
Design Computing and Cognition DCC’20. J.S. Gero (ed),
pp. xx-yy. © Springer 2020

1

Designing Self-Assembly Systems with Deep
Multiagent Reinforcement Learning

Hao Ji and Yan Jin
University of Southern California, USA

Self-organizing systems (SOS) are developed to perform complex tasks in
unforeseen situations with adaptability. Previous work has introduced task
fields and rule-based social structuring for individual agents to comprehend
the task situations and follow social rules to accomplish their tasks without
a centralized controller. Although the task fields and social rules can be
predefined for relatively simple tasks, for complex tasks and changing
environments, acquiring a priori knowledge about the fields and rules can
be challenging. In this paper, a multiagent reinforcement learning (RL)
model is introduced as a design approach to solving the rule generation
problem for complex tasks. A deep multiagent RL algorithm was devised to
train agents to acquire the task and self-organizing knowledge, and a
behavior regulation reward was introduced to regulate agent behaviors
during training. Scalability of the training algorithm to different team sizes
was investigated. The results show that SOS design based on deep multi-
agent RL with behavior regulation reward performs better than training
without behavior regulation. Scaling up to larger team sizes has better
performance than scaling downwards.

Key words: Deep Q-learning, self-organizing system, behavior reward

Introduction

Self-organizing systems can consist of simple agents that work together to
complete complex tasks. Design of complex systems by applying a self-
organizing approach has many advantages, such as scalability, adaptability,
and reliability [1,2]. Various approaches have been proposed to support the
design of SOS. The field-based behavior regulation (FBR) approach [3]

 H. Ji and Y. Jin 2

models the task environment with a field function and the behavior of the
agents is regulated based on the positions of these agents in the field by
applying a field transformation function. With this approach the agents need
little knowledge to perform tasks since their behavior is governed by the
task field. However, the limitation of the task field transformation leads to
the inadequacy of applying the FBR approach to more complex task
domains. The social structuring approach [4] attempts to simplify the task
field by introducing a social field modeled by social rules [4-5]. A major
issue with this social rule based approach is that a designer must know a
priori what rules should be applied, which is often difficult to attain,
especially in collaborative self-assembly tasks where the ending positions
and angles of the objects are crucial.

In multiagent RL, each agent can be trained using its own neural network,
such trained neural network can be a generalization of rules. Therefore, in
this research, a RL approach is taken to capture the self-organizing
knowledge in SOS design. We focus on how to design appropriate rewards
to train multi-agents to learn efficiently and what are the key parameters that
contribute to the successful training? Specifically, a multiagent Q-learning
algorithm with behavior regulation rewards is explored to address two
research questions: What factors impact the stability of learning dynamics
in SOS? Will the RL captured knowledge be robust enough to be applied in
a wide range of task situations?

In the following, the relevant work is reviewed in Section 2, and an
independent Q-learning framework is introduced in Section 3. Section 4
presents a self-assembly case study, and the results are discussed in Section
5. Section 6 draws the conclusions and points to future research directions.

Related Work

An artificial self-organizing system is a system that is designed by human
and has emergent behavior and adaptability like Nature [6]. Werfel
developed a system of homogenous robots to build a pre-determined shape
using square bricks [7]. Khani et al. developed a social rule-based regulation
approach in enforcing the agents to self-organize and push a box toward the
target area [4,8]. Jin and Chen used a field-based regulation (FBR) approach
and guides self-organizing agents to perform complex tasks such as
approaching long-distance targets while avoiding obstacles [3]. Price
investigated into the use of genetic algorithm (GA) in optimizing Self-
organizing multi-UAV swarm behavior [9].

Multiagent RL (MARL) applies to multiagent settings and is based
largely on the single agent RL such as Q-learning, policy gradient and actor-

Self-Organizing Systems Design with Deep MARL 3

critic [10-11]. One natural approach for MARL is to optimize the policy or
value functions of individuals. The most used value-function based
multiagent learning is independent Q-learning [12]. It trains individual’s
state-action values using Q-learning [12-13] and is served as a common
benchmark in the literature. Tampuu [14] extended previous Q-learning to
deep neural networks and applied DQN [15] to train two independent agents
playing the game Pong [14]. Foerster used a centralized critic to evaluate
decentralized agents and estimated a counterfactual advantage function
based on each agent and allocated credit among agents [16]. He also
analyzed his replay stabilization methods for independent Q-learning based
on StarCraft game combat scenarios [17].
 Most approaches to MARL focus on achieving optimal system reward or
desirable convergence properties, often based on fully observable states.
Training of MARL models is usually in prespecified environments and the
scalability of the trained network to different agent team sizes is not
analyzed, that is crucial for SOS design. One needs a MARL approach that
is scalable to various team sizes and can guide SOS system design.

