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ABSTRACT 
Visual analogy has been recognized as an important 

cognitive process in engineering design. Human free-hand 

sketches provide a useful data source for facilitating visual 

analogy. Although there has been research on the roles of 

sketching and the impact of visual analogy in design, little work 

has been done aiming to develop computational tools and 

methods to support visual analogy from sketches. In this paper, 

we propose a computational method to discover visual similarity 

between sketches, considering the following practical 

application: Given a sketch drawn by a designer that reflects the 

designer’s rough idea in mind, our goal is to identify the shape 

similar sketches that can stimulate the designer to make more 

and better visual analogies. The first challenge in doing so is 

how to discover the similar shape features embedded in sketches 

from various categories. To address this challenge, we propose 

a deep clustering model to learn a latent space which can reveal 

underlying shape features for multiple categories of sketches and 

cluster sketches simultaneously. An extensive evaluation of the 

clustering performance of our proposed method has been carried 

out in different configurations. The results have shown that the 

proposed method can discover sketches that have similar 

appearance, provide useful explanations of the visual 

relationship between different sketch categories, and has the 

potential to generate visual stimuli to enhance designers’ visual 

imageries. 

 

Keywords: Visual similarity, unsupervised deep learning, design 

by analogy, sketching, fixation 

 

1. INTRODUCTION 
 

In engineering design, mental stimulation is useful to boost 

innovative solutions for ill-defined design problems. During 

conceptual design, designers, especially the novices, usually 

struggle in choosing from which sources to gain inspiration when 

attempting to generate creative concepts. In our previous work, 

it has been shown that the shapes and structures of a design 

artifact may be more stimulating than the functions because of 

its high level of ambiguity[1]. Researchers have observed that 

designers often search intensively for images from various 

websites for inspiration [2, 3]. Most existing design-dedicated 

image search tools and methods [4-6] require designers to initiate 

search by entering keywords and avoid fixation through 

semantic-based approaches. The keyword-based search assumes 

that a designer has a clear goal in mind and can convert and 

express it by keywords. However, because of the ill-defined 

nature of design problems at the early design stages, the 

designers may only have a vague idea of the entity that is being 

designed. Therefore, requiring designers to formulate keywords 

when initiating the search can be a major impediment of these 

computational tools. How can a computational tool support 

designer to by capturing the vague ideas in their mind and then 

use them to search and retrieve visual stimuli? 

Sketch as a visual representation in engineering design can 

help brief and ambiguous ideas take shapes on paper[7]. The 

briefness accelerates the transformation of a flash thought into 

reality. Ambiguity gives rise to an open-ended representation that 

contributes to many more possible interpretations. Sketching 

activity in conceptual design is primarily to provide potentially 

meaningful clues to infer emerging design concepts[8, 9]. The 

inspiration of sketches mostly comes from the shapes and the 

relationships among them. Designers can manipulate given 

shapes in imagery and combine them into meaningful and even 

new concepts in a short time. Sketching can reflect premature 

design ideas in designers’ mind, and it is also an ideal stimulant 

to facilitate creative idea generation. Therefore, it is important to 

develop a computational tool which takes designers’ rough 

sketches as queries and help them generate more creative ideas 

by stimulating their visual thinking process. 
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Research has been done to investigate visual analogy in the 

field of design. Goldschmidt and colleagues demonstrated visual 

analogy is considered as an effective cognitive strategy to 

stimulate designers to create innovative concepts for solving ill-

structured design problems[10-12]. For novel idea generation, 

the use of picture stimuli outperforms words[13, 14]. In design, 

shapes may represent semantic concepts as well the objects to 

reflect designers’ understanding of the visual world. From a 

cognitive point of view, when making visual analogy, designer 

can map shapes from low(geometric) level to high (symbolic, 

conceptual) level[15, 16]. At the high level, they are capable of 

interpreting and detecting the similarities between shapes in the 

same category or not. It means designers can abstract perceptual 

information to some visual prototypes which represent 

underlying shape paradigm in a cognitive space. In that space, 

they can manipulate and transform shapes by exploiting domain 

knowledge. From an engineering design point of view, high-

dimensional design features (geometric space) actually lie on a 

lower-dimensional design manifold(semantic space)[17, 18]. In 

the manifold, high-dimensional shape features can be reduced to 

the minimal dimensionality which can reserve underlying 

pattern, constraints or configurations. It is more efficient to 

explore and exploit the low dimensional design space to discover 

novel designs. In this paper, we call this “high level” and “low 

dimensional” space as a latent space. Therefore, the research 

problem in this paper is how a computation tool can learn a latent 

space which can capture the “visual prototype” of sketches from 

different categories.  

