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ABSTRACT 
The goal of this research is to develop a computer-aided 

visual analogy support (CAVAS) framework that can augment 

designers’ visual analogical thinking by providing relevant 

visual cues or sketches from a variety of categories and 

stimulating the designer to make more and better visual 

analogies at the ideation stage of design. The challenges of this 

research include what roles a computer tool should play in 

facilitating visual analogy of designers, what the relevant and 

meaningful visual analogies are at the sketching stage of design, 

and how the computer can capture such meaningful visual 

knowledge from various categories through analyzing the 

sketches drawn by the designers. A visual analogy support 

framework and a deep clustering model, called Cavas-DL, are 

proposed to learn a latent space of sketches that can reveal the 

shape patterns for multiple categories of sketches and at the same 

time cluster the sketches to preserve and provide category 

information as part of visual cues. The latent space learned 

serves as a visual information representation that captures the 

learned shape features from multiple sketch categories. The 

distance- and overlap-based similarities are introduced and 

analyzed to identify long- and short-distance analogies. 

Extensive evaluations of the performance of our proposed 

methods are carried out with different configurations, and the 

visual presentations of the potential analogical cues are explored. 

The evaluation results and the visual organizations of 

information have demonstrated the potential of the usefulness of 

the Cavas-DL model. 

 

Keywords: Computational support for visual analogy 

making, visual similarity, unsupervised deep learning, design by 

analogy, sketching, fixation 

 

1. INTRODUCTION 

In engineering design, mental stimulation is useful to boost 

innovative solutions for ill-defined design problems. During 

conceptual design, designers, especially novices, usually 

struggle in choosing among various sources to gain insights 

when attempting to generate creative concepts. In our previous 

work, it has been shown that the shapes and structures, in 

addition to behaviors, of a design artifact tend to be more 

stimulating than the functions [1]. Researchers have observed 

that designers often search intensively for images from various 

websites for inspiration [2, 3]. Most existing design-dedicated 

analogy search tools and methods [4-6] require designers to 

initiate a search by entering keywords and use semantic-based 

approaches for fixation avoidance. Few computational tools 

exist to support design-by-analogy based on visual similarity 

analysis. The core research problem in this paper is to explore 

the roles of computational support for visual analogy and 

investigate how to learn visual features from raw image data, and 

discover potential short- and long-distance analogies relevant 

visual information based on visual similarities. 

Sketching is an efficient way for designers to have their 

brief and ambiguous ideas taking shapes on paper [7]. The 

briefness accelerates the transformation of a rough thought into 

a reality. The ambiguity of an open-ended visual representation 

contributes to more possible interpretations. Sketching in 

conceptual design provides potentially meaningful clues for a 

designer to infer emerging design concepts [8, 9]. The inspiration 

of sketches mostly comes from the shapes and the relationships 

among them. Designers can manipulate given shapes in imagery 

and combine them into meaningful and even new concepts in a 

short time. Sketching can reflect premature design ideas in 

designers’ minds, and it is also an ideal stimulant to facilitate 

yjin
Text Box
This paper received the 2021 ASME Design Theory and Methodology Award

yjin
Text Box
2021



2 © 2021 by ASME 

creative idea generation. Therefore, it is important to develop a 

computational tool to support designers in generating more 

creative ideas by stimulating their visual thinking process. 

Research has been done to investigate visual analogy in the 

field of design. Goldschmidt and colleagues demonstrated that 

visual analogy is considered as an effective cognitive strategy to 

stimulate designers to create innovative concepts for solving ill-

structured design problems [10-12]. For novel idea generation, 

the use of visual stimuli outperforms words [13, 14]. In design, 

shapes may represent semantic concepts and objects to reflect 

designers’ understanding of the visual world. From a cognitive 

point of view, when making a visual analogy, designers can map 

shapes from high (geometric) dimensions to low (symbolic, 

conceptual) dimensions [15, 16]. At the low dimensions, they are 

capable of interpreting and detecting the similarities between 

shapes in the same or different categories. It means that designers 

can abstract perceptual information to some shape patterns 

which represent the shape features in a cognitive space [17]. In 

that space, they can manipulate and transform shapes by 

exploiting their domain knowledge. From an engineering design 

point of view, the high-dimensional geometric features signify 

the lower-dimensional semantic features [18, 19], meaning that 

the high-dimensional shape features can be reduced to a space of 

a low dimensionality that still preserves the underlying patterns, 

constraints, and configurations. It is more efficient to explore and 

exploit the low-dimensional design space to discover novel 

designs. In a similar spirit, computationally transforming high 

dimensional image sketches represented as pixels into low 

dimensional ones captured as features can, on the one hand, keep 

the underline shape patterns of the sketches, and on the other 

hand, allow the efficient computational shape analysis for 

preserving semantic meanings. An important question is: how 

can a computation tool learn a low dimensional space, called 

latent space, which can capture the shape patterns of sketches 

from multiple categories? 

The precondition for making a visual analogy is a visual 

similarity existing between the source and target domains [2]. In 

most research on searching for visual stimuli, the magnitude of 

visual similarity is qualitatively determined by designers [19, 

20]. A notion of distance is central to measure visual similarity. 

In the latent space, sketches are distributed based on their shape 

features. Clustering is an essential data analysis and visualization 

tool and provides a way to group sketches in the latent space 

based on the visual similarity. The traditional way of using a deep 

neural network for clustering images is not sufficient as it needs 

to do the training for extracting shape feature vectors first and 

then apply clustering algorithms on the extracted features into 

group images. Hence, the second research issue is: given a latent 

space for representing shape features from raw pixels, how can 

a tool effectively cluster sketches into different shape groups 

based on their inherent shape patterns and analyze the short- 

and long-distance analogies based on the shape similarity? 

In this paper, unsupervised deep learning techniques are 

applied to build a model, called CAVAS through deep learning, 

or Cavas-DL for short, to learn a low dimensional latent space, 

in which shape patterns can be found to distill shape features of 

the sketches from multiple categories. A clustering layer is 

constructed to directly cluster images in the latent space during 

the training process. The distance- and overlap-based similarities 

are introduced to quantitatively measure visual relationships 

between one category and other categories in the latent space and 

determine short- and long-distance analogies for each category. 

Besides, the connections between different groups of categories 

are identified to explore how visual analogies can happen. 

2. RELATED WORK 

2.1 Computational tools for design by analogy 
Design-by-analogy consists of two main steps: retrieving 

potentially inspirational information in the source domains and 

mapping the inspirational information from source domains to 

the target domain [21]. Designers often face difficulties when 

retrieving fitting inspirational sources. Therefore, using effective 

searching and retrieving tools has the potential to enhance 

design-by-analogy. 

Biological systems provide a fruitful source of inspiration 

for engineering design. Vincent and Mann proposed Bio-TRIZ, 

which adds biological information and principles into the TRIZ 

database [22]. Chakrabarti et al. created an automated analogical 

tool called IDEA-INSPIRE that searches relevant ideas from a 

biological database to solve a given design problem [23]. Shu et 

al. used natural language analysis to correlate functional basis 

terms with useful biological keywords [24]. DANE (Design by 

Analogy to Nature Engine) was proposed by Goel et al. to search 

and retrieve the functioning of biological systems in the 

Structure-Behavior-Function library [25]. Nagel et al. put 

forward a computational method to generate biologically 

inspired concepts based on function-based design tools [26]. 

AskNature is a web-based tool to interactively classify biological 

information in the Biomimicry Taxonomy [27]. 

Patent databases can offer enormous cross-domain 

technical knowledge to inspire designers. Murphy proposed a 

search methodology to identify inspiring patents which have 

functional similarity with design problems [28]. A computation 

method was put forward for clustering patents based on their 

functional and surface similarity; then, designers can 

automatically retrieve analogical stimuli from these patents [29]. 