Method: Deep Multiagent Reinforcement Learning

Single Agent Reinforcement Learning: MARL is based on single agent
RL, which is used to optimize system performance based on training so that
the trained system can solve complex tasks from the raw sensory inputs. In
single agent RL, learning is based on the Markov Decision Process (MDP)
defined by a tuple of <S, A, P, R, g>. S is the state space, composed of the
agent’s all possible sensing information of environment. A is the action
space, including the agent’s all possible actions. P is the transition matrix,
which is usually unknown in a model-free learning environment. R is the
reward function, and g is the discount factor for the future rewards. At any
time t, the agent’s goal is to maximize its expected future discounted return,
𝑅" = ∑ 𝛾"&'"(

") 𝑟", where T is the time when the game ends. Also, agents
estimate the action-value function 𝑄(𝑠, 𝑎) at each time step using Bellman
equation (1) below as an update. E represents the expected value.
Eventually, such a value iteration will converge to optimal value function.

𝑄123(𝑠, 𝑎) = 𝐸[𝑟 + 𝛾max
:&

𝑄1 (𝑠), 𝑎))|𝑠, 𝑎] (1)

 Recently, deep neural networks are introduced as functional approximator
to replace the old Q-table for estimating Q values, such learning methods
are called deep Q-learning [15]. A Q-network with weights qi can be trained
by minimizing the loss function at each iteration i, shown in equation (2),

 H. Ji and Y. Jin 4

	𝐿1(𝜃1) = 𝐸[(𝑦1 − 𝑄(𝑠, 𝑎; 𝜃1))C] (2)
where

𝑦1 = 𝐸[𝑟 + 	𝛾max
:&

𝑄(𝑠), 𝑎) ; 𝜃1'3)]		 (3)
is the target value for iteration i. The gradient can be calculated with the
following equation (4):
∇EF𝐿1(𝜃1) = 	𝐸G,:,H,G&[{r + 	𝛾max:&

𝑄(𝑠) , 𝑎); 𝜃1'3) − Q(s, a, 𝜃1)	}∇EFQ(s, a, 𝜃1)] (4)

Multiagent Reinforcement Learning: There are generally two approaches
in multiagent training. One is to train the agents as a team, treating the entire
multiagent system as ‘one agent.’ It has good convergence property but can
hardly scale up or down. To increase learning efficiency and maintain
scalability, a multiagent independent deep Q-learning approach is adopted.
In this approach, Ai , i = 1, . . . , n (n: number of agents) are the discrete sets
of actions available to the agents, yielding the joint action set A = A1 ×·
· ·×An. All agents share the same state space and the same reward
function as task is cooperative. During training, each agent has its own
neural network, they perceive and learn independently but share the same
reward function and hence the reward value. As the agents are homogeneous
and share the same action space, the trained neural networks can be reused
and applied in different team sizes.
 In our MARL mechanism described
above, each agent i (i = 1, 2, …, n)
engages in learning as if it is in the single
agent RL situation. The only difference
is that the next state of the environment,
St+1, is updated in response to the joint
action at = {a1, a2, …, an}, instead of only
its own action ai, in addition to the
current state St. In this research, we
explore the stability issue of the learning
process—i.e., whether the knowledge
can be acquired in the form of neural
networks through RL with behavior regulation, and the adaptability issue—
i.e., whether the learned neural networks can be effectively applied to the
situations of similar tasks but different agent team sizes.

Case studies

A graphical illustration of a self-assembly case study is shown in Figure 1.
The game screen has a 800X800 pixels. Numerous agents (the green squares)
with limited pushing and sensing capabilities need to self-organize in order

Figure 1. Graphical illustration
of Box-pushing task

Self-Organizing Systems Design with Deep MARL 5

to push and rotate the box (the brown rectangle) towards the static target box
(the grey rectangle box) and form a T shape structure centered at target. The
agents cannot just simply push the box but have to rotate the box when
necessary [4,8]. This adds complexity to the task.

Pymunk, a physics simulation module, was used to build the case study
model. In pymunk, the distance is measured by pixels. Each pixel is a single
square area in the simulation environment. As an example, the brown box is
60 x 150 pixels and grey box is 60 x 210 pixels. In the self-assembly task,
agents have limited sensing capabilities. They can receive information from
the sensor of the box, which measures orientation of the box and senses
obstacles at a range of distance, implying the “minimalist” [18] and
complying with physical robot hardware [19].

