
 1 Copyright © 2019 by ASME

Proceedings of the ASME 2019 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE 2019
Aug 18-21, 2019, Hilton Anaheim, Anaheim, CA

IDETC2019-98268

DESIGNING SELF-ORGANIZING SYSTEMS WITH DEEP MULTI-AGENT
REINFORCEMENT LEARNING

Hao Ji
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engineering
University of Southern California
Los Angeles, California, 90089

haoji@usc.edu

Yan Jin*
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engineering
University of Southern California
Los Angeles, California, 90089

yjin@usc.edu
(*corresponding author)

ABSTRACT

Self-organizing systems (SOS) are able to perform complex
tasks in unforeseen situations with adaptability. Previous work
has introduced field-based approaches and rule-based social
structuring for individual agents to not only comprehend the task
situations but also take advantage of the social rule-based agent
relations in order to accomplish their overall tasks without a
centralized controller. Although the task fields and social rules
can be predefined for relatively simple task situations, when the
task complexity increases and task environment changes, having
a priori knowledge about these fields and the rules may not be
feasible. In this paper, we propose a multi-agent reinforcement
learning based model as a design approach to solving the rule
generation problem with complex SOS tasks. A deep multi-agent
reinforcement learning algorithm was devised as a mechanism to
train SOS agents for acquisition of the task field and social rule
knowledge, and the scalability property of this learning approach
was investigated with respect to the changing team sizes and
environmental noises. Through a set of simulation studies on a
box-pushing problem, the results have shown that the SOS
design based on deep multi-agent reinforcement learning can be
generalizable with different individual settings when the training
starts with larger number of agents, but if a SOS is trained with
smaller team sizes, the learned neural network does not scale up
to larger teams. Design of SOS with a deep reinforcement
learning model should keep this in mind and training should be
carried out with larger team sizes.

Keywords: deep Q-learning, complex system, self-organizing
system, scalability, robustness

1 INTRODUCTION
Self-organizing systems can consist of simple agents that

work cooperatively to achieve complex system level behaviors
without requiring global guidance. Design of SOS takes a
bottom-up approach and the top-level system complexity can be
achieved through local agent interactions [1,2]. Complex system
design by applying a self-organizing approach has many
advantages, such as scalability, adaptability, and reliability [3,4].
Moreover, compared to traditional engineering systems with
centralized controllers, self-organizing systems can be more
robust to external changes and more resilient to system damages
or component malfunctions [5-7]. A swarm of robots is an
example of self-organizing systems. In such systems, robots
usually have compact sizes, limited functionality and adopt
simple rules of interaction. Such systems often consist of many
homogenous robots [8]. The collaborative behavior of the swarm
robots can emerge, and such emergent phenomenon has been
applied to situations such as search and rescue, distributed
sensing, unmanned aerial vehicle patrolling, traffic control, and
box-pushing [5,9,10].

Various approaches have been proposed to support the design
of SOS. The field-based behavior regulation (FBR) approach
[11] models the task environment with a field function and the
behavior of the agents is regulated based on the positions of these
agents in the field by applying a field transformation function.
Generally, an agent is striving to maximize its own interests by
moving toward higher (or lower, depending on definition)
positions. The advantage of this approach is that the agents’
behaviors are simple hence requires little knowledge to perform
tasks since moving toward a higher or lower position is the sole
behavior. This behavioral simplicity has its limits in solving
more complex domain problems because the field representation

 2 Copyright © 2019 by ASME

has its limits in capturing all features of the task domains and the
inter-agent relations are ignored in this approach.

To overcome the limit of the FBR approach, an evolutionary
design method [4] and the social structuring approach [5] have
been proposed to make design of SOS parametric and
optimizable, and to allow a SOS to deal with more complex
domain tasks by considering both task fields and social fields
modeled by social rules [5]. It has been demonstrated that
applying social rules can promote the level of coherence among
agents’ behaviors by avoiding potential conflicts and utilizing
more cooperation opportunities. A fundamental issue with this
social-rule based approach is that a designer must know a priori
what the rules are and how they should be applied, which may
not be the case especially when the tasks are highly complex and
changeable.

One of the long-term goals of our research is to develop
mechanisms for self-organizing robotic agents to autonomously
carry out physical structure assembly, as in space structure
construction, and disassembly, as in disaster rescue situations,
without centralized control or external guidance. It is anticipated
that the task situations for these task domains can become highly
complex and unpredictable, making it a challenge to predefine
task fields and social rules. Therefore, in this research, we take a
reinforcement learning approach to capture the self-organizing
knowledge for agent behavior regulation in SOS design. More
specifically, a multiagent Q-learning algorithm is explored to
address two research questions: What are the factors that impact
on the stability of learning dynamics in self-organizing systems?
Will the knowledge captured from reinforcement learning be
robust enough to be applied in a wide range of task situations?