As many patent retrieval computational tools focus on mining 

patents generally, Song and Luo proposed a data-driven method 

to retrieve patents precisely related to a specific product [30]. Fu 

et al. proposed a technological distance to measure the “near” 

and “far” analogical stimuli based on the relative similarity of 

clusters of patents [31].  

While the research into searching and retrieving analogies 

from biological systems and patents is prolific, the foundation of 

most research is in linguistics and semantic transfer for 

analogical reasoning. There are few computational methods and 

tools that support and guide visual analogy. Luo and his 

colleagues put forward visual analogy support tools based on 

visual maps of technology domains or technical concepts to 

guide the search for inspirations across domains or assist the 

analogical inference from concepts to concepts [32-34]. 
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However, the big difference between the visual cues in this paper 

with theirs is that our visuals are the images and graphics, 

whereas their visuals are the structures of relations among 

semantic constructs and design domains. 

2.2 Visual analogy in engineering design 
CAD, sketches, photographs, and line drawings are the 

major visual sources that promote analogical thinking [2]. In 

engineering design, many researchers used a large assortment of 

visual displays to stimulate designers to generate creative design 

concepts. Jin and Benami indicated that meaningfulness and 

relevance are the two overwhelmingly important creative 

properties of visual stimuli that influence design stimulation [1]. 

Yang et al. showed that the quality and realism of the design can 

be improved when sketching during concept generation [8]. 

Goldschmidt et al. demonstrated that visual stimuli are useful for 

both expert and novice designers to improve the quality of design 

and more effective for novice designers [11, 12]. Linsey et al. 

illustrated that designers often prefer visual representations to 

textual descriptions for idea generation, and photographs are 

growing in popularity due to easy retrieval from the Internet [35, 

36]. McKoy et al. showed that novice designers can generate 

higher quality and more novel design concepts when being 

presented with sketches rather than text-based examples [37]. 

However, displays of visual representations are less 

effective in producing creative design than reasoning by visual 

analogy. Casakin et al. found that if no instructions or directions 

are provided to guide visual analogy, the quality of the design 

solutions is mostly diminished [38]. It is often said that designers 

think more visually in their working environment. Designers are 

more likely to take advantage of shapes and forms of visual 

displays as stimuli to tackle given design problems [10]. Shape 

emergence means unexpected or implicit shape features and 

relations appear only after the manipulation and transformation 

of explicit shapes [15]. Visual imagery may provide a theoretical 

foundation for shape emergence in design by linking shape 

perceptions and cognitive processes of visual reasoning. 

Therefore, designers often take advantage of visual imagery to 

reinterpret and reformate underlying shapes from the visual 

stimuli for the idea generation. The precondition for shape 

emergence is shape ambiguity, which refers to the existence of 

numerous interpretations of the visual representation [39].  

Designers are prone to use sketches to represent rough 

ideas and obtain hints from the shapes of sketches [7]. The sketch 

is an informal visual representation that has the property of 

ambiguity; designers can perceive two or more different shapes 

from one single sketch. Therefore, sketches are an ideal source 

to serve as a visual stimulus. How to effectively support visual 

analogy from sketches remains a major research question in the 

design research community. 

2.3 Deep learning models for sketch representation 
Recent advances in deep neural network models drastically 

increased computers’ ability to learn a common and general 

feature space for sketches and images [40]. Karimi et al. used a 

supervised learning method to learn the feature vectors of 

sketches given the category labels and then create clusters of 

visually similar sketches based on the learned feature vectors 

[41]. Shuo et al. introduced a supervised CNN-based approach 

for patent image vectorization to support visual design stimuli 

retrieval in design-by-analogy [42]. However, in our research, 

the goal is to learn a latent space that represents the object shape 

features by using only lines and curves in the sketches rather than 

having the labels of categories. Therefore, an unsupervised 

learning approach is needed. Sketch-rnn is an unsupervised 

learning model based on Variational AutoEncoder (VAE) for 

constructing stroke-based drawings of common objects; it can 

mimic how humans sketch and draw similar but unique objects 

[43]. Sketch-rnn uses a bi-directional recurrent neural network 

(RNN) as an encoder to capture the features of training data in a 

latent space and applies an autoregressive RNN as a decoder to 

reconstruct data. However, the performance of sketch-rnn to 

extract shape features of objects from multiple categories is not 

satisfactory. 

In summary, a rich body of research on design by analogy 

has yet to be expanded by integrating the extensive work on 

visual analogy and advanced deep learning technologies. Our 

goal in this paper is to fill the gap of the three research areas by 

developing a computational method that can learn the visual 

similarity from sketches and provide highly effective visual 

stimuli to enhance the visual analogy of designers. 

3. CAVAS: A VISUAL ANALOGY SUPPORT 
FRAMEWORK 

Creative designers usually employ inspirational sources 

that are not directly linked to the design problem at hand, take 

advantage of incidentally presented cues, and tend to collect a 

wide range of ideas, sometimes seemingly irrelevant and highly 

dissimilar, that may lead to insights. Divergent thinking helps 

designers imagine the world from multiple perspectives, see 

problems in new ways and escape stereotypical thinking. There 

is significant anecdotal and experimental evidence [2, 12] for the 

importance of visual analogy to stimulate the originality and 

creativity of designers. Simply trying to think of or reason 

analogies and analogous domains is difficult even for 

experienced engineers. One of the main principles for enhancing 

analogical reasoning is to provide a variety of related effective 

cues.  

3.1 Major functions 
Following our previous work on the generate-stimulate-

produce (GSP) model of creative stimulation [1], a process of 

computer-aided visual analogy support, called CAVAS, can be 

introduced as shown in Figure 1. A designer initiates his/her 

design process by starting sketching. When the designer carries 

out the design alone, as shown in Figure 1(a), the sketches the 

designer generated will be perceived by the designer hence 

visually stimulate the designer and lead to further cognitive 

processes, such as association or analogy. The results of the 

cognitive processes will be the production of more design 

operations, such as sketching, which then will generate more 

sketches as design entities. The GSP process keeps going on as 

design ideas become clearer and design concepts are solidified.  
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The computer support in the proposed CAVAS is based on 

a human-computer interaction framework, in which the role of 

the computer is defined as “to augment the human designer’s 

thinking and imagination capability by providing highly relevant 

and stimulating visual cues to the designer at the right timing 

during the early idea shaping stage of design.” As shown in 

Figure 1(b), for a computer system, called the CAVAS system, to 

fulfill this role, it must possess the following six major functions, 

namely, learn, analyze, generate, extract, search, retrieve, and 
present. 

Learn and analyze previous designs from all available 

sources: The previous design materials such as sketches, CAD 

drawings, photographs, and line drawings in the open-source 

datasets are collected and converted into images. The visual 

patterns of these images can be learned and represented by the 

CAVAS system. The system can analyze the visual similarity 

between different domains based on the learned representations.  

Generate visual analogy databases: After learning and 

analyzing previous designs, the CAVAS system can generate 

visual knowledge in visual and textual formats, which captures 

the shape patterns of, and similarity relationships among, the 

visual components. The generated knowledge is stored in visual 

analogy databases, which can be reused and updated. 

Extract essential shape information, search, and retrieve 

visual analogies: The sketches drawn by designers are fed into 

the CAVAS system. The system can extract and represent the 

essential shape information from the sketches, search and 

retrieve the relevant visual cues in the visual analogy database. 

Present relevant visual cues: After the relevant visual 

cues are retrieved from the visual analogy database, the CAVAS 

system then presents the visual cues to designers in visually 

appealing ways so that the designers are stimulated to find 

appropriate source analogies from their memory and external 

databases. The visual cues should increase the chances for 

designers to retrieve relevant visual analogies. 

3.2 Visual augmentation processes 
Among the major functions in the CAVAS framework 

described above, learn and analyze functions are the key ones. 

Figure 2 shows the entire visual augmentation process, 

consisting of two main functions and six stages. 