State Space and Action Space
The state space of the self-assembly task is defined as 𝑆 =	< 𝑠, 𝛼, 𝛽, 𝜔, 𝑣>,
as shown in Figure 2(a) and Table 1.

 (a) (b)
Figure 2. Box state and neighborhood: (a) box state representation (b) six regions
of box neighborhood

Table 1: State space definition
State Description

s The vicinity situation (has nothing/obstacle/target) of the 24
equal sectors around the moving box within 200-pixel range.

𝛼 Angle between moving box x-axis and the target vector [20-21].
𝛽 Angle between fixed box x-axis and the moving box center
𝜔 Angular velocity of the moving box.
v Velocity of the moving box in global x-axis direction

To gather the state information, a sensor is deployed in the center of the

moving box, which can sense nearby obstacles/target with the radius of 200
pixels and the entire circular sensor coverage is equally split into 24 sectors.
The vicinity situation is modeled by 𝒔 = {𝑠3, 𝑠C. . . , 𝑠CV}	with 𝑠1 represents
the corresponding sector situation: has nothing or obstacle or target. In the
state of Figure 2(a), three obstacles are detected.

𝛼

𝛽

𝑦

x

𝑦

	𝛼

x

 H. Ji and Y. Jin 6

In order to define the action space for the assembly task, the concepts of
box neighborhood and box dynamics are introduced. The box neighborhood
is defined as six regions [2,8], as shown in Figure 2(b). During simulation,
individual agent can move to one of the six regions and that specific region
is the position of the agent. As agents are relatively small, there can be
multiple agents in the same region at the same time.

The box dynamics is based on the pymunk physics model. The mass of
box is 1kg. An agent can push the box from its position. Every push carries
the same amount of impulse acting on the center of one of box regions, from
an agent towards the box. The magnitude of an impulse is 1(𝑁 ∙	s) and the
box will have change of velocity of 1m/s in the pushing direction and change
of angular velocity of around 1 degree/s if agents push on one of the longer
sides of the box neighborhood. For every step in the simulation, agents
perform an action and wait for 1 second until next push is carried out.
 The agent action space is defined based on the box neighborhood and
simulated box dynamics. At each time step, an agent can choose a place in
one of the six regions of the box neighborhoods to push the box. Therefore,
the agents share the same actions space of A = {a1, a2, a3, a4, a5, a6}, as
shown in Figure 2(b). For instance, if an agent chooses action a1, it will
move to box region “1” and push from there, the box will move downwards
along the box’s y-axis based on the simulated box dynamics and the same
logic applies to other agent actions.

Reward Schema
Adapted from the Q-table based box-pushing reward schema [20], we
designed a new reward schema for agents’ self-assembly training. The total
reward is composed of four parts: distance, rotation, collision, and goal.
 Distance Reward: The reward for pushing the box closer to the goal
position is represented as 𝑅Y1G, and is shown in equation (6). Design with
distance reward gives incentive for the agents to move closer to the target.
The previous distance 𝐷[\Y represents how far the center of the box is away
from the target position (measured in pixels) and can be evaluated by the
box sensor and stored into an agent’s memory. 𝐷]^_	 represents such
distance at the current time step. 𝐶Yis a constant, called distance coefficient,
and is set to 0.02, which gives a little incentive for agents to move closer to
target box. At each simulation time step, agents calculate the change of
distance between the current distance and previous distance and draw its
distance reward based on Equation (6).

𝑅Y1G = 	 (𝐷[\Y − 𝐷]^_) ∗ 𝐶Y (6)

 Rotation Reward: The reward for rotation 𝑅H["	is represented in
equation (7).

Self-Organizing Systems Design with Deep MARL 7

𝑅H["	 = (𝐶𝑜𝑠(𝛼C − 𝛼3) − 0.98) ∗ 𝐶H (7)

where 𝛼3 is the previous time step angle between center of target box with
respect to the moving box’s x-axis and 𝛼C is the current angle. The rotation
reward is given to discourage the rotation of more than 11 degrees; this way,
the box can be rotated constantly with small degrees and avoid large rotation
momentum. 𝐶H is called rotation coefficient and is set to 0.1. The rotation
reward is relatively small as it is used only for box rotation rather than
pushing towards the target. It is a behavior regulation reward as it regulates
agents’ behavior during training by punishing agents’ misbehaviors to
obtain full potential within the agents.
 Collision Reward: The collision reward is analogous to the reward
schema in common collision avoidance tasks [21] and is represented in
equation (8) as 𝑅f[\,

𝑅f[\ = g−10	𝑖𝑓	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑐𝑐𝑢𝑟𝑠0	𝑖𝑓	𝑛𝑜	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑐𝑐𝑢𝑟𝑠 (8)

During each simulation step, if there is no collision for the box with the wall,
𝑅f[\	 = 0. If a collision occurs, a -10 reward will be given to all the agents
as a penalty.