In this paper, we utilize the unsupervised deep learning to 

build a model, called deep clustering sketch-pix2seq or dc-

sketch-pix2seq for short, to learn a low dimension and high-level 

latent space, in which “visual prototypes” can be found to distill 

underlying shape features of sketches in different categories; 

after that, a clustering space is learned in which visual similarity 

of underlying shape features of sketches can be visualized. 

 

2. RELATED WORK 
2.1 Computational tools for design by analogy 

Design-by-analogy consists of two main steps: retrieving 

potentially-inspirational information in the source domains and 

mapping the inspirational information from source domains to 

the target domain[19]. Designers face difficulties when 

retrieving an appropriately inspirational source. Therefore, using 

effective searching and retrieving tools have the potential to 

enhance design-by-analogy. The large amount of inspirational 

resources available in various databases can benefit designers 

who have limited domain knowledge. Many computational tools 

and methods have been developed to support and enhance 

searching and retrieval in design-by-analogy. The goals are to 

strength experts’ abilities and reduce the influence of experience 

gaps. Currently, biological systems and patents are the two major 

inspiration sources for design-by-analogy. 

Biological systems provide a fruitful nature source of 

inspiration for engineering design. Vincent and Mann proposed 

Bio-TRIZ, which extends biological information and principals 

in the TRIZ database[20]. Chakrabarti et al. have created an 

automated analogical tool called IDEA-INSPIRE that searches 

relevant ideas from a biological database to solve a given design 

problem[21, 22]. Shu et al. used natural language analysis to 

correlate functional basis terms with useful biological 

keywords[23, 24]. DANE (Design by Analogy to Nature Engine) 

was proposed by Goel et al. to search and retrieve the functioning 

of biological systems in the Structure-Behavior-Function (SBF) 

library [25, 26]. Nagel et al. put forward a computational method 

to generate biologically inspired concepts based on function-

based design tools[27]. AskNature is web-based tool to 

interactively classify biological information in the Biomimicry 

Taxonomy[28]. 

Patent databases can provide enormous cross-domain 

technology knowledge to inspire designers. Various 

computational tools and methods have been proposed to retrieve 

and analyze patents to support design-by-analogy. Murphy 

proposed a search methodology to identify inspiring patents 

which have functional semantic similarity with design 

problems[29]. Fu et al. created a computation method to cluster 

patents based on their functional and surface similarity, then 

designers can automatically retrieve analogical stimuli from 

these patents[30]. As many patent retrieval computational tools 

focus on mining patents generally, Song and Luo proposed a 

data-driven method to retrieve patents precisely related to a 

specific product[31]. Fu et al. proposed a technological distance 

to measure the “near” and “far” analogical stimuli based on the 

relative similarity of clusters of patents[32]. 

While the research into search and retrieve analogies from 

biological system and patents is prolific, the foundation of the 

most research is in linguistics and semantic transfer for 

analogical reasoning. There are few computational tools and 

methods that support and guide visual analogy.  

 

2.2 Visual analogy in engineering design 
CAD, sketches, photographs, line-drawings are major visual 

sources to promote analogical thinking[2, 33]. In engineering 

design, many researchers used the large assortment of visual 

displays to stimulate designers to output creative design 

concepts. Jin and Benami indicated that meaningfulness and 

relevance are the two overwhelmingly important creative 

properties of visual stimuli that influence design stimulation [1]. 

Yang et al. indicated that the quality and realism of the design 

can be improved when sketching during concept generation[8, 

34]. Goldschmidt et al. demonstrated that visual stimuli are 

useful for both expert and novice designers to improve the 

quality of design and more effective for novice designers[11, 12]. 

Linsey et al. illustrated that designers frequently prefer visual 

representations to textual descriptions for idea generation and 

photographs are growing in popularity due to easy retrieval from 

the Internet[35, 36]. McKoy et al. showed that novice designers 

can generate higher quality and more novel design concepts 

when being presented with sketches rather than text-based 

examples [37]. 

However, displays of visual representations are less 

effective to produce creative design than reasoning by visual 

analogy. Casakin et al. found that if no instructions or directions 
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are provided to guide visual analogy, the quality of the design 

solutions mostly diminished[38, 39]. It is often said that 

designers think more visually in their working environment. It 

means that the designers are more likely to take advantage of 

shapes and forms of displays as stimuli to tackle given design 

problems[10]. Shape emergence means unexpected or implicit 

shape features and relations appear only after the manipulation 

and transformation of explicit shapes. Visual imagery may 

provide a theoretical foundation for explicating shape emergence 

in design by linking shape perception and the high-level 

cognitive processes of visual reasoning. Therefore, designers 

take advantage of visual imagery to reinterpret and reformate 

underlying shapes from the visual stimuli for the idea generation. 