Stage 1: Sketches are collected as previous designs. In this 

research, the visual cues to be used as visual stimuli are identified 

based on shape similarities. In the eyes of a particular viewer, a 

sketch could bear a resemblance to an object, person, animal, 

texture, or place. This ability of cross-domain transformation of 

shapes can provide a degree of diversity, ambiguity, and 

uncertainty in the information gathering and idea generation 

process, making it possible for designers to seek inspiration from 

other domains. 

Stage 2: Instead of identifying similar sketches in the 

enormously high dimensional pixel space, a dimension reduction 

approach is taken to transform images into a feature-based space 

where shape features are identified. Once this shape-feature 

based space, called latent space, is established, it becomes 

computationally feasible to analyze the sketches to provide 

relevant visual cues to the designers.  

Stage 3: The inherent shape patterns of collected sketches 

can be discovered by analyzing and comparing their shape 

features in the latent space. A soft clustering approach is taken to 

cluster the sketches into different shape clusters based on their 

“distances” in the latent space. Each sketch is assigned different 

probabilities of belonging to multiple groups, preserving the 

ambiguity essential for supporting designers’ visual analogy. It 

is assumed that 1) visually similar shapes should be clustered in 

the same group to represent one shape pattern and 2) the sketches 

of different categories, but belong to the same group, can be more 

effective in stimulating designers’ analogical thinking due to the 

shape similarity. 

Stage 4: As the clustering process converges, the size of 

each cluster becomes stable. A ratio is calculated based on 

dividing the number of cluster assignment changes by the total 

number of sketches. If it is smaller than the predefined threshold 

𝛿, then exit the learning process and jump to stage 5; otherwise, 

proceed to stage 2. 

Stage 5: Two metrics are introduced to analyze the visual 

similarity between sketches. The first metric is called distance-

based similarity, measuring the distances among centroids of 

different sketch categories in the latent space, shorter distance 

meaning higher similarity. The second metric is called overlap-

based similarity, which measures the amount of overlap among 

cluster probability distributions of different sketch categories,  

larger overlap meaning higher similarity. These two metrics 

work together to deal with different scenarios and provide more 

accurate measurements for visual similarity.  

Stage 6: Long- and short-distance analogies of each sketch 

category are identified based on visual similarity measures 

Figure 2: The process of learn and analyze functions in the CAVAS 

framework 

Figure 1: The proposed computer aided visual analogy support 

(CAVAS) in a human-computer interaction framework 
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mentioned above. Sketch categories with high visual similarity 

are classified as short-distance visual analogies, otherwise, as 

long-distance visual analogies. Bridge categories are identified 

to provide a way to discover valid long-distance visual analogies. 

The proposed visual augmentation process is applied to 

sketches from Quickdraw [44] as a case study. Sections 4 

presents the two main functions of the CAVAS framework. 

4. METHODS 

4.1 Learn shape representations and patterns with 
deep clustering  
As mentioned above, a dimension reduction approach is 

taken to learn about the low dimensional latent feature space of 

the given sketch datasets. Among various deep generative 

models for reconstructing images, variational autoencoder 

(VAE) is one of the most widely used techniques thanks to its 

good performance of generalizing and learning a smooth latent 

representation of the input images.  

Ha and Eck [43] proposed a sequence-to-sequence VAE for 

generating sketch drawings for completing a user’s stroke-based 

drawing sequence of common objects. In this model, the stroke-

based sketch drawings are captured as a recurrent neural network 

(RNN) that can carry out conditional and unconditional sketch 

generation. Partly due to its stroke-based modeling approach, 

however, it has a key limitation: low quality of learning latent 

representations of sketches from multiple categories. The 

limitation made it inadequate for CAVAS, as visual relationships 

between multiple categories need to be learned. 

To overcome this limitation, Chen et al. [45] replaced the 

RNN layers with CNN layers so that they can deal with pixel-

based sketches (i.e., images), making it possible to learn from 

multi-category sketches and generate a wide variety of sketches 

based on the user’s input. 

Since the CAVAS framework considers visual analogies 

from multiple categories, our model must learn from multi-

category sketches. Following [43], the CAVAS deep learning-

based sketch generative model, called the Cavas-DL model, is 

defined as follows.  

4.1.1 Shape feature learning 
Given n sketches 𝒙 = {𝑥𝒊𝜖𝑋}𝑖=1

𝑛 , 𝑋 is the data space (i.e., 

the space of all the sketches, represented as images), Cavas-DL 

encoder 𝒒𝜙(·)  compresses 𝒙  into n latent vector 𝒛 =

𝒒𝜙(𝒙) = {𝑧𝒊𝜖𝑍}𝑖=1
𝑛 . 𝑍 is the latent space. The dimensionality 

of 𝑍 is typically much smaller (e.g.,128) than 𝑋 (𝑒. 𝑔., 2304).  

Cavas-DL decoder 𝒑𝜃(·)  samples n sketches conditional 

on 𝒙′ = 𝒑𝜃(𝒛) = {𝒙𝒊
′𝜖𝑋}

𝑖=1

𝑛
  given latent vector 𝒛 . The loss 

function of the model can be defined as: 

 𝐿𝑟 = 𝐸𝑞𝜙(𝒛|𝒙)[log 𝑝𝜃(𝒙′|𝒛)] (1) 

where 𝜙  and 𝜃  are the parameters to be trained in the 

encoder and decoder, respectively. The parameters are typically 

the weights and biases of the neural networks. 𝐸𝑞𝜙(𝒛|𝒙)(·) is the 

reconstruction loss that ensures the close resemblance between 

the generated sketches and the original sketches.  

As shown in Figure 3, the Cavas-DL encoder 𝒒𝜙(·)  is 

implemented as a deep CNN that maps the black-and-white 

images in a space of 48x48 = 2304 dimensions into vectors in a 

latent space 𝑍 of 128-dimension. 

4.1.2 Embedded clustering 
To identify short- and long-distance analogies, sketches 

sharing more shape features should be grouped and separated 

from other groups. In ordinary situations, clustering of data 

points starts when the dimensional space of the data points is 

given and depends only on the settings of distance measures and 

clustering objectives. In Cavas-DL, however, clustering of 

sketches happens in the latent space 𝑍 that is being learned by 

training. The issue is how to devise a clustering process that not 

only perform the clustering in 𝑍 but also help the training of 

learning about 𝑍 hence the parameters of 𝒒𝜙(·) and 𝒑𝜃(·). 

Xie et al. [46] proposed a deep embedded clustering (DEC) 

method to provide a way to simultaneously learn feature 

representations and clustering assignments using deep neural 

networks. The key idea of DEC is to iteratively refine clusters 

with an auxiliary target distribution derived from the current soft 

cluster assignment between the data points and the cluster 

centroids. This process gradually improves the clustering as well 

as the feature representation.  

The DEC method is adopted in Cavas-DL. As shown in 

Figure 3, the clustering layer clusters all vectors in the latent 

space 𝑍 by simultaneously learning a set of 𝐾 cluster centers 

{𝜇𝒋𝜖𝑍}
𝑗=1

𝐾
 and mapping each latent vector 𝑧𝑖 into a soft label 

𝑞𝑖 by student’s t-distribution [47]. 𝒒𝒊 = [𝑞𝑖1, … , 𝑞𝑖𝑗 , … 𝑞𝑖𝑘]  is 

a soft label which quantifies the similarity between 𝑧𝑖  and 

cluster center 𝜇𝑗.  

 𝑞𝑖𝑗 =
(1 + ‖𝑧𝑖 − 𝜇𝑗‖

2
)

−1

∑ (1 + ‖𝑧𝑖 − 𝜇𝑗‖
2

)
−1

𝑗

 (2) 

where 𝑞𝑖𝑗   is the jth entry of 𝒒𝒊 , representing the 

probability of 𝑧𝑖 belonging to cluster j.  