Goal Reward: The reward for reaching the goal 𝑅o[:\	is represented in
equation (9),

𝑅o[:\	 = 	 g
100 ∗ |𝑆𝑖𝑛(a)| ∗ |𝐶𝑜𝑠(b)| 𝑖𝑓	𝑟𝑒𝑎𝑐ℎ𝑒𝑑	𝑔𝑜𝑎𝑙

0 𝑖𝑓	𝑛𝑜	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑔𝑜𝑎𝑙 (9)

a and b are shown in Table 1. During simulation, if the box reaches the
target box and form a perfect T-shape, each agent receives a 100 reward; if
reached the target box but slightly off angle, the reward will be between 100
and 0; if the target is not reached, the agents do not receive any reward.
Design with a large positive goal reward can motivate agents to reach their
ultimate goal.

The total reward is the sum of all the rewards, as shown in Equation
(10) below.

𝑅"["	 = 𝑅Y1G + 𝑅H[" +	𝑅f[\	 + 	𝑅o[:\	 (10)

During training, as the agents are homogenous and cooperating to push
the box, they should receive the same rewards. Thus, the reward equations
(8) through (10) are defined based only on the box’s position and
orientation. As a result, each agent’s neural network will consider other
agents’ actions as part of its environment and learn to explore its action
space and its best policy based on an e-greedy action selection strategy [15].
Gradually the agent grasps how to differentiate its actions from other agents
to collaboratively push the box towards the target box and form a T-shape,

 H. Ji and Y. Jin 8

which is the characteristics of multiagent independent deep Q-leaning neural
networks. The simulation parameters of our algorithm are in Table 2.

Table 2: Training simulation parameters and values
Replay memory size 1000 e 1.0 à 0.01

Mini-batch size 32 Annealing steps 250,000
Discount factor 0.99 Target network update

frequency 200 Learning rate 0.001
Total training episodes 16000 Dueling DQN network size (75, 64, 128,6)

Issues and Experiment Setup
The case study is focused on two issues: (1) achieving stable learning

dynamics by investigating the impact of behavior regulation reward and (2)
assessing robustness of the learned neural network knowledge in the context
of varying team sizes and environmental noise.

The number of agents i during training was varied between 1 and 10, i.e.,
1 ≤ 𝑖 ≤ 10. The training will yield 𝑖 different neural networks denoted as
𝑁1	which is a set of i networks. To evaluate the robustness of the acquired
network knowledge, each 𝑁1 was applied to the testing cases with j number
of agents and j was varied between 1 and 10, i.e., 1 ≤ 𝑗 ≤ 10. The notation
𝑁1
v	(1 ≤ 𝑖 ≤ 10; 1 ≤ 𝑗 ≤ 10)	 describes the situation where the network

knowledge obtained from training of i agents is applied to the testing case
of j agents. It is conceivable that there are 10 training cases, but 100 testing
cases. When the testing case agent number j is larger than the training agent
number i, i.e., i < j, one or more randomly selected networks are repeatedly
deployed in the test case. When i > j, then j networks are randomly selected
from 𝑁1for testing simulations.

To maintain statistic stability, for each i agents team, the agents are
trained 100 times with different random seeds, resulting in neural networks
𝑁1\, 1 ≤ 𝑖 ≤ 10	; 	𝑙 = 1, 2, . . . ,100. To evaluate the performance of a specific
𝑁1\ after training, the goal reward of equation (9) is used as the performance
score. The maximum score is 100, which is when the perfect T-shape is
formed in the middle of the target box. For a given i, the top 50 performers’
networks 𝑁1\∗ 	were collected as the network dataset from which a specific
𝑁1\ is randomly selected to test j-agent teams, 𝑁1\

v. The testing simulation for
a given j-agent team is also run 100 times and the mean cumulative reward
values and performance scores are used in the plots shown in Figures 4&5.