The precondition for shape emergence is shape ambiguity, which 

refers to the existence of numerous interpretations of visual 

representation[40].  

Designers are prone to use sketches to represent rough ideas 

and obtain hints from the shapes of sketches[7]. Sketches as 

informal visual representations has the property of ambiguity, 

which makes it possible for engineers to perceive two different 

shapes from a single sketch. The power of visual analogy is that 

the designers making the analogy can see the similarities of the 

underlying shapes, despite differences in superficial shapes. 

Therefore, sketch is an ideal source to serve as a visual stimulus. 

How to effectively discover visual similarity from sketches is a 

major question in our work. 

In summary, a rich body of research on design by analogy 

has yet to be integrated into the extensive work on visual 

analogy. Our goal in this paper is fill the gap of the two research 

areas by developing a computational method which can support 

visual analogy. 

 
3. METHODS 
3.1 Deep learning models for sketch representation 

Recent advances in deep neural network models drastically 

increased machines’ ability to learn a common and general 

feature space for sketches and images [41-43]. Karimi et al. used 

a supervised learning method to learn the feature vectors of 

sketches given the category labels and then create clusters of 

visually similar sketches based on the learned feature 

vectors[44]. However, in this paper, we want to learn a latent 

space which can represent the underlying shape feature of 

objects only using lines and curves of shapes in the sketches 

rather than the labels of categories. Therefore, we need to turn to 

unsupervised learning. Sketch-rnn is an unsupervised learning 

model based on Variational AutoEncoder (VAE) framework for 

constructing stroke-based drawings of common objects; it can 

mimic how human sketch and draw similar but unique 

objects[45, 46]. Sketch-rnn uses a bi-directional recurrent neural 

network RNN[47] as an encoder to capture the features of 

training data in a latent space 𝑍 (e.g., the feature distribution of 

training data) and applies an autoregressive RNN[48] as a 

decoder to reconstruct data via a sampled vector 𝑧 from 𝑍. It 

means all training data can be mapped to a latent space 𝑍 which 

can capture abstract and underlying shape features. However, the 

performance of sketch-rnn to extract shape features of objects 

from multiple categories is not satisfactory. Therefore, a 

modified sketch-rnn should be put forward to robustly present 

underlying shape features of multi-category objects in a latent 

space, which can support the measurement of shape similarity. 

During the training stage, the input of sketch-rnn is a set of 

n sketches 𝒙 = {𝑥𝒊𝜖𝑋}𝑖=1
𝑛  . 𝑋  is the data space. The VAE 

encoder compresses 𝒙 into n latent vector 𝒛 = {𝑧𝒊𝜖𝑍}𝑖=1
𝑛 . 𝑍 is 

the latent space. The dimensionality of 𝑍  is typically much 

smaller than 𝑋  in order to avoid the “curse of 

dimensionality”[49]. The VAE decoder samples n sketches 𝒙′ =
{𝑥𝒊

′𝜖𝑋}𝑖=1
𝑛   conditional on given latent vector  𝒛 . The entire 

training process optimizes the following loss function: 

 

 
𝐿(𝜃, 𝜙; 𝑥) = 𝐸𝑞𝜙(𝒛|𝒙)[log 𝑝𝜃(𝒙′|𝒛)]

− 𝐷𝐾𝐿(𝑞𝜙(𝒛|𝒙)‖𝑝𝜃(𝒛)) 
(1) 

 

where 𝑞(·) denotes the encoder, and 𝑝(·) denotes the decoder. 

𝜙  and 𝜃  are the parameters to be trained in the encoder and 

decoder, respectively. The parameters are typically the weights 

and biases of the neural networks. The first term, 𝐸𝑞𝜙(𝒛|𝒙)(·), is 

the reconstruction loss that ensures the similarity between the 

generated strokes and the strokes within the sketches in the 

training set. The second term, 𝐷𝐾𝐿(·)  is the Kullback-Leibler 

(KL) loss that ensures the distribution of the generated strokes 

𝑞𝜙(𝒛|𝒙) is similar to that of the training set 𝑝𝜃(𝒛). 

Sketch-pix2seq is a modified version of sketch-rnn[50]. 