In the reinforcement learning literature, multiple agents can
be trained using either a universal neural network or independent
neural networks. Individual agents gather the state information
and can be trained either collaboratively as a team or individually
based on the reward they receive from the interactions with the
environment [12]. The problem of designing self-organizing
systems comes down to training the system either as a team using
a centralized single agent reinforcement learning approach or as
separate individuals going through multi-agent reinforcement
learning. Although the centralized learning of joint actions of
agents as a team can solve coordination problems and avoid
learning non-stationarity, it does not scale well as the joint action
space grows exponentially with the number of agents [13].
Secondly, learning to differentiate joint actions can be highly
difficult. Further, the neural networks obtained from the
centralized learning are only applicable to the situations with the
same number of agents as the trained cases, because the action
space is fixed by the trained cases.

In contrast to the centralized single agent reinforcement
learning, during the multi-agent reinforcement learning, each
agent can be trained using its own independent neural network.
Such approach solves the problem of curse of dimensionality of
action space when applying single agent reinforcement learning
to multi-agent settings. Although theoretical proof of
convergence of multi-agent independent Q-learning is not
mathematically given, there are numerous successful practices in
real-world applications [13]. Thus, applying the state-of-the-art

independent multi-agent reinforcement learning is a promising
approach in tackling the existing problems faced by SOS design.

In the rest of this paper, we first review the relevant work in
self-organizing systems and reinforcement learning in Section 2.
After that, we present a multi-agent independent Q-learning
framework as a complex system design approach in Section 3
and illustrate the system design implications. In Section 4, a box-
pushing case study is introduced that applies our proposed Q-
learning model. Section 5 provides a detailed analysis of the
simulation results. Finally, in Section 6, the conclusions are
drawn from the case study and future work directions are pointed
out.

2 RELATED WORK

2.1 Artificial Self-organizing Systems
An artificial self-organizing system is a system that is

designed by human and has emergent behavior and adaptability
like nature [1]. Much research has been done regarding the
design of an artificial self-organizing system. Werfel developed
a system of homogenous robots to build a pre-determined shape
using square bricks [14]. Beckers et al. introduced a robotic
gathering task where robots have to patrol around a given area to
collect pucks [15]. As robots prefer to drop pucks in high-density
areas, the collective positive feedback loop contributes to a dense
group of available pucks [2,15]. Khani et al developed a social
rule-based regulation approach in enforcing the agents to self-
organize and push a box toward the target area [5-6]. Swarms of
UAVs can self-organize based on a set of cooperation rules and
accomplish tasks such as target detection, collaborative
patrolling and formation [16-19]. Chen and Jin used a field-
based regulation (FBR) approach and guides self-organizing
agents to perform complex tasks such as approaching long-
distance targets while avoiding obstacles [11]. Price investigated
into the use of genetic algorithm (GA) in optimizing Self-
organizing multi-UAV swarm behavior. He tested the
effectiveness of GA algorithm in both homogenous and
heterogeneous UAV in accomplishing the ‘destroying retaliating
target’ task [20]. The robotic implementations mentioned above
have demonstrated the potentials of building self-organizing
systems, and the design methods of self-organizing systems
[5,6,11] have had their drawbacks as indicated in Section 1.

2.2 Multi-Agent Reinforcement Learning
 Multi-agent reinforcement learning applies to multiagent
settings and is based largely on the concept of single agent
reinforcement learning such as Q-learning, policy gradient and
actor-critic [12, 21]. Compared to single agent reinforcement
learning, multi-agent learning is faced with the non-stationary
learning environment due to the simultaneous learning of the
multiple agents.
 In the past several years, there has seen a move from tabular
based methods to the deep reinforcement learning approach,
resulting from the need to deal with the high-dimensionality of
state and action spaces in multi-agent environments and to
approximate state-action values [22-24]. Multi-agent systems
can be classified into cooperative, competitive, and mixed