Results and Discussion
Figure 3 shows one successful training run with an 8-agent team by
following a policy that maximizes state-action values. Although the final
optimized trajectory is not strict perfect, through multiagent deep Q-

Self-Organizing Systems Design with Deep MARL 9

networks, agents can approximate its
actions and push the box towards the
target box and form a T-shape structure.

Training stability

It was found that the cumulative reward
does not differ much between different
team sizes. Therefore, in Figure 4, we only
show the training convergence results of
8-agent teams, 𝑁x. The reward plots are
based on the mean values of 100 training
simulation runs, 𝑖. 𝑒. , 𝑙 = 1, 2, . . . ,10, with
different random seeds.

 Figure 4(a) – 5(c) are reward plots for teams trained with the behavior
regulation rotation reward (see Eq. (7)). Figure 4(d) is the reward plot for
teams trained without the rotation reward. As shown in Figure 4 (a), the
cumulative reward of the 8-agent teams trained with the rotational reward
converges to almost 100, and once the reward reaches the threshold, it stays
the same without much oscillation. The green shaded region in the plots
indicates the standard error from the mean value of reward. Figure 4(b)
shows how the behavior regulation rotation reward changes with increasing
episodes. As the episode number increases, the rotation reward first
decreases and then increases to around 0. Figure 4(c) shows how the
cumulative reward excluding rotation reward increases with episodes. It is
used to compare with Figure 4(d), in which the agents are trained without
the shaping rotation reward and finally converged to only around 80.

Figure 3: successful box-pushing
trajectory with motion traces

Figure 4. Reward plot vs training episodes of 8-agent teams with standard error in
green shaded region

(a) Total reward including
rotation reward

(c) Total reward excluding
rotation reward

(b) Rotation reward

(d) Total reward trained
without rotation reward

Training Episode

Training Episode

Training Episode

Training Episode

 H. Ji and Y. Jin 10

This result indicates that introducing rotation behavior regulation reward
had a significant impact during training in the self-assembly task, which
further demonstrates that providing terminal rewards alone is not enough for
agents to successfully find optimal policies. Regulating agents’ behavior
during the training process is important to mitigate the effect of too much or
too little rotation for arriving of the maximum potential of the agent team.

Scalability of training algorithm to varying team sizes

The scalability of the learned
neural network knowledge to
different team sizes and the
robustness to various noises are
two important issues for this
research. Applying neural
network trained with i-agent
teams to test and assess the
performance of j-agent teams,
i.e., 𝑁1

v	(1 ≤ 𝑖 ≤ 10; 1 ≤ 𝑗 ≤
10) , allows us to assess the
scalability. Further, introducing
10% random agent actions
helps evaluate the robustness of
the trained networks. The
results are shown in Figure 5.
The curves with different colors
in the figure represent training of
i-agent teams. For example, TO1 means training of 1-agent team and TO5
5-agent team. The horizonal axis indicates j-agent testing teams. The vertical
axis shows the performance score of testing (Eq. (9)), with error bars
showing standard error of the mean.

As shown in Figure 5, when the trained networks are applied to the same
team size, 𝑁11, agents have a performance score of above 90. As the team
size i increases, the performance score of testing runs 𝑁11 first increases and
then remains rather stable, indicating that there is a threshold of effect of
adding more agents. In this case study, the threshold is around 5.

If we transfer the individual learned neural network to teams of larger
size, i.e., 𝑁1

v, 𝑗 > 𝑖,	 the performance score remains high as long as the
number of agents of the trained team, i, is equal to or larger than 4 (𝑖 ≥ 4).
For the cases of i = 1 and i = 2, both the learning dynamics and team
dynamics are very different from other team sizes, hence the learned
knowledge can hardly be scaled up.

Figure 5. Transfer performance score with
different number of transfer agents with
error bars indicating standard error

Self-Organizing Systems Design with Deep MARL 11

When the transfer of learned knowledge is from a larger team to smaller
teams, i.e., 𝑁1

v, 𝑗 < 𝑖,	 the performance score maintains its value to a certain
extent if starting number of agents i is between 5 to 10. When i is 2 to 5, the
effect of transferring knowledge downward is not as good. As indicated in
Figure 5, overall, transferring learned knowledge downward is less effective
compared to doing so upward in terms of team size. The neural networks
learned from team size of 5 to 8 are most scalable in both directions. It is
considered that the team size of this range is most adequate for this specific
task with the 8 having more flexibility and 5 on the border of needed
capacity. When the task becomes more complex, the adequate team size may
change.