There are two modifications in sketch-pix2seq. First, it replaces 

the bidirectional RNN by a convolutional neural network (CNN) 

as the encoder. The reason is CNN has a good performance in 

capturing local structure of images. As the way of human to 

perceive a sketch is based on shape instead of remembering the 

sketching process, it means CNN seems to be better choice for 

encoder.  Second, it removes 𝐷𝐾𝐿(·)  loss from 𝐿(𝜃, 𝜙; 𝑥) .  

The assumption 𝑝𝜃(𝒛)~𝑁(0, 𝐼) in the sketch-rnn model might 

not be suitable, as the distribution of the input sketches which 

belong to different categories could be drawn from other 

distributions rather than Gaussian distribution. Because of this 

assumption, the term 𝐷𝐾𝐿(𝑞𝜙(𝒛|𝒙)‖𝑝𝜃(𝒛)) forces the encoder 

to learn the posterior 𝑞𝜙(𝒛|𝒙)  which should be similar to 

Gaussian distribution. This contributes to the unsatisfied 

performance of sketch-rnn for learning latent features from 

sketches in multiple categories. Therefore, the loss function of 

the sketch-pix2seq model is: 

 

 𝐿𝑟 = 𝐸𝑞𝜙(𝒛|𝒙)[log 𝑝𝜃(𝒙′|𝒛)] (2) 

 

3.2 Deep clustering sketch-pix2seq 
For sketch-pix2seq, input sketches are encoded in the latent 

space according to their shapes, since samples that look similar 

are close to each other[50]. Therefore, even sketches are from 

different categories, we can detect the similar underlying shapes 

within them in the latent space. Clustering is an unsupervised 

learning method which can cluster similar data points into in the 

same group. How can we cluster sketches based on shape 
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similarity of sketches in the latent space? Deep Embedded 

Clustering (DEC) provides a way to deal with this problem[51]. 

The biggest contribution of DEC is the clustering layer (or target 

distribution 𝑃, to be specific). It can output a soft label between 

the data points and the cluster centroids and make each cluster 

denser and away from other clusters. 

The design of the deep clustering sketch-pix2seq model, 

called dc-sketch-pix2seq, extends sketch-pix2seq with a 

clustering layer, as shown in Figure 1. The clustering layer and 

loss are directly borrowed from DEC. The clustering layer 

clusters all latent vectors in the latent space 𝑍  by 

simultaneously learning a set of 𝐾  cluster centers {𝜇𝒋𝜖𝑍}
𝑗=1

𝐾
 

and mapping each latent vector 𝑧𝑖  into a soft label 𝑞𝑖  by 

student’s t-distribution[52]. 𝒒𝒊 = [𝑞𝑖1, … , 𝑞𝑖𝑗 , … 𝑞𝑖𝑘]   is a soft 

label which quantifies the similarity between 𝑧𝑖  and cluster 

center 𝜇𝑗 .  

 

 
𝑞𝑖𝑗 =

(1 + ‖𝑧𝑖 − 𝜇𝑗‖
2

)
−1

∑ (1 + ‖𝑧𝑖 − 𝜇𝑗‖
2

)
−1

𝑗

 

 

(3) 

 

where 𝑞𝑖𝑗  is the jth entry of 𝒒𝒊, representing the probability of 

𝑧𝑖 belonging to cluster j.  

The clustering loss 𝐿𝑐  is defined as a KL divergence 

between the distribution of soft labels 𝑄 measured by student’s 

t distribution and the predefined target distribution 𝑃  derived 

from 𝑄. The clustering loss is defined as 

 

 𝐿𝑐 = 𝐷𝐾𝐿(𝑃‖𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

 (4) 

 

where the target distribution 𝑃 is defined as 

 

 𝑝𝑖𝑗 =
𝑞𝑖𝑗

2 ∑ 𝑞𝑖𝑗𝑖   ⁄

∑ (𝑞𝑖𝑗
2 ∑ 𝑞𝑖𝑗𝑖⁄ )𝑗

 (5) 

Raising 𝑞𝑖𝑗  to the second power and then dividing by the 

frequency per cluster allows the target distribution 𝑃  to 

improve cluster purity and stress on confident labels, while 

normalizing the contribution of each centroid on the clustering 

loss to prevent large clusters from distorting the latent space. 

Therefore, data points with high confidence are used as 

supervision and points in each cluster distribute more densely. 

where 𝐷𝐾𝐿   measures the non-symmetric difference between 

two probability distributions, 𝑃 and 𝑄 are defined by (5) and 

(3), and matches 𝑄 to 𝑃. 

