved a 
higher success rate than Recast navigation method in dynamic 
environments [17]. Both results have shown that when properly 
designed and trained, reinforcement learning-based methods can 
achieve excellent performance in collision avoidance. 

Besides the methods mentioned above, researchers have 
also tried many other algorithms to deal with the collision 
avoidance problem. Singh and his team proposed an A* 
approach that can deal with both static and dynamic obstacles 
and environmental conditions such as current and wind [18]. 
Different variants of the fast marching method are developed and 
can produce decent solutions to collision avoidance in dynamic 
environments [19] [20] [21]. Williams and Jin designed a risk 
assessment method and provided a flexible and safe path in 
situations where the future motion of target ships is unknown 
[22]. He et al. modeled a fuzzy PID controller to meet the 
COLREGs during collision avoidance [23]. Song and his team 
applied fuzzy rules with the eccentric expansion of obstacles to 
produce COLREGs-compliant plans [24]. Campbell and Naeem 
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designed a rule-based heuristic A* algorithm to meet the 
regulations of COLREGs [25]. All these algorithms have 
displayed the capability of finding collision-free paths in 
dynamic environments. 

From the algorithms mentioned above, one can find that the 
current research is focused on the short-range collision 
avoidance problem. These algorithms usually assume that all the 
target ships are moving at a constant velocity, and the encounter 
happens in an open area. Although some of them do not rely on 
the constant velocity assumption [10] [22] or can handle 
encounters in complex environments [19], none of them 
discusses the situations where the environment is complex, and 
the future motion of target ships is unknown. In this paper, we 
address the problem of design under uncertainty: how we can 
model the risks in complex environments when the future motion 
of target ships is unknown, and how this risk modeling can help 
autonomous ships in path planning. 
 

 
(a) (b) 

 
Figure 1: (a) San Francisco Bay on a regular nautical chart; (b) The 
extracted pixel map from ENC (ENC ID: US3CA14M). The land areas 
are in white, and the water areas are in black. 
 
3 METHODS 

When the future motion of the target ships is unknown, we 
cannot predict their exact positions. Instead, our proposed 
algorithm will estimate the intention of target ships and find 
possible paths they will take. A risk model is developed to assess 
the level of probability of encountering target ships at a certain 
position in the future, and the risk-aware A* algorithm is applied 
to find a path with low accumulated risk of encounters. In this 
paper, the phrase “target ship” refers to all other ships, and the 
phrase “own ship” refers to the ship under our control. 

 
3.1 Studied area and data 

 We choose San Francisco Bay as the area of interest, as 
shown in Figure 1(a). Several ports locate in this area, and over 
100 ships are anchored here. In busy hours, there are more than 

50 ships moving in the Bay, from ocean to port, port to port, port 
to the ocean, etc. This makes it hard to predict the motion of 
target ships since we do not know their intentions. These ships 
will not move in straight lines, and they may also change the 
speed due to the complex environment and encounter situations.  

The nautical chart we use in this research is from the 
National Oceanic and Atmospheric Administration1 (NOAA), 
which provides such maps of the ocean in different formats. Our 
work is based on the electronic nautical chart (ENC). We 
selected the longitude from 122.67 W to 122.22 W and latitude 
from 37.54 N to 38.17 N, extracted the information of the land 
area from the ENC, and constructed a pixel map, as shown in 
Figure 1(b). The white areas represent the land areas, while the 
black areas are the water areas. The length change of a degree of 
longitude or latitude is neglected due to the scale problem and is 
estimated at (37.84 N, 122.40 W). The ratios are 87.81 km per 
longitude degree and 111.19 km per latitude degree. In this map, 
each pixel represents a “10m x 10m” square, which finally 
produces a map size of 7004 * 3951. 

Currently, most ships are required to be equipped with the 
automatic identification system (AIS), which keeps publishing 
and receiving the ship information every 2-10 seconds, including 
the ship’s identity (Maritime Mobile Service Identity, MMSI), 
position (longitude and latitude), course (direction of motion, in 
degrees), and speed (in knots). The AIS system can build ship-
to-ship and ship-to-port communications, which provides more 
information to mariners and helps improve navigation safety.  