 3 Copyright © 2019 by ASME

cooperative and competitive categories [22]. Cooperative agents
receive the same rewards, competitive agents (often in two-agent
settings) have the opposite rewards, and the mix cooperative and
competitive settings assume agents are not only cooperating but
also have individual preferences. In the SOS design, we focus on
the cooperative agents since they share the same task goals.
 One natural approach for multi-agent reinforcement learning
is to optimize the policy or value functions of each individual.
The most commonly used value-function based multi-agent
learning is independent Q-learning [25]. It trains each
individual’s state-action values using Q-learning [25-26] and is
served as a common benchmark in the literature. Tampuu [22]
extended previous Q-learning to deep neural networks and
applied DQN [27] to train two independent agents playing the
game Pong. His simulation shows us how the cooperative and
competitive phenomenon can emerge based on the individual’s
different reward schemes [22].
 Foerster applied COMA framework to train multiple agents.
He used a centralized critic to evaluate decentralized actors and
estimated a counterfactual advantage function based on each
agent and allocated credit among agents [23]. He trained multiple
agents to learn to cooperatively play StarCraft games. In another
work by Foerster, he analyzed his replay stabilization methods
for independent Q-learning based on StarCraft combat scenarios
[28].
 As multi-agent environment is usually partially observable,
Hauskneche & Stone [29] used deep recurrent networks such as
LSTM [30] or GRU [31] to speed up learning when agents are
learning over long time periods. Lowe et al developed Multi-
agent Deep Deterministic Policy Gradient (MADDPG), which
uses centralized training with decentralized execution [32]. They
proposed an extension of the actor-critic policy gradient method
and augmented critic with additional information about the
policies of other agents and then tested their algorithm in
predator-prey, cooperative navigation, and other environments.
Their training algorithm shows good convergence properties
[32]. Drogoul & Zucker developed a framework for multi-agent
system design called ‘Andromeda’, which combines machine
learning approach with agent oriented, role-based approach
named ‘Cassiopeia’ [33,34]. The idea is to let learning occur
within different layers of ‘Cassiopeia’ framework such as
individual roles, relational roles and organizational roles so that
the design of multi-agent system can be more systematic and
modular [33,34]. However, as real multi-agent environment is
rather complex, agent’s actions are affected by not only its own
roles but also by other agents and the group. Separating learning
into different layers of abstraction may not be feasible.
 Most approaches to multi-agent reinforcement learning focus
on achieving optimal system reward or desirable convergence
properties. Many training algorithms are based on fully
observable states. Training of multi-agent reinforcement model
is usually conducted on prespecified environments and the
generalizability of the training network to various multi-agent
team sizes is not analyzed or considered, which is an important
factor of consideration in SOS design. It is crucial to develop a
multi-agent learning framework that is scalable to various team
sizes, and also to provide guidelines on how design should be

implemented and analyzed. Such areas are often omitted in the
literature and are the focus of this paper.

3 A DEEP MULTI-AGENT REINFORCEMENT
LEARNING MODEL

3.1 Single Agent Reinforcement Learning
It is important to discuss single agent reinforcement learning

before moving into multiagent reinforcement learning because
many concepts and algorithms of multi-agent reinforcement
learning are based on the single agent reinforcement learning.

Single agent reinforcement learning is used to optimize
system performance based on training so that the system can
automatically learn to solve complex tasks from the raw sensory
input and the reward signal. In single agent reinforcement
learning, learning is based on an important concept called
Markov Decision Process (MDP). An MDP can be defined by a
tuple of <S, A, P, R, g>. S is the state space, which consists of all
the agent’s possible sense of environment information. A is the
action space, including all the actions that could be taken by the
agent. P is the transition matrix, which is usually not
given/unknown in a model-free learning environment. R is the
reward function, and g is the discount factor, which means the
future value of the reward is discounted and worth less than the
present value. At any given time t, the agent’s goal is to maximize
its expected future discounted return, 𝑅" = ∑ 𝛾"&'"(

") 𝑟", where T
is the time when the game ends. Also, agents estimate the action-
value function 𝑄(𝑠, 𝑎) at each time step using Bellman
equation (1) below as an update. E represents the expected value.
Eventually, such value iteration algorithm will converge to
optimal value function.

𝑄123(𝑠, 𝑎) = 𝐸[𝑟 + 𝛾max
:&

𝑄1 (𝑠), 𝑎))|𝑠, 𝑎] (1)

Researchers in the past uses Q-learning as a common training
algorithm in single agent reinforcement learning [35-36]. Q-
learning is based on Q-tables, each state-action value pair is
stored in a single Q-table and such training algorithm has been
applied in simple tasks with small discrete state and action spaces
[35-36]. However, in real-life engineering applications, state
space can often be continuous and action space vast, making it
difficult or impossible to build a look-up Q-table to store every
state-action value pair. To overcome such problems in Q-
learning, deep neural networks are introduced as functional
approximator to replace the Q-table for estimating Q values.
Such learning methods are called deep Q-learning [27]. A Q-
network with weights qi can be trained by minimizing the loss
function at each iteration i, illustrated in equation (2),

	𝐿1(𝜃1) = 𝐸[(𝑦1 − 𝑄(𝑠, 𝑎; 𝜃1))C] (2)

where

𝑦1 = 𝐸[𝑟 + 	𝛾max
:&

𝑄(𝑠), 𝑎) ; 𝜃1'3)]		 (3)

is the target value for iteration i. The gradient can be calculated
with the following equation (4):

 4 Copyright © 2019 by ASME

∇EF𝐿1(𝜃1) = 	𝐸G,:,H,G&[{r + 	𝛾max:&
𝑄(𝑠) , 𝑎); 𝜃1'3)

−Q(s, a, 𝜃1)	}∇EFQ(s, a, 𝜃1)] (4)
 Various approaches have been introduced to stabilize training
and increase sample efficiency for training deep Q-networks. In
our multi-agent training algorithm, the neural network of every
single agent is built based on the following two approaches:

Experience Replay:

 During each training episode, the agents’ experiences 𝑒" =
(𝑠", 𝑎", 𝑟", 𝑠"23), which represents state, action, reward and next
state, are stored and appended to an experience replay memory
𝐷 = (𝑒3, 𝑒C, … , 𝑒Q). N represents the capacity of the experience
replay memory. At every training interval, mini-batches are
randomly sampled from experience replay memory D and fed
into Q-learning updates. At the same time, an agent selects its
action based on the e-greedy policy, which means the agent
selects its action based on exploration of random actions and
exploitation of best decision given current information.
Experience replay, as Minh described in his paper [37], increases
data sample efficiency and can break down the correlations
between subsequent experiences and is used to stabilize training
performance.