The clustering loss 𝐿𝑐  is defined as a KL divergence 

between the distribution of soft labels 𝑄 measured by student’s 

t-distribution and the predefined target distribution 𝑃  derived 

from 𝑄. The clustering loss is defined as 

 𝐿𝑐 = 𝐷𝐾𝐿(𝑃‖𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

 (3) 

Figure 3: The structure of Cavas-DL 
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where the target distribution 𝑃 is defined as 

 𝑝𝑖𝑗 =
𝑞𝑖𝑗

2 𝑓𝑗  ⁄

∑ (𝑞𝑖𝑗
2 𝑓𝑗⁄ )𝑗

 (4) 

Raising 𝑞𝑖𝑗  to the second power and then dividing by the 

frequency per cluster, 𝑓𝑗 = ∑ 𝑞𝑖𝑗𝑖 , allows the target distribution 

𝑃  to improve cluster purity and put emphasis on confident 

labels. At the same time, this target distribution normalizes the 

contribution of each centroid on the clustering loss to prevent 

large clusters from distorting the latent space. This iterative 

strategy to minimize 𝐿𝑐 works like self-training that labels the 

dataset to train on its high confidence predictions [48].  

The total loss function of Cavas-DL, 𝐿𝑟𝑐, is composed of 

two components: the reconstruction loss 𝐿𝑟  in (1) and 

clustering loss 𝐿𝑐  in (3). 𝐿𝑟  is used to learn abstracted 

representations of the latent space in an unsupervised manner 

that can preserve shape features in sketch datasets. 𝐿𝑐  is 

responsible for manipulating the latent space in order to cluster 

sketches based on shape similarity. The purpose of the loss 

function 𝐿𝑟𝑐  is to minimize reconstruction loss 𝐿𝑟  and 

clustering loss 𝐿𝑟. A weighted sum method is used to optimize 

𝐿𝑟 and 𝐿𝑐, which is 

 𝐿𝑟𝑐 = 𝐿𝑟 + 𝜏𝐿𝑐 (5) 

where 𝐿𝑟 is from (1) and 𝐿𝑐 is from (3), and coefficient 

𝜏 is set to be 0 ≤ 𝜏 ≤ 1.  

4.1.3 Training  
The shape feature mapping parameters 𝜙  and 𝜃  of 

Cavas-DL are pretrained by setting 𝜏 = 0 to establish an initial 

latent space. After pretraining, the cluster centers are initialized 

by performing k-means on latent features of all sketches to get 

initial cluster centers {𝜇𝒋𝜖𝑍}
𝑗=1

𝐾
. Based on (2) and (4), the initial 

distribution of soft labels 𝑄  and initial target distribution 𝑃 

can be obtained. After that, the deep clustering weights, cluster 

centroids, and target distribution 𝑃 are updated as follows.  

1) Update weights and cluster centroids. The gradients of 

𝐿𝑐 for each latent vector 𝑧𝑖 and each cluster center 𝑢𝑗 can be 

computed as: 

Encoder and decoder parameter gradient 
𝜕𝐿𝑟

𝜕𝜙
  and  

𝜕𝐿𝑟

𝜕𝜃
 

can be calculated by backpropagation when passing 
𝜕𝐿𝑐

𝜕𝑧𝑖
 to the 

structure of the Cavas-DL model. The parameters of encoder and 

decoder, 𝜙  and 𝜃 , and the cluster center, 𝜇𝑗 , can be simul-

taneously updated by mini-batch stochastic gradient descent. 

2) Update target distribution. In every epoch of training, 

the target distribution 𝑃 serves as ground truth soft labels. The 

clustering layer is trained by predicting the soft assignment 𝑄 

and then matching it to the target distribution 𝑃. At the end of 

the epoch, based on (4), the target distribution P is updated 

depending on the predicted soft label 𝑄 and used for the next 

epoch. After each epoch, the cluster label 𝑐𝑖  assigned to 𝑧𝑖 is 

obtained by 

 𝑐𝑖 = arg max
𝑗

𝑞𝑖𝑗 (8) 

where 𝑞𝑖𝑗  can be obtained from (2). The training will stop 

when the cluster label assignment change (in percentage) 

between two consecutive epochs is less than a threshold 𝛿.  

4.2 Analyze visual similarity to identify visual 
analogies 
The output of the clustering layer is a probability 

distribution of each latent vector 𝑧𝑖  into each soft clustering 

label j. A clustering space can be introduced by any l-

dimensional vector 𝝆 ∈ ℝ𝑙  that represents a probability 

distribution of clustering. Therefore,  𝝆 = [𝑝(c1|𝜌),
… , 𝑝(c𝑘|𝜌), … , 𝑝(c𝑙|𝜌)]  , 𝑐𝑘(1 ≤ 𝑘 ≤ 𝑙)  represents the k-th 

cluster with 𝑝(c𝑘|𝜌)  indicating the probability of data 𝜌 

belong to k-th cluster.  

In Cavas-DL, the inputs are sketches belonging to different 

categories, 𝒙 = [𝑥11, … , 𝑥𝑖𝑗 , … , 𝑥𝑠𝑡] , where 𝑥𝑖𝑗   means the j-th 

sketch belonging to i-th category, s is the number of categories 

and t the total number of sketches. In the latent space, latent 

vectors are  𝒛 = [𝑧11, … , 𝑧𝑖𝑗 , … , 𝑧𝑠𝑡].  In the clustering space, 

the probability distributions of latent vectors can be represented 

by a super matrix ℚ ,  ℚ = [𝑸1, 𝑸2, … , 𝑸𝑠 ] . For matrix 

𝑸𝑖(1 ≤ 𝑖 ≤ 𝑠) , it includes n sketches. 𝑸𝑖 =
[𝒒𝑖1, … , 𝒒𝑖𝑗 , … , 𝒒𝑖𝑛] , 𝒒𝑖𝑗(1 ≤ 𝑗 ≤ 𝑛, 𝑛 ∗ 𝑠 = 𝑡)  represents a 

latent vector 𝑧𝑖𝑗   in the clustering space, i.e. 𝒒𝒊𝒋 =

[𝑝(c1|𝑧𝑖𝑗), … , 𝑝(c𝑘|𝑧𝑖𝑗), … , 𝑝(c𝑙|𝑧𝑖𝑗)] , where 𝑃(c𝑘|𝑧𝑖𝑗)  means 

the probability of 𝑧𝑖𝑗   belonging to the cluster c𝑘 ,  

 ∑ 𝑃(c𝑘|𝑧𝑖𝑗) = 1𝑙
1  . Soft clustering produces multi-clustering 

predictions for 𝑥𝑖𝑗  , while the ground truth category of 𝑥𝑖𝑗   is 

single labeled.  

Figure 4 illustrates a clustered 5-dimensional space. Circle 

“o” indicates an input sketch, and cross “×” represents a centroid. 

The sketches of different categories are rendered with different 

colors. Solid lines indicate decision boundaries which are 

perpendicular bisectors of adjacent cluster centers, and the 

clusters are also rendered with different colors. As an example, 

it is assumed that all sketches come from five categories, 

𝜔1, 𝜔2, 𝜔3, 𝜔4  and 𝜔5.  Given the ground truth category of 

𝑥2𝑗   is 𝜔2 , the probability distribution of corresponding latent 

𝜕𝐿𝑐

𝜕𝑧𝑖
 = 2 ∑ (1 + ‖𝑧𝑖 − 𝜇𝑗‖

2
)

−1
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑧𝑖 − 𝜇𝑗)

𝑘

𝑗=1

 (6) 

𝜕𝐿𝑐

𝜕𝑢𝑗
 = 2 ∑ (1 + ‖𝑧𝑖 − 𝜇𝑗‖

2
)

−1
(𝑞𝑖𝑗 − 𝑝𝑖𝑗)(𝑧𝑖 − 𝜇𝑗)

𝑛

𝑖=1

 (7) 

Figure 4: Sketches from five categories in a clustered 5D space 
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vector 𝑧𝑖𝑗   can be 𝒒𝟐𝒋 = [0.32,0.21,0.12,0.19,0.16] . The 

cluster prediction of 𝑧𝑖𝑗   is 𝑐1  which has a maximum 

probability of 0.32. However, sketches are clustered based on the 

shape similarity. Sketches from different categories can be 

clustered in the same group. Hence, the concept of the sketch 

category, which often indicates what a sketch is in the real world, 

is different from that of the sketch group (or shape cluster), 

which clusters sketches based on their shape similarities. 