In dc-sketch-pix2seq, two components are essential: the 

sketch-pix2seq and clustering loss. The sketch-pix2seq is used to 

learn representations in an unsupervised manner and the learned 

latent space can preserve underlying shape features in sketches. 

The clustering loss is responsible for manipulating the latent 

space in order to cluster sketches based on shape similarity. 

Therefore, the objective of dc-sketch-pix2seq is 

 

 𝐿𝑟𝑐 = 𝐿𝑟 + 𝜏𝐿𝑐 (6) 

 

where 𝐿𝑟 is a reconstruction loss from Error! Reference 

source not found. and 𝐿𝑐  is a clustering loss from (4). The 

coefficient 𝜏 is better to be less than 1 and more than 0. When 

𝜏 = 0 , the above function reduces to the objective of sketch-

pix2seq. When 𝜏 = 1 and 𝐿𝑟 = 0 , the above function reduces 

to the objective of DEC.  

We first pretrain the parameters of the dc-sketch-pix2seq by 

setting 𝜏 = 0 to get a latent space. After pretraining, the cluster 

centers are initialized by performing k-means on latent features 

of all sketches to get initial cluster centers {𝜇𝒋𝜖𝑍}
𝑗=1

𝐾
. Based on 

(3) and (5), we can get the initial distribution of soft labels 𝑄 

and initial target distribution 𝑃. Then update the deep clustering 

weights, cluster centers and target distribution 𝑃 as follows.  

1) Update weights and cluster centers. The gradients of 𝐿𝑐 with 

respect to each latent vector 𝑧𝑖 and each cluster center 𝑢𝑗 can 

be computed as: 
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Figure 1: Structure of Deep Clustering Sketch-Pix2Seq 
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𝜕𝐿𝑐

𝜕𝑧𝑖

 = 2 ∑ (1 + ‖𝑧𝑖 − 𝜇𝑗‖
2

)
−1

(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑧𝑖 − 𝜇𝑗)

𝑘

𝑗=1

 (7) 

 

𝜕𝐿𝑐

𝜕𝑢𝑗

 = 2 ∑ (1 + ‖𝑧𝑖 − 𝜇𝑗‖
2

)
−1

(𝑞𝑖𝑗 − 𝑝𝑖𝑗)(𝑧𝑖 − 𝜇𝑗)

𝑛

𝑖=1

 (8) 

 

Encoder and decoder parameter gradient 
𝜕𝐿𝑟

𝜕𝜙
  and  

𝜕𝐿𝑟

𝜕𝜃
  can be 

calculated by backpropagation when passing 
𝜕𝐿𝑐

𝜕𝑧𝑖
  to the 

structure of our model. Then, the weights of encoder and decoder 

and the cluster center can be updated by mini-batch stochastic 

gradient decent. 

2) Update target distribution. In every 𝑇  epoch, the target 

distribution 𝑃 serves as ground truth soft labels. The clustering 

layer is trained by predicting the soft assignment 𝑄  and then 

matching it to the target distribution 𝑃. At the end of T iterations, 

based on (5), the target distribution P is updated depending on 

predicted soft label 𝑄 and used for next round of T iterations. 

After each T iteration, the cluster label 𝑐𝑖   assigned to 𝑥𝑖  is 

obtained by: 
 

 𝑐𝑖 = arg max
𝑗

𝑞𝑖𝑗 (9) 

   

where 𝑞𝑖𝑗  can be obtained by (3). We will stop training if cluster 

label assignment change (in percentage) between two 

consecutive T iterations is less than a threshold 𝑡𝑜𝑙. 
 

4. EXPERIMENTS 
4.1 Datasets and Settings 

Datasets. Quickdraw is a largest sketch database up to date 

built by Google[53]. All the data were collected by The Quick, 

Draw!, an online game that requires participants to draw a sketch 

within 20 seconds. The 75K sketches for each category have 

already been divided into training, validation and testing sets 

with sizes of 70K, 2.5K and 2.5K, respectively. It contains 345 

categories of everyday objects. In this paper, the raw sequences 

from Quickdraw datasets are converted to monochrome png files 

of size 48x48, which are used as the input data for our deep 

neural network. These png files are binary images with pixels 

covered by strokes having the value one and the rest of pixels the 

value zero. In order to study the clustering performance of our 

proposed model, we conduct experiment on three datasets: 

Dataset 1: it includes five categories which are van, bus, 

truck, pickup truck, car. All of them belong to automobiles and 

share some obvious shape features such as wheels and windows. 