There exist many public AIS datasets, and one can also 
collect his own data with an AIS device. In this research, we use 
the public data from MarineCadastre2. MarineCadastre has 
provided daily AIS records since 2018, which includes the 
MMSI, record time, longitude (LON), latitude (LAT), course 
over ground (COG), speed over ground (SOG), and heading. We 
built our test case with the AIS data recorded on 07/04/2020. 

 

 
(a) (b) 

 
Figure 2: (a) AIS records at 21:00, 07/04/2020 (𝑆𝑆𝑆𝑆𝑆𝑆 ≤  0.5) (b) All 
ship trajectories recorded on 07/04/2020 

 
1 https://www.noaa.gov/ 

 
2 https://www.marinecadastre.gov/ 
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3.2 Intention estimation 
Figure 2(a) shows all the latest AIS data whose SOG is less 

than 0.5 knots (around 0.26 m/s) recorded at 21:00, 07/04/2020. 
These ships are regarded as anchored or stopped, and the speed 
is caused by either wind or water current. All the ship trajectories 
are plotted in Figure 2(b). The ships are not taking random 
actions or steers during the motion. Instead, most of them have a 
clear destination, e.g., moving to a port or into the ocean. This 
makes the intention estimation possible, and our approach 
assumes that each ship has its own destination. 

The first step is to choose some positions as the possible 
destinations. Besides the water area on the margin of the map, a 
port or an anchoring area on the map can also be a destination. 
Thus, we collect the AIS data recorded at 21:00 with SOG ≤
 0.5 and use hierarchical clustering to determine the possible 
destinations. The distance threshold of the clustering is set as 400 
pixels, and the median of each cluster is then used as a possible 
destination. The position of all the possible destinations is shown 
in Figure 3. 

 

 
(a) (b) (c) 

 
Figure 3: (a) The clusters of all stopped ships shown in different colors; 
(b) The median of each cluster; (c) All the possible destinations shown 
in green squares (cluster medians + water area on margin of the map) 

 
To estimate the level of intention to a certain destination, we 

need to compare the current movement with the path leading to 
that destination. If the current motion of the ship aligns with the 
path, there is a high probability that the ship will follow that path 
in the future motion. However, each pixel of the water area in the 
map can be the possible position of a ship. This requires the 
algorithm to find the path from each pixel to each destination 
efficiently.  

Our approach uses a modified probabilistic roadmap 
algorithm (PRM). PRM is a popular sampling-based path 
planning algorithm in robotics [26] [27] [28]. In our problem, we 
need to find paths from different positions to the same 
destination. We initialized the vertex set with the position of all 
possible destinations and did random sampling in the water area 
to build a roadmap. The vertex number is set to 15,000, and the 
max neighbor number of each vertex is set to 16. This roadmap 

covers the water area on the map and can be used to generate a 
path from each vertex to each destination.  

Noticing that the optimal path from a vertex to a destination 
is also the optimal path from the destination to that vertex, we 
can build a tree from the destination vertex and span it to cover 
the space so that a path on the tree is the optimal path from the 
vertex to the root. Such a tree is referred to as the destination tree 
in this paper. Here we use a modified Dijkstra’s algorithm [4] to 
build the destination tree. Since ships have only the limited 
steering capability, a steering cost is introduced to build the tree. 
The path cost is defined as Eq. (1-4). 
 

       (1) 
 

          (2) 
 

 (3) 

 

  (4) 

 
𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉  are vertices on the roadmap, and 

�𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘�, �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸 are edges on the roadmap. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� is 
the length of the edge �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�, and is calculated by the Euclidean 
distance. 𝜑𝜑𝑖𝑖,𝑗𝑗  is the course angle from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗. The pseudo-
code of the construction of the destination tree is shown in 
Algorithm 1. 

 
Algorithm 1. construct_destination_tree 
Inputs: vertex_set (V), edge_set (E), root_vertex (d) 

1. heap = [ [0, d] ]  # heap of [cost, Vertex()] 
2. destination_tree = empty 
3. visited = empty set    
4. while heap is not empty: 
5.   cost, vertex = heap.pop() 
6.   if vertex not in visited: 
7.     add vertex to visited 
8.     add vertex to destination_tree 
9.     for neighbor in E[vertex]: 

10.       calculate the new_cost of neighbor by Eq. (1-4) 
11.       push [new_cost, neighbor] into heap 
12.     end for 
13.   end if 
14. end while 
15. return destination_tree 

 
The PathCost consists of the cost of path length and 

accumulated steering cost. The steering cost is defined in Eq. 4 
and encourages smooth turn. A max function is used in the 
SteerCost in Eq. 2 to avoid the situation where a sharp turn is 
made to reduce future steering costs. In our case, 𝛼𝛼 = 1000,
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𝛽𝛽 = 0.1. Some examples of the destination trees are shown in 
Figure 4.  