Dueling DQN

The Dueling DQN architecture can identify the right action
during policy evaluation faster than other algorithms as it
separates the Q value into the representation of state value V and
action advantages A, which are state-dependent [38]. In every Q
value update, the dueling architecture’s state value V is updated,
which contrasts with the single-stream architecture, where only
value for one of the actions is updated, leaving other actions not
updated. This more frequent updating allows for a better
approximation of the state values and leads to faster training and
better training performance.

3.2 Multi-Agent Reinforcement Learning
As mentioned above, there are generally two approaches in

multi-agent training. One is to train the agents as a team, treating
the entire multiagent system as ‘one agent.’ It has good
convergence property similar to single agent reinforcement
learning, but can hardly scale up. To increase learning efficiency
and maintain scalability, we adopt a multi-agent independent
deep Q-learning approach. In this approach, Ai , i = 1, . . . , n (n:
number of agents) are the discrete sets of actions available to the
agents, yielding the joint action set A = A1 ×· · ·×An. All
agents share the same state space and the same reward function.

During training, each agent has its own dueling neural
network and is trained by applying deep Q-learning with
experience replay. Agents perceive the state space through their
local sensors. Each agent learns its own policy and value
function individually to choose its actions based on its own
neural network given the reward from the shared reward function
from the environment. As each agent’s action space size is the
same, each agent’s trained neural network can be reused and
applied in various team sizes and such multi-agent system can
scale well to agent teams of different sizes.

In our multiagent reinforcement learning mechanism
described above, each agent i (i = 1, 2, …, n) engages in learning
as if it is in the single agent reinforcement learning situation. The
only difference is that the next state of the environment, St+1, is
updated in response to the joint action at = {a1, a2, …, an}, instead
of its own action ai, in addition to the current state St. Through
this research, we aim to explore the stability or convergence
issue of the learning process—i.e., whether the knowledge can
be acquired in the form of neural networks through
reinforcement learning, and the adaptability issue—i.e., whether
the learned neural networks can be effectively applied to the
situations of similar tasks but different agent team sizes.

3.3 Simulation based System Design
There have been several methods for guiding the design of

self-organizing systems [5-6,39]. Based on the previous work
[39], a simulation-based system design method is proposed as
shown in Figure1. Like other design or system engineering
methodologies [5-6,39], it starts with breaking down the tasks
into subtasks, analyzing system constraints and then represents
the state space of the agents. Functional design defines both
individual and group level functions for agents to achieve. As the
agent-level behavior is the focus of SOS design, the major design
factors will include (1) the agent-level actions and (2) reward
schema.

Agent’s state, action and reward schema

In self-organizing systems, agents have only its local view of
the environment, due to their limited sensor capability and motor
constraints. An MDP with such property is called a partially
observable MDP. An Agent’s state representation of the design
process should reflect such characteristics of self-organizing
systems. For homogeneous self-organizing systems, where
agents share the same functionality and capabilities, the agents
share the same actions from which they can choose. However, at
any given time, different agents may perform different actions,
resulting in the combined impact on the overall transition of the
state. For heterogeneous systems, on the other hand, agents may
have individualized action sets to choose from. This research
explores the homogeneous situations and the heterogeneous
cases will be dealt with as future work.

Training of individual agents is based on how much reward
each agent receives. Designing and allocating reward is very
important in self-organizing system design and has been proven
to be important in the past multi-agent deep Q-learning
algorithms as well [22]. Good reward schema or functions can
lead to optimal agent level and system level performance,
whereas the bad reward structure leads to nonconvergent
learning or undesirable performance.

Simulation/Optimization

Since the dynamics of a complex environment is hard to be
modeled and captured analytically, simulation becomes an
important step for social rule knowledge capturing. The
simulation should be combined with optimization algorithms for
searching the optimal policy and value functions given the
agent’s sensor information. Multi-agent deep Q-learning

 5 Copyright © 2019 by ASME

networks can be integrated with simulation to perform such
simulation optimization tasks. The hope is that the output of the
trained neural networks can be applied to various team sizes for
system implementation.