Dataset 2: it includes five categories which are speedboat, 

canoe, drill, pickup truck and car. Speedboat and canoe belong 

to boats and share some obvious shape features such as v-shaped 

hulls. Pickup truck and car belong to automobiles. Drill is the 

only one which doesn’t share general shape similarity with other 

categories. 

Dataset 3: it includes five categories which are television, 

canoe, drill, umbrella, car. Each of them doesn’t share any 

general shape similarity with other categories. 

Some examples of each dataset are listed in Table 1. The 

15K sketches for each category are chosen in this paper. The 

sketches are been divided into training, validation and testing 

sets with sizes of 10K, 2.5K and 2.5K, respectively.  

 

Table 1: Examples of Datasets 

Dataset Examples 

1      

van bus truck 
pickup 

truck 
car 

2 
     

speedboat canoe drill 
pickup 

truck 
car 

3      

television canoe drill umbrella car 

 

Comparing methods. We demonstrate the effectiveness of 

our dc-sketch-pix2seq mainly by comparing with sketch-pix2seq 

which can be viewed as a special case of dc-sketch-pix2seq when 

the constant of the clustering loss is set to zero and sketch-rnn 

which is the origin of sketch-pix2seq. we use the publicly 

available code released by the author to report the performance 

of sketch-pix2seq and sketch-rnn. For the sake of completeness, 

one of the traditional clustering algorithms, k-means is included 

in comparison. Since another classic clustering algorithm 

gaussian mixture models (GMM) performs similarly to k-means, 

we only report k-means results. We show qualitative and 

quantitative results that demonstrate the benefit of dc-sketch-

pix2seq over other methods.  

Implementation Details. We conduct experiments on four 

methods with three data settings. The parameters used for 

training sketch-rnn and sketch-pix2seq models are the same as 

the illustration in the papers[45, 50]. For training our proposed 

model, we copy the trained weights of each layer in sketch-

pix2seq. The coefficient 𝜏 of clustering loss in (6) is set to 0.05 

which is determined by a grid search in {0.01, 0.02, 0.05, 0.1, 

0.2, 0.5, 1.0} and batch size to 100 for all datasets. The maximum 

number of epochs is set to 𝑇 =  50. In each iteration, we train 

the encoder for one epoch using Adam optimizer[54] with 

learning rate 𝜆 = 0.001, 𝛽1 = 0.9,  𝛽2 = 0.999. The 

convergence threshold is set to 𝑡𝑜𝑙 =  0.1%.  We implement 

our models end-to-end based on Python and Keras[55]. The 

dimension of the latent space in these three models is 128, which 

is the same in the papers[45, 50]. k-means is performed to cluster 

sketches in the latent space of pretrained sketch-pix2seq and 

sketch-rnn. Besides, as a baseline for comparison, k-means also 

runs on sketch data with original dimensions which is much 

larger than the latent space. k-means performs 20 times with 

different initialization and the result with best objective value is 

chosen. 𝑘 = 5, as each dataset includes 5 categories. 
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Evaluation metrics. We evaluate all clustering methods 

with unsupervised clustering accuracy (ACC). The ACC is 

defined as the best match between ground truth 𝒚 and predicted 

cluster labels 𝒄: 

 

 𝐴𝐶𝐶(𝒚, 𝒄) = max
𝑚∈ℳ

∑ 𝟏{𝑦𝑖 = 𝑚(𝑐𝑖)}𝑛
𝑖=1

𝑛
 

 

(10) 

where 𝑛 is the total number of samples, 𝑦𝑖  is the ground 

truth label, 𝑐𝑖  is the predicted cluster label of example 𝑥𝑖 

obtained by the model, and ℳ is the set of all possible one to 

one mappings between predicted cluster labels to ground truth 

labels. The best mapping can be efficiently computed by the 

Hungarian algorithm [56].  

  

4.2 Experiment results 
Quantitative results.  The order of computation time for 

training three deep learning methods is Dc-sketch-pix2seq > 

Sketch-rrn>Sketch-pix2seq. As Sketch-pix2seq doesn’t need to 

compute 𝐷𝐾𝐿(·) loss from 𝐿(𝜃, 𝜙; 𝑥) in (1), it takes less time 

than sketch-rnn to train. Dc-sketch-pix2seq takes the longest 

time for training. As it needs to pretrain and copy the weights 

from sketch-pix2seq, it takes almost twice as much time as 

Sketch-pix2seq to be trained. 