4.2.1 Sketch category and sketch group 
We assume the number of clusters equals the number of 

sketch categories, and each cluster can represent one shape 

pattern which is composed of several shape features. In Figure 4, 

there are sketches from categories 𝜔1, 𝜔2, 𝜔3, 𝜔4 and 𝜔5, and 

there are five clusters 𝑐1, 𝑐2, 𝑐3, 𝑐4  and 𝑐5 . Each cluster has 

sketches from several categories, e.g., cluster 𝑐2  contains 

sketches from the categories 𝜔2, 𝜔3, 𝜔4 and 𝜔5. It means that 

each cluster presents a shape pattern that is obtained from 

learning shape features from multiple categories. In other words, 

different categories can share one common shape pattern.  

Sketches of the same category can be clustered to different 

groups, e.g., some sketches in category 𝜔5  are clustered into 

the clusters 𝑐2, 𝑐4  and 𝑐5 . It means this category contains 

various shape features which are leaned by the Cavas-DL to form 

different clusters, i.e., shape patterns. For a given category, the 

cluster label of each sketch is determined by (8), and the number 

of sketches in each cluster can be counted. The probability of 

category 𝑖  belonging to cluster 𝑘  is 𝑜𝑖𝑘  , which indicates the 

ratio of how many sketches in category i belong to cluster k and 

can be computed in (9). The cluster probability distribution of 

each category is represented by 𝑂𝑖 = [𝑜𝑖1, … , 𝑜𝑖𝑘 , … , 𝑜𝑖𝑙].  

 𝑜𝑖𝑘 =
𝑛𝑖𝑘

𝑁𝑖

 (9) 

where 𝑛𝑖𝑘 is the number of sketches in category 𝑖 which 

are located in cluster 𝑘, 𝑁𝑖 is the total number of sketches in 

category 𝑖. 𝑙 is the total number of clusters. 

4.2.2 Similarity metrics  
In this paper, the first visual similarity metric is a distance-

based similarity that measures visual similarity based on the 

Euclidean distance between the category centroids in the latent 

space. The centroid of a category can be obtained by averaging 

all the latent vectors from the same category. A category centroid 

is different from a cluster centroid, which is the centroid of all 

sketches (maybe from different categories) are clustered in the 

same group. The distance-based similarity between category 𝑖 
and other categories can be computed as follow. 

 𝑆𝑖𝑗
𝑒 = 1 −

𝐸𝑖𝑗

max
𝑗

𝐸𝑖𝑗

 (10) 

where 𝐸𝑖𝑗  is the Euclidean distance between the centroids 

of category 𝑖  and 𝑗 ,  max
𝑗

𝐸𝑖𝑗   is the longest Euclidean 

distance from the centroid of category 𝑖 to centroids of other 

categories. 

The second metric is an overlap-based similarity that 

measures visual similarity based on the amount of shape feature 

overlap between sketch categories. Shape feature overlap is 

defined as the amount of overlap between two cluster probability 

distributions. If two categories share more shape features, their 

sketches are more likely clustered into the same groups; their 

probability distributions are closer and have more overlapping 

regions. Hellinger distance is applied to measure the similarity 

of two cluster probability distributions, which is defined as: 

 𝐻(𝑂𝑖 , 𝑂𝑗) = √1 − ∑ √𝑜𝑖𝑘𝑜𝑗𝑘

𝑙

𝑘=1

 (11) 

where ∑ √𝑜𝑖𝑘𝑜𝑗𝑘
𝑙
𝑘=1   is a measure of the area intersected 

by two cluster probability distributions. 

The overlap-based similarity of other categories to 

category 𝑖 can be defined as: 

 𝑆𝑖𝑗
𝑜 = 1 −

𝐻(𝑂𝑖 , 𝑂𝑗)

max
𝑗

𝐻(𝑂𝑖 , 𝑂𝑗)
 (12) 

where max
𝑗

𝐻(𝑂𝑖 , 𝑂𝑗)  is the longest Hellinger distance 

from category 𝑖 to other categories. 

4.2.3 Short- and long-distance visual analogies 
The categories having high visual similarity are likely to be 

clustered in the same group. Sketch categories in the same group 

are considered visually short-distanced. The value of the 

similarity threshold determines how “short” the distance must be 

for two categories to be considered short-distanced. Given a 

designer is working on sketching in category a, and categories a 

and b are short-distanced, the Cavas-DL may provide a sketch of 

category b as a visual cue to stimulate the designer’s visual 

analogy thinking. In this case, the designer’s visual analogies are 

likely to be short-distance ones. On the other hand, if categories 

a and b belong to different groups, then the analogies are likely 

to be long-distanced ones.  

Identifying long-distance visual cues requires relating 

sketch categories belonging to different groups, which can be 

time-consuming when the number of sketches and the number of 

categories are both large. To deal with this issue, a concept of 

bridge category is introduced. If a bridge category exists 

between two groups, the visual relationships between the 

categories in these groups can be established.  

In Figure 5, the solid dots are categories clustered into two 

groups. The similarity of category a to category b can be 

represented by the similarity value 𝑆𝑎𝑏
𝑜  or 𝑆𝑎𝑏

𝑒 . That of category 

b to category a can be represented by the similarity value 𝑆𝑏𝑎
𝑜  

or 𝑆𝑏𝑎
𝑒 . If  𝑆𝑎𝑏

𝑜  , 𝑆𝑎𝑏
𝑒 ,  𝑆𝑏𝑎

𝑜  and 𝑆𝑏𝑎
𝑒  are all equal to or greater 

than a threshold 𝜀, category a and category b can be classified 

in the same group and become short-distance analogies.  

Figure 5: Visual relationships between two groups of categories 

Group 1                                Group 2  
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For category b from group 1, category c is the closest 

category in group 2, and for category c, category b is the closet 

category in group 1. The similarity of category b to c can be 

represented by the similarity values 𝑆𝑏𝑐
𝑜  and 𝑆𝑏𝑐

𝑒 . Category b is 

defined as a bridge category, if and only if 𝑆𝑏𝑐
𝑜  or 𝑆𝑏𝑐

𝑒  is equal 

to or greater than a threshold 𝜑. In this case, there exists a visual 

relationship between categories b and c. As categories in group 

1 are visually similar to category b and category b is visually 

similar to category c, other categories in group 1 can be visually 

similar to category c and then potentially visually similar to other 

categories, say category d, in group 2. If a bridge category is 

identified, it is possible to transfer shapes of categories between 

these groups based on visual similarities.  The process to find a 

valid long-distance visual analogy follows: 

𝐺𝑖𝑣𝑒𝑛 𝑎, 𝑏 ∈ 𝑆 & 𝑐, 𝑑 ∈ 𝑇;  𝑖𝑓 𝑏~𝑐, 𝑡ℎ𝑒𝑛 𝑎 ≈ 𝑑 

where 𝑆  is a source domain of categories and 𝑇  is a 

target domain of categories;  𝑏~𝑐 means a visual relationship 

is built between categories b and c;  𝑎 ≈ 𝑑 means a possible 

long-distance visual relationship between categories a and d.  

5. EXPERIMENTS  

5.1 Datasets and implementation 
The Cavas-DL model is evaluated based on the image 

datasets from Quickdraw, the largest sketch database built by 

Google [44]. It contains 345 categories of everyday objects. For 

the reason of computing time, sketches from 10 categories are 

chosen to test our proposed methods. The raw sequences from 

Quickdraw datasets are converted to monochrome png files of 

size 48x48, used as the input data for our deep neural network. 