Figure 1. Steps for Simulation based Design of Self-Organizing
Systems

4 CASE STUDY
To test the concepts and explore the multiagent reinforcement

learning algorithm discussed above, a box-pushing case study
has been carried out. In choosing this case example, several
requirements were considered based on our long-term goal of
developing robotic self-organizing assembly systems. First, the
task environment requires relatively intense agent interactions,
instead of sparse interactions, for efficient learning. For example,
the ant foraging task may be less desirable as the interaction
between agents during training is only passive, causing it slow
and ineffective. Second, the tasks require cooperative work
among agents. Although each agent might have different short-
term rewards, in the long run they work for the same maximum
reward. Lastly, we consider only the homogeneous cases, for
simplicity at this stage of research, and the action space should
be the same for all the agents. This will allow us to add more
agents to the system using the same learned neural networks.

After considering several options, the box-pushing problem
was finally chosen for the case study.

4.1 The Box-Pushing Problem
The box-pushing problem is often categorized as a trajectory

planning or piano mover’s problem [40]. Many topological and
numerical solutions have been developed in the past [40]. In our
paper, we adopt a self-organizing multi-agent deep Q-learning
approach to solve the box-pushing problem. During the self-
organizing process, each agent acts based on its trained neural
network, and collectively all agents can push the box towards a
goal without system level global control.

In this research, the box-pushing case study was implemented
in pygame, a multi-agent game package in the Python
environment. In the box-pushing case study, we trained each
individual with independent deep Q-learning (IQL) neural

networks and tested successfully trained network parameters
with various team sizes between 3-6 and analyzed its scalability
characteristics.

A graphical illustration of the box-pushing case study is
shown in Figure 2. The game screen has a width x of 600 pixels
and a height y of 480 pixels. Numerous agents (the green
squares) with limited pushing and sensing capabilities need to
self-organize in order to push and rotate the box (the brown
rectangle) towards the goal (the white dot with a “+” mark). As
there is an obstacle (the red dot) on the path and walls (the white
solid lines) along the side, the agents cannot just simply push the
box but have to rotate the box when necessary [5,6]. This adds
complexity to the task. The box has sensors deployed at its
outside boundary. When the outside perimeter of the box reaches
horizontal x-coordinate of the goal, which is represented as a
white vertical dotted line, the simulation is deemed success.

Figure 2. Graphical illustration of Box-pushing task

There are four major tasks of box-pushing, as summarized
below. Agents need to move, rotate the box, and keep the box
away from potential walls and obstacles.

T1 = <Move><Box> to <Goal>
T2 = <Rotate><Box> to <Goal>
T3 = <Move><Box> away from <Walls>
T4 = <Move><Box> away from <Obstacle>

In pygame, the distance is measured by pixels. Each pixel is
a single square area in the simulation environment. As an
example, the box in our simulation is 60 pixels wide and 150
pixels long.

In box-pushing, agents have limited sensing and
communication capabilities. They can receive information from
the sensor of the box, which measures orientation of the box and
senses obstacles at a range of distance. They have limited storage
of observation information: trained neural network parameters
and their experiences such as state, action, reward and next state.
They possess a neural network that can transform the perceived
state information into action. These assumptions are in line with
the definition of the “minimalist” robot [41] and are reasonable
with the current applications of physical robot hardware [42].

 6 Copyright © 2019 by ASME

4.2 State and Action
Based on the task decomposition and constraint analysis

mentioned above, the state space of the box-pushing task is
defined as shown in Figure 3. To gather relevant environment
information, a sensor is deployed in the center of the box, which
can sense nearby obstacles. The radius of sensor range is 150
pixels and the entire circular sensor coverage is split into 8
sectors of equal size with each sector corresponding to a bit
representation of state information. For example in Figure 3,
there are three red obstacles within the sensor detection range,
and the corresponding state s3, s5, s7 are having value 1,
indicating the presence of the obstacle. If there is no obstacle in
a sector, the sector’s state value will be 0. Like the past literature,
we assume sensors can also detect the orientation of the box from
the box’s x-axis with respect to the goal position, illustrated with
angle q [35-36]. This is a reasonable assumption based on real-
world sensor capability. In Figure 3, the current angle q is around
30 degrees. And such degree information can be shaped into the
range of [-1,1] by applying equation (5). Angle 𝜃) serves as the
final input state s9. This shaped angle method can facilitate deep
Q-network training and is used commonly in practice [35-36].

𝜃) = (E'3ST)
3ST

	 = -0.83 (5)

Figure 3. Box State Representation

Given the above, the state representation of Figure 3 can be
expressed as a 9-digit tuple <0,0,1,0,1,0,1,0, -0.83>.

As during training, each agent is close to the vicinity of the
box center, it can receive the sensor information broadcasted
locally among agents. Sensor can also sense the distance from
the center of the box to the goal area, analogous to real-world
radar sensor, and is also like the gradient-based approach in
literature where the task field is assumed [5-6]. Agents can also
receive such distance information from the sensor.
 Box neighborhood: The box neighborhood is defined as six
regions [6,39], as shown in Figure 4. During each simulation,
individual agent can move to one of the six regions of the box
neighborhood and that specific neighborhood is the position of
the agent. As individual agent is relatively small, we assume
there can be multiple agents in the same region at the same time.
This is in line with the definition of the “minimalist” robot [41].