We plot the clustering accuracy of all comparing algorithms 

on 3 datasets in Figure 2. In Table 2, the best accuracy rate in 50 

epochs for each method is chosen for comparison. As it shows, 

we can see a rising trend of accuracy rate from Dataset1 to 

Dataset3 for each method. This is because it is easier to 

differentiate sketches from different taxonomic groups than from 

the same taxonomic groups. It can imply sketches in the same 

taxonomic group share more shape features. Deep neural 

network-based clustering algorithms sketch-rnn+kmeans, 

sketch-pix2seq+kmeans and dc-sketch-pix2seq outperform 

traditional clustering algorithm k-means for sketches clustering. 

Except for dataset3, there is a large margin between our proposed 

method with other methods, which indicates the fascinating 

potentials of dc-sketch-pix2seq in discovering underlying shape 

features of sketches in unsupervised clustering field. The 

performance gap between sketch-pix2seq+kmeans and dc-

sketch-pix2seq reflects the effect of clustering loss. Especially 

for dataset1, sketch-pix2seq has a much larger variance than our 

proposed model. It means our proposed model is more robust to 

discover underlying shape features. The outperformance of dc-

sketch-pix2seq over sketch-rnn demonstrates that the CNN 

encoder can help improve clustering performance. Dc-sketch-

pix2seq is based on unsupervised learning and have a good 

performance on learning discriminative representations of 

sketches. We didn’t compare it with a supervised learning 

method [44] which can reach 76% average accuracy rate for 345 

categories. When sketches are from different taxonomic 

categories (such as Dataset3), they have distinguishing shape 

features. Our proposed model can have high accuracy rate. When 

sketches are from the same taxonomic category (such as 

Dataset1), they share more common shape features. The 

accuracy rate of the proposed method decreases a lot. It means 

dc-sketch-pix2seq discriminate sketches based on shape features 

rather than labels. In other words, it can discover and extract 

underlying shape features and represent them in the latent space 

which can differentiate sketches from different categories.  

 

Table 2: Comparison of the Best Clustering Accuracy Rate 

Method Dataset1 Dataset2 Dataset3 

k-means 0.25616 0.372 0.38752 

Sketchrnn+k-

means 
0.26584 0.466 0.56696 

Sketch-

pix2seq+kmeans 
0.3276 0.50856 0.81832 

Dc-sketch-

pix2seq(ours) 
0.334 0.54568 0.82664 

 

Qualitative results. We visualize the learned latent space of 

dc-sketch-pix2seq, sketch-pix2seq and sketch-rnn on these 

datasets. To this end, we use t-SNE[52] to reduce the 

dimensionality of the latent representation z from 128 to 2, and 

plot 2500 testing sketches from each category in Figure 3, Figure 

4 and Figure 5. From these figures, we can see that the deep 

clustering sketch-pix2seq which uses a CNN encoder and a 

clustering loss performs the best in clustering tasks and sketch-

rnn is the worst one. It can also be observed that the latent space 

learned by dc-sketch-pix2seq are better than the other two, since 

the sketches from different categories are more separable and the 

sketches from the same category is denser in all cases. For 

dataset1, all sketches are from the same taxonomy. It is hard for 

deep learning models to cluster them as they share too many 

shape features. In figure 3, The red, black and green clusters are 

 
Figure 2: Clustering Accuracy for Different Datasets of Each Method 
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denser in dc-sketch-pix2seq than the other two as clustering loss 

can force sketches from the same category to be gathered 

together and push away sketch from different categories. For 

Dataset2, sketches are from three taxonomies. Sketch categories 

belong to the same taxonomy should be close to each other as 

they share more shape features and away from other taxonomies.  

 

This assumption can be confirmed by our proposed model 

and sketch-pix2seq, as they both use CNN as an encoder which 

can discover and represent underlying shape structures in the 

latent space. For Figure 4, car cluster is close to pickup truck 

cluster and speedboat cluster is close to canoe cluster in the first 

plot, while this cannot be easily detected in the third plot. For 

Dataset3, all sketches are from different taxonomies. Three deep 

learning models can somehow easily cluster each category. 

Clusters in our proposed model are denser and with a larger 

margin with each other. Furthermore, incorrectly clustered 

sketches of our model are mostly located at the border of each 

 
Figure 3: Clustered Latent Space of Dataset1 for Each Method 
 

 
 

Figure 4: Clustered Latent Space of Dataset2 for Each Method 
 

 
Figure 5: Clustered Latent Space of Dataset3 for Each Method 
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cluster, where confusing sketches usually appear. In contrast, 

more incorrectly clustered sketches of sketch-pix2seq and 

sketch-rnn appear in the interior of the clusters. 