These png files are images with binary pixels: strokes having 

value 1 and the rest value 0. Three datasets from ten categories 

are used for the experiments: 

Dataset 1: Includes five categories: van, bus, truck, pickup 

truck, and car. All belong to automobiles and share some 

obvious shape features such as wheels and windows. 

Dataset 2: Includes five categories: speedboat, canoe, drill, 

pickup truck, and car. Speedboat and canoe belong to boats and 

share some shape features such as V-shaped hulls. Pickup truck 

and car belong to automobiles. Drill doesn’t share superficial 

shape similarity with other categories. 

Dataset 3: Includes five categories: television, canoe, drill, 

umbrella, and car. Each of them doesn’t share any superficial 

shape similarities with other categories. 

Some examples of each dataset are listed in Table 1. The 

15K sketches for each category are chosen. The sketches are 

divided into training, validation, and testing sets with sizes of 

10K, 2.5K, and 2.5K, respectively. 

For quantitatively verifying and demonstrating the 

improved performance of Cavas-DL, a comparison study 

between Cava-DL and the work of sketch-pix2seq proposed by 

Chen et al. [45] and its predecessor sketch-rnn by Ha and Eck 

[43] was conducted. For the sake of completeness, one of the 

traditional clustering algorithms, k-means is also included in the 

comparison. We show qualitative and quantitative results that 

demonstrate the benefit of Cavas-DL over other methods.  

Table 1: Examples of each dataset 

Dataset Examples 

1      

van bus truck 
pickup 
truck car 

2      

speedboat canoe drill 
pickup 
truck car 

3      

television canoe drill umbrella car 
 

The experiments on the four methods, namely, Cavas-DL, 

sketch-pix2seq+k-mean, sketch-rnn+k-mean and k-mean, are 

conducted using the three datasets described above. The 

parameters used for training sketch-rnn and sketch-pix2seq 

models are the same as the illustration in the papers [43, 45]. 

Cavas-DL is initialized by pretraining with 𝜏 = 0, i.e., with the 

deep clustering detached. Then, the coefficient 𝜏 of clustering 

loss in (5) is set to 0.05, which is determined by a grid search in 

a list [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0] and batch size to 100 

for all datasets. The maximum number of epochs is set to 𝑇 =
 50. In each iteration, we train the encoder for one epoch using 

Adam optimizer with learning rate 𝜆 = 0.001, 𝛽1 = 0.9, 𝛽2 =
0.999 . The convergence threshold 𝛿  is set to 0.1%.  The 

dimension of the latent space in these three models is 128, which 

is the same in the papers [43, 45]. K-means is performed to 

cluster sketches in the latent space of sketch-pix2seq and sketch-

rnn. Besides, as a baseline for comparison, k-means also runs on 

the sketch datasets with the original dimensions of 48 x 48 = 

2304, which is much larger than the latent space. k-means 

performs 20 times with different initialization and the result with 

the best objective value is chosen, where 𝑘 = 5.  

We evaluate all four clustering methods with unsupervised 

clustering accuracy (ACC). The ACC is defined as the best 

match between ground truth 𝒚 and predicted cluster labels 𝒄: 

 𝐴𝐶𝐶(𝒚, 𝒄) = max
𝑚∈ℳ

∑ 𝟏{𝑦𝑖 = 𝑚(𝑐𝑖)}𝑛
𝑖=1

𝑛
 (13) 

where 𝑛 is the total number of samples, 𝑦𝑖  is the ground 

truth label, 𝑐𝑖 is the predicted cluster label of the example 𝑥𝑖 

obtained by the model, and ℳ is the set of all possible one-to-

one mappings between predicted cluster labels to ground truth 

cluster. The best cluster assignment can be efficiently computed 

by the Hungarian algorithm [49]. 

5.2 Shape feature learning and clustering 
performance 
As described in Section 3.1, to provide adequate visual 

cues to stimulate the designer’s analogical thinking, the CAVAS 

system should learn from the given datasets the shape features 

and distinguish the shape patterns that go beyond the sketch 

categories. From feature learning and clustering perspectives, the 

major distinction of our Cavas-DL method is combining deep 

feature learning with deep clustering. Thanks to the dynamic 

property of Cavas-DL that simultaneously adjusts the processes 
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of feature learning and clustering, its improved performance in 

shape pattern identification is expected, and in fact, it has been 

reported that our proposed algorithm outperforms others 

significantly for both clustering and category information 

preservation [50].  

In order to visualize the latent space of unsupervised modes 

and one supervised model on the three datasets, t-SNE [47] is 

used to reduce the dimensionality of Z from 128 to 2, and 7500 

testing sketches are plotted from five categories of the three 

datasets for each method. The dimensionality reduction from 128 

to 2 may cause significant information loss and generate 

misleading visualizations. t-SNE has a hyper-parameter, called 

perplexity, that balances the attention t-SNE gives to local and 

global aspects of the data and can affect the resulting plot. Its 

value is recommended to be between 5 and 50. If choosing 

different values between 5 and 50 significantly changes the 

interpretation of the data, then t-SNE is not the best choice to 

visualize or validate our hypothesis. To increase the robustness 

of our findings and reflect how multiple runs affect the outcome 

of t-SNE, we put forward the process to validate the visualization 

of a trained latent space, as shown in Figure 6. 

 
Figure 6: Process to validate visualization of a trained latent space 

In Step 1, we set the initial value of the counter 𝑁 as 0, 

which is used to record the times of sample generation. Then, we 

take advantage of t-SNE for visualizing a latent space with a list 

of perplexity values. In Step 2, we choose a converged 

visualization as the candidate. For example, in Figure 7, the 

latent space is visualized under different perplexity value 

settings. We can see the latent space visualizations in a list 

[30,40,50] are converged. There are two types of global 

geometry of the converged visualizations. One type can 

represent visualizations with perplexity values of 20, 30, 40. 

Another type can represent the visualization with a perplexity 

value of 50. We randomly choose one (perplexity value=30) as 

the candidate from the first type. If this type cannot be a valid 

visualization, we will try the other types. In Step 3, we randomly 

generate five samples of 7,500 sketches from five sketch 

categories in the QuickDraw dataset. In Step 4, the five sample 

sketches are encoded and visualized in the latent space. In 

Step 5, we compare the topological information of five samples 

in the latent space with the candidate. If over half of the 

visualizations of the five samples are similar to the candidate, it 

means this round of sample generation can validate that the 

 
1 https://github.com/googlecreativelab/quickdraw-dataset 

candidate can represent these five sample sketches in the latent 

space. A success rate is used to illustrate how many samples are 

similar to the candidate. For example, in Figure 8, only sample_4 

is different from the candidate, so the success rate is 0.8. A 

threshold is set to 0.6. If the success rate is no less than a 

threshold, then the next round of five sample generations will be 

started. The counter 𝑁 will be increased by 1. Otherwise, we 

will go back to the second step to choose the other type of 

converged visualization as the candidate. If all the converged 

visualizations have been tried, then we go back to the first step. 

There will be five rounds of sample generation. If all of them can 

be successful, then the candidate will be chosen to visualize the 

trained latent space. 

 
Figure 7: Visualizing a latent space with different perplexity values 

 
Figure 8: Visualization of five sample sketches in the latent space 

After validating visualizations of the latent space of each 

model in three datasets, we can compare shape feature learning 

and clustering performance of different models. Firstly, we 

compare the learning and performance of unsupervised models. 

In Figure 9, the Cavas-DL performs the best in clustering since 

the sketches from different categories are more separated, and 

the sketches from the same category are denser together in all 

cases. For Dataset1, all sketches are from the same taxonomic 

category hence are hard to be separated into different clusters. 