 
 

 
(a) (b) 

 
(c) (d) 

 
Figure 4: The path from each node of the tree to the root is the optimal 
path to the root regarding the distance and steering cost. The roots are 
shown in green squares. (a) roadmap built by PRM; (b) root = (1674, 
3409); (c) root = (2788, 4320); (d) root = (1500, 2211) 

 
The intention of each ship is then modeled by the level of 

alignment between the current motion of the ship and the optimal 
path to each destination. Due to the wind/water current on the 
ocean, a ship may change its heading to counteract the drifting. 
Thus, we use the true direction of motion, which is the COG, to 
evaluate the intention of a ship. A cosine distance is used to 
determine the intention weight for each destination. Given the 
current position and COG of a ship, the closest vertex on the 
roadmap is selected as the starting point, and a path from this 
vertex to each destination is found on the destination trees. The 
intention score is calculated by Eq. (5).  

 
       (5) 

 
In Eq. (5), COG is the course angle of the ship, and 𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚 is 
the course angle from 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  to 𝑣𝑣𝑚𝑚 , where 𝑣𝑣𝑚𝑚  is the first 
vertex along the path that satisfies the length of 
𝑃𝑃𝑃𝑃𝑃𝑃ℎ(𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑣𝑣𝑚𝑚) is greater than 100-pixel length. The weight of 
each destination is calculated by the IntentionScore by Eq. (6).  
 

      (6) 

 
By applying Eq. (6), the weight of each destination will sum 

up to 1. d is the index of possible destinations. The 𝜆𝜆 is a user-
defined coefficient and is set to 𝜆𝜆 = 7 in our case.  
 

 
(a) (b) 

 
(c) (d) 

 
Figure 5: Possible paths a ship may take given its initial position and 
course angle. The line width represents the weight of the path. (a) pos = 
(2500, 1800), COG = 60; (b) pos = (2800, 3000), COG = 160; (c) pos = 
(2500, 2000), COG = 210; (d) pos = (2500, 3500), COG = 180. 
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A visualized result of the weight destination and path is 
shown in Figure 5. The path to each possible destination is drawn 
with a green line, and the line width represents the weight of the 
path, which shows the level of intention that the ship will follow 
that path.  
 
3.3 Risk modeling 

After we get all possible paths that a ship may take and the 
corresponding weights of the paths, we can assess the risk of the 
own ship encountering a certain ship at a position in a future 
time. The position is estimated by assuming the ship is moving 
at a constant speed along the path, but a circle centered at that 
future position will be regarded as a risky area since the ship will 
not strictly move along the estimated path, and its speed may 
change during the motion.  

Considering that the average speed of the ship can be 
different from that in the latest AIS record, as time goes on, the 
error of future position estimation will become larger and larger. 
Thus, we use a Gaussian model with time-varying variance in 
the sense that the long-term estimation will not be as reliable as 
a short-term estimation. The risk model is described in Eq. (7-8). 

 

                                                   
                                             (7) 

 
              (8) 

 
In Eq. (7), d is the index of possible destinations, and k is 

the index of target ships. The total risk value is calculated by 
summing up the weighted risk value received at position (x, y) 
from each target ship. The time-varying variance of the risk 
function is defined in Eq. (8). The selection of coefficients in Eq. 
(8) should be careful. On one hand, when the variance is too 
large, almost everywhere will be identified as risky, which is not 
meaningful; on the other hand, when the variance is too small, 
most of the area will be identified as not risky, which does not 
help the decision making. A good risk model should show better 
performance in the risk value by intention estimation than that 
by the constant speed assumption. It remains an open question 
how to select the coefficients. In this paper, the coefficients are 
selected arbitrarily, so that the average risk value received by the 
intention estimation at the true future position of target ships is 
higher than that by the constant speed estimation. In our case, 
𝜎𝜎0 = 10 and 𝜎𝜎1 = 0.02. 