Box dynamics: The box dynamics is based on a simplified
physical model. The box movement depends on the simulated
force and torque. Forces equal the sum of vector forces of each
pushing agent. Every push carries the same amount of force,
which acts from an agent towards the box. The sum of two

pushes will move the box 10 pixels in a given direction. Torque
is assumed to be exerted on the centroid of the box and equals to
the sum of moment arm of all vector forces of the pushing agents.
2 pushes with a moment arm of 75 pixels each will rotate the box
20 degrees. We assume the box carries a large moment of inertia
and when it hits the obstacle, which is considered rather small, it
will continue its movement until its expected end position is
reached.

Figure 4. The six regions of box neighborhood

Agent action space: The agent action space is defined based
on the box neighborhood and simulated box dynamics. As each
time step, an agent can choose a place in one of the six regions
of the box neighborhoods to push the box. Therefore, the agents
share the same actions space of A = {a1, a2, a3, a4, a5, a6}, as
shown in Figure 4. For instance, if an agent chooses action a1, it
will move to box region “1” and push from there, the box will
move downwards along the box’s y-axis based on the simulated
box dynamics and the same logic applies to other agent actions.

4.3 Reward Schema and Training model
 In order to train multiple agents to self-organize and push the
box to the final goal area, which is the group level function, we
need to design a proper reward schema to facilitate agent
training. Adapted from previous Q-table based box-pushing
reward schema [35-36], we designed a new reward schema for
agents’ box-pushing training. The total reward is composed of
four parts: distance, rotation, collision, and goal.

Distance Reward: The reward for pushing the box closer to
the goal position is represented as 𝑅U1G, and is shown in equation
(6). The previous distance 𝐷VWU represents how far the center of
the box is away from the goal position (measured in pixels) and
can be evaluated by the box sensor and stored into an agent’s
memory. 𝐷XYZ	represents the distance to the goal position from
the center of the box at the current time step. 𝐶Uis a constant,
called distance coefficient in our simulation, and is set to 2.5. At
each simulation time step, agents calculate the change of distance
between the current distance and previous distance based on
Equation (6) and draw its distance reward.

𝑅U1G = 	 (𝐷VWU − 𝐷XYZ) ∗ 𝐶U (6)

Rotation Reward: The reward for rotation 𝑅HV"	 is
represented in equation (7).

𝑅HV"	 = 𝐶𝑜𝑠(𝛼C − 𝛼3) − 0.98 (7)

 7 Copyright © 2019 by ASME

where 𝛼3 is the previous time step angle of the box’s x-axis with
respect to goal position and 𝛼C the current angle. The rotation
reward is given to discourage the rotation of more than 11
degrees, this way, box can be rotated constantly with small
degrees and avoid large rotation momentum, which can result in
a collision with obstacles. The rotation reward is relatively small
as it is used only for rotation of the box rather than pushing the
box towards the goal, which is the ultimate goal.

Collision Reward: The collision reward is analogous to the
reward schema in common collision avoidance tasks [43] and is
represented in equation (8) with 𝑅bVW,

𝑅bVW = c
−900	𝑖𝑓	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑐𝑐𝑢𝑟𝑠
0	𝑖𝑓	𝑛𝑜	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑐𝑐𝑢𝑟𝑠 (8)

During each simulation step, if there is no collision for the box
with either the obstacle or the wall, 𝑅bVW	 = 0. If a collision
occurs, a -900 reward will be given to all the agents as a penalty.

Goal Reward: The reward for reaching the goal 𝑅jV:W	 is
represented in equation (9),

𝑅jV:W	 = 	 c
900	𝑖𝑓	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑔𝑜𝑎𝑙
0	𝑖𝑓	𝑛𝑜𝑡	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑔𝑜𝑎𝑙																						(9)

At each simulation step, if the box reaches the goal position,
each agent will receive a positive 900 reward; if the goal is not
reached, the agents do not receive any reward.

The total reward is a weighted sum of all these rewards, as
shown in Equation (10) below.

𝑅"V"	 = 𝑤3 ∗ 𝑅U1G + 𝑤C ∗ 𝑅HV" +	𝑤o ∗ 𝑅bVW	 +	𝑤p ∗ 𝑅jV:W (10)

In our simulations, after repeated testing, the weights were
set as 𝑤3 = 0.6, 𝑤C = 0.1, 𝑤o = 0.1, 𝑤p = 0.2,with	the sum of
these weights equal to 1. The weights are chosen so that during
each step in training: w1 = 0.6, which means agents can have
more immediate reward in terms of whether or not they are closer
to the goal; w2 = 0.1, which gives a little incentive for agents to
rotate the box a small angle; w3 = 0.1, to offer some penalty
reward if box collides with an obstacle; w4 = 0.2, as agents’ final
goal is to reach the target zone, agents should be given more
reward if its goal is achieved, than when box collides with an
obstacle. The weight for four different rewards is adapted and
based on previous research on multi-agent box-pushing [35-36].