The red, black, and green clusters are denser in Cavas-DL than 

the other two as the clustering loss Lc can force sketches from 

the same taxonomy to be gathered and push away sketches from 

different taxonomies. For Dataset2, sketches are from three 

taxonomic categories. Sketch categories belonging to the same 

taxonomy should be close to each other as they share more shape 

features and away from other taxonomies. This assumption can 

be confirmed by our model as well as sketch-pix2seq, as they 

both use CNN as an encoder that can discover and represent 

shape structures in the latent space. Car(red) is close to pickup 

truck(black), and speedboat(blue) is close to canoe(green) in the 

first Cavas-DL plot, while this cannot be easily detected in the 

third sketch-rnn plot; For Dataset3, all sketches are from 

different taxonomic categories. All three deep learning models 

can cluster each category. However, the clusters in the Cavas-DL 

plot are denser and have a larger margin with each other. 

In Figure 9, we also compare three unsupervised models 

mentioned above with a supervised model, which is a 

convolutional neural network (CNN) from official guides of 

QuickDraw1,2. For every dataset, the supervised model can more 

2 https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/ 

      master/sketcher 
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clearly separate each category in the latent space. The reason is 

the latent space of the supervised model is trained based on given 

category label information. Therefore, the supervised model can 

have better performance in categorizing sketches. From Dataset1 

to Dataset3, the shape feature sharing become less and less, and 

the margins between sketch categories in the latent space of CNN 

become larger and larger. It infers that after training, shape 

features extracted by convolution layers are related to the given 

semantic information (category labels). When all sketches are 

from the same taxonomy, this relationship can hardly be built. 

When all sketches are from the different taxonomies, this 

relationship can be easily established. However, in this research, 

the goal is to learn a latent space that represents the shape 

patterns. Ideally, similar shapes from the same or different 

categories can be clustered in the same group, and different 

groups are distinguishable from each other. In other words, the 

purpose of the proposed Cavas-DL is to construct a relationship 

between shape features and shape patterns in a case that the 

shape pattern label of each sketch is hard or impossible to be 

collected and created. Therefore, even all sketch categories are 

from different taxonomies in Dataset3, Cavas-DL tries to keep 

relatively small margins to possibly build shape connections 

between these categories. 

5.3 Performance of visual similarity analysis 
After extracting shape features and discovering shape 

patterns from the given datasets, the CAVAS system should be 

able to analyze visual similarities between different sketch 

categories and identify relevant visual cues. In order to measure 

visual similarity, both distance- and overlap-based similarities 

are applied.  

Euclidean distance. In Figure 10, the clustered latent 

space is presented to visually show Euclidean distances between 

centroids of 10 sketch categories. Speedboat and canoe in the 

green circle are from the same taxonomy, and van, pickup truck, 

truck, car, and bus in the red circle are also from the same 

taxonomy. Pickup truck and speedboat are close to each other; 

hence it is possible to build a visual relationship between two 

taxonomies through these two categories. Drill, television, and 

umbrella are from different taxonomies. Categories from the 

same taxonomy have shorter centroid distances and higher 

overlap magnitude; Categories from different taxonomies have 

longer centroid distances and lower overlap magnitude. After 

checking the dataset, one could see that there are two different 

kinds of drills in the dataset: handheld drill and ground drill. 

Therefore, drills are separated into two groups in the latent space. 

By exploring this latent space of ten categories, designers can 

have an overall view of the visual relationships between them. 

 
Figure 10: Sketches from ten categories in the latent space, cross “×” 

represents a category centroid 

Hellinger distance. The cluster probability distributions in 

Figure 11 visually presents the amount of overlap between 

categories using Hellinger distance. In Figure 11, a cluster can 

accurately capture one shape pattern that represents shape 

features from the same or different taxonomies. For example, 

Cluster 1 captures most shape features from the automobile 

taxonomy; it also captures some shape features from speedboat. 

Cluster 5 captures most shape features from the boat taxonomy; 

it also captures some shape features from pickup truck. This is 

also why speedboat and pickup truck can be bridge categories to 

link boat and automobile taxonomies. Clusters 7 and 10 capture 

shape features from umbrella and television, respectively. 

Figure 11: Cluster probability distributions of ten categories 

Figure 9: Clustered latent space of three datasets for each method 

(top row: Dataset1-van(blue), bus(green), truck(yellow), pickup 

truck(black), car(red); middle row: Dataset2-speedboat(blue), 

canoe(green), drill(yellow), pickup truck(black), car(red); bottom 

row: Dataset3-television(blue), canoe(green), drill(yellow), 

umbrella(black), car(red)) 
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Umbrella and television are distinct from other categories. One 

category may contain two or more shape patterns as it has 

variations. This case can be captured by different clusters. For 

example, Clusters 4 and 9 capture different shape patterns in 

drill, because there are two different types of drills in the dataset. 

Clusters 2, 3, 6, and 8 can barely capture some shape features 

from the ten categories. It was assumed that the clustering layer 

can learn and differentiate shape features from different 

categories, and one category can only represent one shape 

pattern. Therefore, the number of clusters is set equal to the 

number of categories during the experiment. However, the 

results showed that some clusters are not useful. Therefore, the 

optimal cluster number needs to be determined by iterating more 

experiments. We believe the optimal cluster number may relate 

to the number of taxonomies in the given dataset, as categories 

that belong to the same taxonomy would have a similar shape 

pattern. 

Visual similarity. The distance- and overlap-based 

similarity matrices in Figure 12 and Figure 14 can quantify the 

visual similarity between each category based on Euclidean 

distance and Hellinger distance, respectively. As all distances 

from other categories to a given category are normalized by the 

maximum distance, these two matrices are asymmetric. The rows 

in these matrices are rearranged based on hierarchical clustering 

and accompanied by dendrograms describing the hierarchical 

cluster structure. The values in each cell represent the similarity 

magnitude of the row category to each column category. A larger 

value means higher similarity. The threshold 𝜀 is set to 0.5; if 

similarity values between several categories are all equal to or 

greater than 0.5, then these categories form a group. Categories 

in the same group are short-distance visual analogies; those in 

the different groups are long-distance visual analogies. The 

threshold 𝜑 is set to 0.5; a category is considered as a bridge 

category if the largest similarity value between this category 

with one category in another group is equal to or greater than 0.5. 

In Figure 12, as threshold 𝜀 is set to 0.5, ten categories can 

form four groups based on distance-based similarity, which is 

shown in the dendrogram. Van, bus, truck, pickup truck and car 

are in the red group. Bus and truck have the highest similarity 

values. It implies they are tightly closed to each other in the latent 

space. The green group includes speedboat and canoe. The 

orange group contains drill and umbrella, which are from 

different taxonomies. The gray group contains television. The 

red group is entwined with the green group. It means shape 

transformation can happen between automobiles and boats as 

they share many shape features. The similarity value of pickup 

truck to speedboat is 0.6 and the value of speedboat to pickup 

truck is 0.67, which are above the threshold 𝜑. They are bridge 

categories with a strong capability to connect two taxonomies. It 

means for making visual analogy, if the target domain is boat, a 

boat designer can try to make a visual connection with a source 

domain which is automobile through speedboat, vice versa.  

As shown in Figure 13, van, bus, truck, pickup truck, and 

car are different categories in the automobile group. It is more 

effective to build visual connections between them, but fewer 

changes to obtain visual inspirations. More efforts need to be 

made to construct a visual relationship between different 

categories in different groups (e.g., van and canoe). However, 

novelty is more likely to happen if the long-distance visual 

connection can be built [2, 10]. Bridge categories (pickup truck 

and speedboat) are valuable spots to draw a visual analogy for 

both effectiveness and novelty at the same time. Canoe is the 

only category which can connect one group with the other two 

groups as the similarity values of canoe to pickup truck and drill 

are 0.52 and 0.54, respectively. It means it can lead visual 

connections to different directions. The similarity value of 

television to van in the red group is 0.54 which is above the 

threshold 𝜑. It means television has a potential to make a visual 

relationship with automobile. It is easy to understand as a screen 

of a television is visually similar to a window of a van. 