 
3.4 Risk-aware A* algorithm 

A modified risk-aware A* algorithm is used in this study to 
find a path on the roadmap with a low cost for the own ship. The 
cost function is defined as a weighted sum of the distance cost, 
steering cost, and risk cost, as defined in Eq. (9-13).  
 

   
                                    (9) 

 

          (10) 
 

  

                                           (11) 
 

   (12) 
 

        (13) 
 

Like the definition in Eq. (1-4), 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘 ∈ V are vertices 
on the roadmap, and �𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘�, �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ E  are edges on the 
roadmap. The 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 in Eq. (13) is the position of vertex 𝑣𝑣𝑖𝑖, and 
𝑡𝑡𝑖𝑖 is the arrival time of that vertex. Thus, for the same vertex on 
the road, the arrival time and the cost may differ if the parent 
path is different.  

Notice that when there is no target ship, the risk value will 
be zero, and the path cost will only depend on the distance and 
steering cost. Thus, like how we build the destination tree, we 
can build a tree from the goal vertex using the cost function from 
Eq. (9-12) with zero risk cost. The path from each vertex to the 
goal vertex on the goal tree is the optimal path when there is no 
target ship, and the cost received at each vertex on the goal tree 
will be used as the heuristic distance in the risk-aware A*. The 
pseudo-code of the risk-aware A* is shown in Algorithm 2.  
 

Algorithm 2. risk-aware A* 
Inputs: vertex_set (V), edge_set (E), start_vertex (s), 
goal_vertex (g), goal_tree(GT) 

1. heap = [ [0, 0, None, s] ]  # heap of [cost_f, cost_g, 
parent, Vertex()] 

2. child_parent_set = empty set    
3. visited = empty set   
4. while heap is not empty: 
5.   cost_f, cost_g, parent, vertex = heap.pop() 
6.   if vertex == g: 
7.     break 
8.   end if 
9.   if vertex not in visited: 

10.     add vertex to visited 
11.     add [vertex, parent] to child_parent_set 
12.     for neighbor in E[vertex]: 
13.       calculate cost_g of neighbor by Eq. (9-13) 
14.       cost_h = cost_from_GT(neighbor, GT) 
15.       cost_f = cost_g + cost_h 
16.       push [cost_f, cost_g, vertex, neighbor] into 

heap 
17.     end for 
18.   end if 
19. end while 
20. path = find_path_from(child_parent_set) 
21. return path 
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The risk-aware A* algorithm is complete in space, which 
guarantees to visit every vertex in the connected graph (V, E). 
However, each node will only be visited once, which implies that 
the solution is not complete in the time domain. That is to say, 
the risk-aware A* will try to find a smooth path with low risk 
instead of taking a detour or even circular motions to find a risk-
free path. 

 
4 CASE STUDY 

Our proposed algorithm is applied to make a long-range plan 
in complex environments. Our algorithm aims to reduce the 
duration of encounters and the number of ships encountered at 
the same time, thus reducing the complexity of the encountering 
situation and helping autonomous ships make safe navigation 
decisions.  

 

 
(a) (b) 

 
(c) (d) 

Figure 6: A sample path taken by the proposed risk-aware A* in one of 
the test cases. The own ship and the path are shown in green. (a) t = 0; 
(b) t = 1970; (c) t = 3940; (d) t = 5910. 

 
4.1 Environment setup 

The test data comes from the true AIS records on 7/4/2020. 
We used the data recorded from 21:56:57 to the end of the day 

and selected the ship with MMSI 477655900 as our reference 
ship.  

The position of the reference ship at 21:56:57 is used as the 
starting point, and the position recorded at 22:59:56 is used as 
the goal point.  

The SOG recorded at the starting point is 10 knots (around 
5.14 m/s). The length of the recorded path of the reference ship 
is 29.62 km. The reference ship accelerated during the motion, 
and it took the reference ship about an hour to reach the goal 
point.   