𝑤1 +𝑤2 + 𝑤3 + 𝑤4 = 1																					 (11)

During training, as the agents are homogenous and are
cooperating to push the box, they should receive the same
rewards. This is the reason why the reward equations (8) through
(10) are defined based only on the box’s position and orientation.
In this way, each agent’s neural network will consider other
agents’ actions as part of its environment and learn to explore its
action space and its best policy based on an e-greedy action
selection strategy. Gradually the agent grasps how to
differentiate its actions from other agents to collaboratively push
the box towards the goal position, which is the characteristics of
multi-agent independent deep Q-leaning neural networks.

A shown in Figure 5, the training network consists of an input
layer, which gets input information from the raw sensor of the

box, a subsequent fully connected layer with 16 hidden neurons,
a dueling layer and outputs final state-action values.

Figure 5. Training network illustration

4.4 Issues and Experiment Setup
As aforementioned, the two issues of this research are (1) the

stability of the learning dynamics for agents to acquire
knowledge for self-organizing behavior regulation, and (2) the
use of neural network knowledge captured from the
reinforcement learning in the extended situations such as varying
team sizes and noisy environment.

We vary the number of agents during training and plot the
cumulative reward each agent gets as the number of training
episodes increases. Through the cumulative reward plot, we can
see how fast the cumulative reward converges and whether the
cumulative reward is stable or not. The experiment setup for the
stability study is shown in Figure 6.

With the box-push case study, we change the number of
agents from 3 to 6 and train each agent with independent deep
Q-learning networks. Each simulation was run 10 times with
different random seed. Then we tested our training neural
network with various team sizes from 3-6 by feeding the trained
neural network parameters to the new neural network and tested
how scalable our trained neural network can be in various teams’
sizes.

Figure 6. Experiment Setup for Stability of Learning Dynamics

of Agents

During testing, we added 10%, 30%, 50% random individual
actions. Such randomness does not follow maximum state-action
value. This way, the robustness of our trained neural network can
be evaluated with individual action noises. Figure 7 is a detailed
illustration of the training experiment setup. Need to mention
that when training with smaller team size, for instance 3, and

 8 Copyright © 2019 by ASME

apply learned neural networks to larger team size, such as team
size 4, we randomly choose one of the individual networks to the
added new team members. When training with larger team size,
for instance 5, and apply trained neural networks to a smaller
size, such as size 3, we randomly choose three different
individual neural network parameters and apply them to smaller
teams.

Figure 7. Simulation environment Setup

Simulation Parameters: Table 1 summarizes the training
parameters used in our simulation. Replay memory size is 2000,
and we sample 32 mini-batches randomly from memory size
during each training step. The discount factor is 0.99 and
learning rate is 0.001. Total training episode is 5000 (one episode
means one simulation run which starts from initial position to
ending position). It is chosen because training cost decreases to
0 and stabilizes at this threshold. We follow e-greedy action
selection algorithm where e is annealed from 1.0 to 0.005 during
100,000 annealing steps. After each annealing step, e decreases
a little bit until total annealing steps are reached and e is 0.005.
Agents choose actions from entirely random to nearly greedy.
The target network is updated at every 5 simulation steps to
stabilize training.

Table 1. Simulation parameters

Replay memory size 2000
Mini-batch size 32
Discount factor 0.99
Learning rate a 0.001
Total training episodes 5,000
e 1.0 à 0.005
Annealing steps 100,000
Target network update frequency 5

5 RESULTS AND DISCUSSION

5.1 Typical Failure Modes
Figure 8 illustrates some typical failures with motion trace

during training. Figures 8 (a) to (d) are the results of running the
simulation cases of 6 pushing agents. During training, the box
sometimes experiences excessive momentum, leading to moving
towards the red obstacle, as shown in (a). Sometimes agents have
insufficient or excessive rotation torque, resulting in the edge of
the box hitting the red obstacle, as shown in (b). Agents try many

actions but still could not get to the goal; they collide with
obstacles or reach a maximum training step size of 500 (each
time an agent chooses its action, it is considered one training step
size. When maximum training step size is reached, the episode
terminates), as shown in (c). Boxes are occasionally pushed
backward, forming a round circle around the obstacle, as shown
in (d).

(a) (b)

(b) (d)

Figure 8. (a) failure with excessive pushing momentum (b)
failure with insufficient/excessive rotation torque (c) failure with
reaching maximum training episode length (d) failure with
pushing box backward

Figure 9 Successful Box-pushing trajectory with motion traces

5.2 Simulation Results
Box-pushing Trajectory
Figure 9 shows one successful training run with 4 agents by
following max state-action values with motion trace examples.
Although the final optimized trajectory is not strict perfect,
through multi-agent deep Q-networks, agents can approximate
its actions and push the box towards the goal area.
Training stability

Figure 10 shows the convergence results of our simulation
with a different number of agents. The results are based on the
running average of 10 training results with different random

 9 Copyright © 2019 by ASME

seeds. Only the cumulative reward of the training instances
where agents successfully pushed the box is plotted.