In Figure 14, as threshold 𝜀 is set to 0.5, ten categories 

form five groups based on overlap-based similarity, shown in the 

dendrogram. The categories in red and green groups are still the 

same. However, drill and umbrella are not classified in the same 

group. Basically, the similarity values between categories from 

the same taxonomy become larger, and the similarity values 

between categories for different taxonomy become smaller. For 

example, the lowest similarity value in the red group is increased 

Figure 12: Distance-based similarity matrix with dendrograms 

(different groups are marked with solid squares with 

different colors; Some cells’ values larger than 

threshold 𝝋 are marked with dashed squares to 

indicate bridge categories) 

Automobiles Boats

Bridge sketches

Figure 13: A possible visual analogy making via bridge categories 
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by 0.25. Pickup truck and truck have the highest overlap-based 

similarity. It makes more sense comparing with distance-based 

similarity, from which truck is more visually similar to bus. No 

bridge categories can be detected. Therefore, the visual 

relationships between categories in the same group become 

stronger. However, each group is distinct from other groups. It 

may be hard to build visual relationships between these groups 

based on overlap-based similarity. In other words, short-distance 

visual analogies can be easily identified, but long-distance visual 

analogies might be harder to be found. 

 
Figure 14: An overlap-based similarity matrix with dendrograms 

(different groups are marked with solid squares with 

different colors) 

6. DISCUSSION 

By visualizing the latent space of 3 different datasets with 

different levels of common shape feature sharing, we empirically 

validate two points: 1) If sketches are from the same taxonomy, 

they share many shape features. It is difficult for deep clustering 

models to separate them. The sketches in Dataset1 are from the 

same taxonomy; three models are struggling to cluster sketches. 

But our proposed model can somehow separate red and black 

points from others. The sketches in Dataset3 are from different 

taxonomies; it is easier for the three models to cluster sketches. 

Our proposed model can separate clusters with larger margin. 2) 

If a deep clustering model uses CNN layers to encode input 

sketches and simultaneously considers the clustering loss, its 

clustering performance can be improved, indicating the 

advantage of embedded clustering. Some of the sketches in 

Dataset2 come from the same taxonomy; our model can cluster 

points denser than the other two models. 3) Among three 

unsupervised models, Cavas-DL is the most similar to CNN 

regarding the sketch distributions in the latent space. It also 

suggests that Cavas-DL is better at differentiating sketches based 

on shape patterns and also retaining shape relationships between 

sketches in the same taxonomy. 

After effectively encoding the source of analogies, 

potential targets need to be identified. During the visual analogy 

search process, designers qualitatively assess the similarity 

between visual materials. The moment to identify a bridge to 

connect or transfer one shape to another is often random and 

unpredictable. In order to quantify visual similarity, distance- 

and overlap-based similarity are introduced to analyze the visual 

relationships between categories and find useful analogies. 

Bridge categories are defined to guide the connection building of 

different shapes. 

From the experiment of visual similarity analysis, one can 

see: 1) the distance- and overlap-based similarity metrics can 

confirm that categories from the same taxonomy share more 

shape features and have higher visual similarity than categories 

from different taxonomy; 2) distance-based similarity is less 

accurate than overlap-based similarity when finding visual 

relationships between categories from the same taxonomy as 

these categories share too many shape features, in these cases, 

the overlap-based similarity is more effective than distance-

based similarity; 3) overlap-based similarity can make categories 

from different taxonomies more distinguishable, e.g., the visual 

similarity values between categories in the automobile taxonomy 

become larger. However, finding bridge categories become more 

difficult, e.g., the similarity values between speedboat with other 

categories in the automobile taxonomy become smaller, and it is 

not detected as a bridge category; 4) bridge categories can be 

useful to find the path to visually transform shapes from one 

taxonomy to another taxonomy. The path can potentially explain 

how to find long-distance visual analogies. For example, pickup 

truck is classified as a bridge category. A car designer can apply 

visual thinking to transfer the shape of a car to a pickup truck and 

then to a speedboat and retrieve some inspiring cues from 

speedboat design.  

Both distance- and overlap-based similarities are useful 

when analyzing visual relationships between various categories 

in different scenarios. However, these two should work together 

to provide more convincing results. Being visually similar makes 

analogical inferences easy, and being categorically different 

makes the potential analogy across categories novel. One 

important finding is the detection of bridge categories allows 

both effectiveness and novelty to be obtained at the same time 

and may resolve the “analogical distance” dilemma as suggested 

from prior studies [31]: near-field stimuli are more effective, 

while far-field stimuli offer novelty. A bridge category is an 

analogy located in a “sweet spot” proposed by Fu et al. [31], 

which can offer a strategy to avoid visual fixation and find visual 

stimuli from long-distance analogies. 

From a designer’s designing point of view, the visual 

presentation of the latent space shown in Figures 9 to 14 can be 

highly effective for the designer to choose potentially inspiring 

visual cues either systematically or randomly. The example, 

upon viewing the 2D distributions of sketches like Figures 9 and 

10, a designer may intentionally choose a dataset with categories 

clearly from diverse taxonomies, or he/she may select the one 

that holds closely related sketches. Making a targeted selection, 

i.e., clicking a colored dot on the chart on the sketch map allows 

the designer to knowingly expand his/her thinking toward 

potentially fruitful directions. Besides, visual assistance like 

Figure 11 provides designers with a tool to explore the overlap-
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similarity space that has the potential to offer multilayer 

expansions of thinking for the designer. Furthermore, the 

grouping matrix displays like Figures 13 and 14 allow designers 

to quickly access closely related groups of sketches which may 

impact designers’ analogy making differently compared to single 

visual cue-based stimulation. Future human subject-based 

studies are needed to verify the effectiveness of these human 

augmentation strategies. 

7. CONCLUSIONS 

In this paper, a computer-aided visual analogy support 

(CAVAS) framework is proposed, and a deep learning based 

computational model Cavas-DL is introduced as a human design 

augmentation tool to assist human visual analogy making. The 

CAVAS framework extends the GSP creative stimulation model 

into the human-computer interaction context, and the Cavas-DL 

model has demonstrated the potential of sketch-and-image based 

visual analogy support. Through the model building and the 

experiment results, the following conclusions are drawn.   

• A computer-aided visual analogy support framework 

CAVAS is introduced, and its key functional components 

and processes are identified and demonstrated for 

augmenting designers’ visual analogical thinking processes.  

• An unsupervised deep learning model Cavas-DL combines 

a CNN based shape feature extraction algorithm with a deep 

embedded clustering model and achieves the best feature 

capturing and clustering simultaneously. 

• The visualization of the latent space of sketches can guide 

and assist designers’ visual thinking, which has the potential 

to promote visual analogy making in conceptual design and 

boost idea generation.   

• The distance- and overlap-based similarities introduced can 

be applied to identify short- and long-distance analogies 

based on visual similarity. The detection of bridge categories 

provides a way to find long-distance analogies for visual 

analogy-making processes. 

• The extensive experiments conducted demonstrate the 

effectiveness and robustness of our computational tool, a 

major step toward computer aided visual analogy support. 

A drawback of the Cavas-DL model is the need to balance 

the weight ratio of reconstruction loss and clustering loss. It 

means one needs to determine the weight of clustering loss in 

equation (5). Searching for an appropriate value for the weight 

can take time since the model needs to be trained many times. 

Besides, the threshold 𝜀 to determine short- and long-distance 

analogies and the threshold 𝜑  to determine bridge categories 

are set based on the distance-based and overlap-based similarity 

matrices and domain knowledge. Our ongoing work includes the 

investigation on how to determine the optimal cluster number for 

the clustering layer and how to use the learned sematic or 

functional meaning behind shapes to support visual analogy. One 

outstanding issue is to evaluate the effectiveness of the visual 

cues generated by Cavas-DL in stimulating designers’ visual 

analogy making for generating more and better ideas. The tool 

Cavas-DL from this research has made it possible for us to 

conduct human subject-based design experiments to evaluate the 

effectiveness of computational support for visual analogy 

making in design. 
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