 

5. DISUCSSION 
Deep clustering based on underlying shape features. 

There are two ways to cluster data. One is to use traditional 

clustering algorithm, such as K-means or GMM, on the original 

data. Another one is to use deep clustering learning to reduce 

high-dimensional original data to low dimensional feature which 

can capture some pattern in the original data. Based on our 

experiments, clustering performance of deep clustering learning 

is better than traditional clustering algorithm with a large margin. 

Deep clustering learning can be broadly classified into two 

categories. The first one is to use deep neural network to learn 

the features of original data in the latent space by optimizing 

reconstruction loss and then apply clustering algorithm on the 

learned features. The second one is to explicitly define a 

clustering loss and combine it with reconstruction loss; it can 

obtain feature representations and cluster assignments 

simultaneously. Dc-sketch-pix-pix2seq falls in the second 

category, sketch-pix2seq+kmeans and sketch-rnn+k-means fall 

in the first category. As illustrated in the comparison of clustering 

accuracy, the large performance gap between sketch-pix2seq and 

sketch-rnn reflects convolutional layers is better capturing 

underlying shape features. As clustering loss can help improve 

clustering performance, dcsketch-pix2seq outperforms over 

sketch-pix2seq.  

Shape feature extraction for various dataset. By 

visualizing the latent space of 3 different datasets with different 

levels of common shape feature sharing, we empirically validate 

two points: 1) if sketches are from the same taxonomy, they will 

share too many features. It is difficult for deep clustering models 

to separate them. The sketches in Dataset1 are from the same 

taxonomy, three models are struggling to cluster sketches. But 

our proposed model can somehow cluster separate red and black 

points from others. The sketches in Dataset3 from different 

taxonomies, it is easier for three models to cluster sketches. Our 

proposed model can separate clusters with larger margin; 2) if a 

deep clustering model uses CNN layers to encoder input sketches 

and take advantage of clustering loss, its clustering performance 

can be improved. Some of sketches in Dataset2 come from the 

same taxonomy, our model can cluster points denser than the 

other two models. These two facts indicate that our proposed 

model has higher capability to preserve the inherent and 

underlying shape features of sketches.  

Empower visual analogy. Goldschmidt pointed out visual 

similarity can happen if visual representation that are rich with 

clues[2]. Sketch is an abstract representation of a design idea. 

Sketching is also useful as a way of visual imagery to generate 

concepts[8].  Kosslyn explains this as people can discover 

patterns embedded in visual representation and mentally modify 

the patterns which lead to visual imagery[57]. In this paper, the 

proposed deep learning model can construct a latent space for 

sketches. In that space, sketches can be abstractly represented. 

Therefore, some nonobvious visual similarities can be 

determined to help designers avoid visual fixation. In Figure 5, 

we can see some drills have similar shapes with some umbrellas 

as they have shorter distance even some overlaps. By visualizing 

this relationship, designers can jump out of the box to seek new 

concepts or modify the existing ones. The meaningfulness of our 

tool is providing external visual stimuli for designers to enhance 

their visual analogy capabilities. 

 

6. CONCLUSION 

In this paper, we propose an unsupervised deep clustering 

model to learn underlying shape feature presentations to detect 

visual similarity, which can be potentially useful to promote 

visual analogy in engineering design. In summary, the main 

contributions of this paper are: 

1) An unsupervised deep clustering model is introduced 

which is trained with reconstruction and clustering 

losses to make it discover and extract underly shape 

features of sketches among different categories.  

2) The extensive experiments have been conducted that 

demonstrate the effectiveness and robustness of our 

proposed model in using high level and low 

dimensional space to represent low level and high 

dimensional space.  

3) A visualization method is introduced for understanding 

the visual similarity between sketches from the same 

and different taxonomy, which is helpful to guide 

designers’ visual imagery. 

4) A tool is provided which can potentially promote visual 

analogy making in conceptual design and boost idea 

generation. 

The precondition for searching and retrieving visual analogy 

is a visual similarity existing between source and target domains. 

Hence, the future work is how to effectively and quantitatively 

measure visual similarity between sketches in the latent space 

which can support the explication and measurement of their 

relations of the underlying structure, despite differences in 

superficial features. When a given sketch from a designer is as a 

query, a computational tool can return sketches within the same 

category or from different categories as visual stimuli. Human 

subject-based design experiments will also be conducted to 

evaluate the effectiveness of the tool as the tool matures.  
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