Conclusions

In multiagent RL based SOS design, learning stability and scalability of the
system with various team sizes are two important issues to consider. In
addition, the system needs to be robust enough to perform well in the face
of noises. In this paper, we applied the multiagent independent Q-leaning
algorithms to designing SOS and investigated the learning stability,
scalability, and robustness characteristics of such design approach through
a box-pushing self-assembly case study. The results have shown that

• MARL is an effective approach to capture self-organizing knowledge
through extensive training. In our self-assembly case, the agents
successfully accomplished the task with high performance scores based
on the learned neural networks.

• The behavior regulation reward plays a central role for the MARL teams
to reach its full potential capacity through learning. As shown in Figure
4(d), without such behavior regulation the self-organizing agents can only
attain 80 percent of the full capacity.

• MARL based self-organizing knowledge captured in the form of neural
networks can scale upward better than downward in terms of team size.
There is a task specific adequate team size range in which the scalable
and robust neural network knowledge can be obtained from training.

• The teams with more agents are more robust against random actions. But
too many agents may lead to the learned network knowledge that can
hardly be transferred to smaller teams.

It is worth mentioning that the above conclusions are limited to the case
studies described in the paper. Further work is needed for generalization.
Our future work includes adding individual heterogeneous rewards, testing
the different reward functions, and applying to more complex task cases.

 H. Ji and Y. Jin 12

References
1. Chiang W, and Jin Y. "Design of Cellular Self-Organizing Systems" IDETC

/CIE20120-71216.
2. Humann J, Khani N, & Jin Y. (2014). Evolutionary computational synthesis of

self-organizing systems. AI EDAM, 28(3), 259-275.
3. Jin, Y. and Chen, C. (2014) Field Based Behavior Regulation for Self-

Organization in Cellular Mechanical Systems, AIEDAM, 28(2), pp.115-128.
4. Khani, N., Humann, J., & Jin, Y. (2016). Effect of Social Structuring in Self-

Organizing Systems. Journal of Mechanical Design, 138(4), 041101.
5. Ji H, and Jin Y (2018) "Modeling Trust in Self-Organizing Systems with

Heterogeneity." ASME IDETC-2018-86006.
6. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral

model. ACM SIGGRAPH computer graphics, 21(4), 25-34.
7. Werfel, J. (2012). Collective construction with robot swarms. In Morpho-

genetic Engineering (pp. 115-140). Springer Berlin Heidelberg.
8. Khani, N., & Jin, Y. (2015). Dynamic structuring in cellular self-organizing

systems. In Design Computing and Cognition'14(pp. 3-20). Springer, Cham.
9. Price, I. C., & Lamont, G. B. (2006). GA directed self-organized search and

attack UAV swarms. Proc. of the 38th Conf. on Winter Simulation 1307-1315
10. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An

introduction. MIT press, 2018.
11. Bu, Lucian, Robert Babu, and Bart De Schutter. "A comprehensive survey of

multiagent reinforcement learning." IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38.2 (2008): 156-172.

12. Tan, Ming. "Multiagent reinforcement learning: Independent vs. cooperative
agents." Proc. of the 10th international conference on machine learning. 1993.

13. Watkins, Christopher John Cornish Hellaby. Learning from delayed rewards.
Diss. King's College, Cambridge, 1989.

14. Tampuu, Ardi, et al. "Multiagent cooperation and competition with deep
reinforcement learning." PloS one 12.4 (2017): e0172395.

15. Mnih, Volodymyr, et al. "Human-level control through deep reinforcement
learning." Nature 518.7540 (2015): 529.

16. Foerster, Jakob N., et al. "Counterfactual multiagent policy gradients." Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

17. Foerster, Jakob, et al. "Stabilising experience replay for deep multiagent
reinforcement learning." Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017.

18. Jones, Chris, and Maja J. Mataric. "Adaptive division of labor in large-scale
minimalist multi-robot systems." Intelligent Robots and Systems, 2003.

19. Groß, Roderich, et al. "Autonomous self-assembly in swarm-bots." IEEE
transactions on robotics 22.6 (2006): 1115-1130.

20. Wang, Y, and C W. De Silva. "Multi-robot box-pushing: Single-agent q-
learning vs. team q-learning." 2006 IEEE/RSJ Int Conf on Int. Rob & Sys.

21. Liu, X, and Jin Y. "Design of Transfer Reinforcement Learning Mechanisms
for Autonomous Collision Avoidance." DCC’18, Springer, Cham, 2018.