In our case study, we remove the AIS records of the 
reference ship and use all the remaining AIS records to rebuild 
the situation. Our proposed algorithm is used to estimate the risk 
in the environment, and the risk-aware A* is applied to find a 
path from the starting point to the goal point. Considering that 
many of the ships are stopped, we set a sog_threshold to trigger 
the intention estimation. Only those whose SOG is greater than 
sog_threshold will use the intention estimation to assess future 
risk. Otherwise, the future position of the ship will be predicted 
by assuming it is moving at a constant velocity. For example, 
when sog_threshold is 2, the risk value from those whose SOG 
is less than 2 knots will be estimated by letting them move 
forward at the speed of 2 knots, and the future position and risk 
of those moving faster than 2 knots will be estimated by letting 
them follow the paths leading to the possible destinations. 

 

 
(a) (b) 

 
Figure 7: The paths taken by the planner based on intention estimation 
and constant velocity assumption on 10 randomly generated roadmaps. 
The yellow path is a human-taken path recorded in AIS data. (a) the 10 
paths taken by the planner based on intention estimation (green); (b) 
the 10 paths taken by the planner based on constant velocity assumption 
(red). 
 

The own ship plans a path at the beginning of motion with 
the latest AIS data received at that moment and follows the 
planned path with constant speed without further planning. The 
planned path of one test case is shown in Figure 6. The own ship 
needs to find a safe path to go through the narrow area, where 
there are ports on either side, and a lot of ships are moving in this 
area. It is inevitable to encounter other ships in such a situation, 
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and our objective is to minimize the duration of encounters and 
reduce the number of ships encountered at the same time.  

 
4.2 Results 

In this case study, we compare the result of the plan using 
intention estimation with the plan assuming all ships moving at 
constant velocity. This comparison is realized by setting 
different sog_threshold. When sog_threshold is set to 2 knots, 
the intention estimation is activated, and the risk will be analyzed 
based on the possible path a ship may take. When sog_threshold 
is set to infinity, the future position will be barely predicted with 
the constant velocity assumption.  

The effect of different weights 𝛾𝛾 of risk cost is also shown 
in the result of the case study. By setting different values, the 
level of risk tolerance can be modified to decide whether the own 
ship will take a shortcut with a higher risk of encounters. Since 
the roadmap construction depends on random sampling, we 
generate 10 roadmaps and test the performance of both planners 
on them. The result of the case study is shown in Table 1, and 
the human performance is also listed in Table 1.  

The performance is evaluated by the path length and the 
duration of encounters. In this case, if a ship appears within 0.5 
nautical miles (0.926 km) to the own ship, it is regarded as 
encountered. Considering that encountering multiple ships at the 
same time is more complex, we show the duration of encounters 
by the number of ships encountered. The duration of 
encountering at least 1 ship, at least 2 ships, and at least 3 ships 
are shown in Table 1. We can see that the mean path lengths of 
the two planners are similar, but the encounter duration of the 
one based on intention estimation is much shorter than the one 
based on the constant velocity assumption. The paths taken by 
the two planners are plotted in Figure 7. Although the paths by 
the two planners look similar, Table 1 shows that the 
performance of our proposed algorithm is much better, which 
proves that the intention estimation can make a better assessment 
of the future risk.  

 
5 DISCUSSION 

As shown in Table 1, our proposed algorithm for 
autonomous ships outperforms the planner, which assumes all 

ships are moving at a constant speed. The average lengths of the 
paths planned by the two planners are similar, but the duration 
of encounters by our proposed algorithm is much shorter. Our 
algorithm can better assess the risk of encountering other ships 
in the long term. It takes the own ship around 100 minutes to 
reach the goal, and the constant velocity and course direction 
assumption no longer hold in such a long-time horizon in 
complex environments.  

Our algorithm utilizes the information gained from the map 
and the AIS data and finds possible destinations for each ship. 
Since the optimal path from the goal to a starting point is also the 
optimal path from that starting point to the goal, it is possible to 
construct a goal tree for each destination that spans the water area 
and provides a near-optimal path from each point in the water 
area to the destination. By this approach, the pathfinding task for 
each ship to each destination can be reduced to the problem of 
finding the closest vertex on the destination tree and retrieving 
the path from the tree.  

This makes it possible to include the risk assessment in the 
risk-aware A* algorithm. Since the construction of the roadmap 
and the destination trees just need to be done once, the time 
complexity of the risk calculation at each vertex is 𝑂𝑂(𝑁𝑁 ∙ 𝐷𝐷 ∙
log (𝑝𝑝)), where N is the number of ships, D is the number of 
possible destinations, and p is the number of vertices on the path. 
The overall complexity of the risk-aware A* algorithm is 
𝑂𝑂((|𝑉𝑉| + |𝐸𝐸|) ∙ 𝑁𝑁 ∙ 𝐷𝐷 ∙ log (𝑝𝑝)) , where |V| and |E| are the 
number of vertices and edges on the roadmap, respectively.  

From Table 1, the path planned by human shows better 
performance in the duration of encountering at least 3 ships. This 
result is reasonable since the human keeps receiving real-time 
information and has more flexibility in the control of the ship. 
The human can change the speed of the ship to drive through 
risky areas quickly, and the real-time information also helps the 
human to modify the plan according to the situation.   

Currently, this algorithm does not satisfy the real-time 
requirement. It takes around 16 minutes and 40 seconds for a 
gaming laptop to generate a plan in such a complex environment 
in the test case. The code is written in Python, and the calculation 
is done by an AMD Ryzen 7 5800H CPU with 3.20 GHz speed 
and 16 GB RAM. During the planning, the risk value at each 

Table 1. Performance comparison of different planners on the 10 randomly generated roadmaps. 

Planner Weight of 
RiskCost 

(γ) 

SOG 
threshold 
(knots) 

Path length 
(km) 

Duration 
(encounter ≥ 1) 

Duration 
(encounter ≥ 2) 

Duration 
(encounter ≥ 3) 

Human / / 29.62 1910.0 657.0 10.0 

Constant 
velocity 

10000 infinity 29.45 2206.9 728.1 143.1 

Constant 
velocity 

20000 infinity 30.05 2054.1 623.4 158.9 

Intention 
based 

10000 2 29.46 2065.0 609.0 54.7 

Intention 
based 

20000 2 30.19 1900.2 475.2 45.1 

       
 



 9 © 2022 by ASME 

vertex is the sum of the risk value by each target ship, and the 
risk value of each target ship is calculated in parallel by 16 
threads. The complexity of the proposed algorithm grows 
linearly with the number of ships. In the test case, there are more 
than 200 ships in this area, and over 50 of them are moving. 
Future studies on intention modeling and risk assessment are 
needed to improve the efficiency of the algorithm. 

 
6 CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced a risk-aware path planning 
algorithm for autonomous ships navigating in complex and 
dynamic environments. Hierarchical clustering is applied to 
determine all possible destinations of other ships, and a 
pathfinding algorithm based on probabilistic roadmap algorithm 
and modified Dijkstra’s algorithm is developed to find the 
possible path an unmanned ship may take. This approach does 
not rely on the constant velocity assumption, which is common 
in similar research.   

A time-varying Gaussian model is used to assess the risk of 
encountering a ship at a future time. Our proposed algorithm will 
find a path with a low risk of encountering other ships. The risk-
aware A* algorithm can be used to reduce the duration of 
encounters and reduce the number of ships encountered at the 
same time. This helps lower the complexity of encounter 
situations and can help autonomous ships make safe navigation.  

The proposed algorithm can make a long-range plan in 
complex and dynamic environments. In the test case, it takes the 
own ships 100 minutes to reach the goal, and the risk of 
encountering other ships can be properly assessed by our 
algorithm. Our algorithm has a much shorter duration of 
encounters against the same planner with the constant velocity 
assumption. This implies that the constant velocity assumption 
does not hold in such a complex situation, and our algorithm can 
handle the situation well. The average encountering time of the 
paths planner by our algorithm is comparable to that of the 
human.  

However, the human path has a longer duration 
encountering at least two ships and a shorter duration 
encountering at least three ships. This implies that the human is 
sacrificing the overall duration of encounters to avoid the 
complex situation of encountering many ships at a time. Thus, 
the detailed modeling of different encountering situations will be 
one of our future research directions. Another direction is to 
improve the efficiency of the risk assessment algorithm. The 
current approach takes all target ships into consideration, while 
many of them may not be threatening to the own ship. A better 
risk assessment process will be developed in our future research 
for developing a highly intelligent path planning and collision 
avoidance framework for autonomous ships.  
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