(a) (b)

 (c) (d)

Figure 10. Cumulative Reward Plot vs Training Episode (every
100 episode) with varying team size (a) team size:3 (b) team
size:4 (c) team size:5 (d) team size:6

As shown in Figure 10, in all training, the cumulative reward
of each agent converges to close to 700 and once the cumulative
reward reaches the threshold, it stays the same without much
oscillation. Also, as agents number increases, it takes a longer
time to reach the maximum cumulative reward. In Figure 10 (a),
with team size 3, it takes about 2000 episodes for agents to get
an average of around 700 rewards. As agent number increases, it
takes about 2800 episodes for 4 agents and 3500 for 5 agents to
reach the maximum cumulative reward. In subplot (d), with team
size 6, we can see that it takes almost 4000 episodes for a large
team to acquire a stable cumulative reward. The increase in
convergence time might be explained by that when the team
becomes larger, the learning dynamics of the environment are
more complex: agents learn not only the physical environment
but also other agents’ dynamics. Thus, a larger number of agents
require more training time to reach stable convergence.

Distance traveled by individual agents
We measure the distance traveled by each agent in different team
size settings, shown in Figure 11. The vertical total distance plot
is the average of 100 training episodes. As there are a total of
5000 episodes, we plot 50 distance values during training based
on the trained neural networks. Here, the distance is based on a
hierarchical measurement [44], which means the top-level
distance is measured. For instance, when agents move from box
region 1 to box region 2, as shown in Figure 4, it is considered
as one step-wise distance. When an agent moves from box region
1 to region 3, its distance is two-step distances. If an agent
chooses the same action in the subsequent run, its moving
distance is 0.

(a) (b)

(c) (d)

Figure 11. (a) Total distance traveled by each agent with team
size 3 (b) Total distance traveled by each agent with team size 4
(c) Total distance traveled by each agent with team size 5 (d)
Total distance traveled by each agent with team size 6

During the initial phase of training, the distance traveled by
all agents tends to increase. After some training episodes, it starts
to decrease. This is reasonable as initially all agents are learning
how to push the box and more randomly exploring the search
space. After some episodes, when agents gather enough positive
and negative experience, and as the epsilon value decreases,
agents choose more greedy actions, their travel distance tends to
decrease.
 After 5000 episodes of training, the distance traveled by all
agents tends to converge to low distance values. The final
optimal distance by each individual agent is different as they
finally tend to specialize in their own individual behavior to
collaboratively push the box to the goal position.
 We found that as agent team size increases, the maximum
travel distance by each individual agent decreases. This has some
implications in real robots learning: if the maximum energy
consumption is the limiting factor for each robot, robot training
should start with a larger team size to avoid failure. We also
found that initially the distance traveled by agents are
approximately the same and total distance traveled by each agent
tend to diverge when it reaches a certain threshold, around 1000
episode. We speculate that the real speed-up in learning occurs
after this threshold as the percentage of random actions drops
below a certain value and at the same time agents have gathered
enough training experiences.

Scalability of training algorithm to various team sizes
 Two important issues of SOS are the scalability to different
team sizes and the robustness to various noises. We stored our
trained neural networks of different team sizes and applied them
to other team sizes to assess their scalability. Further, we
introduced a certain percentage of random agent actions ranging
from 10%, 30% and 50%, to evaluate the robustness of the
trained networks. The results are shown in Table 2-4. Training in

 10 Copyright © 2019 by ASME

the table means how many agents are trained in the simulation,
running means transferring the trained neural network to various
other team sizes. When the box is pushed successfully to the goal
without hitting obstacle/wall, such running episode is considered
success. We run each 10 trained neural networks with a specific
team size to various other team sizes. Each simulation is run
1000 times and we average the trained results.
 Interesting trends can be seen through all experiments. As
shown in Table 2, the diagonal cell represents how the trained
network performs with the same team size with 10% random
actions. As such trained network is applied to the same team size,
agents can successfully push the box towards the goal with
~90% of runs. If we transfer the individual learned neural
network to teams of smaller size, the success rate remains high,
although training-4 to running-3 has a medium success rate.
 Additionally, we found that when we train teams of smaller
size and apply the trained network to larger team sizes, success
rate is very low as shown in Table 2. Except for the transferring
learning from 3 to 4 agents, where 5.7% success rate is reached,
all other test cases get around 0% success rate. This means
training multi-agent system is very good at scaling downwards,
but not scaling upwards. Such phenomenon can be called ‘lower
triangle phenomenon’. Table 3 and Table 4 are based on 30% and
50% random actions. The total percentage success rate drops
with the increase of noise, as expected.

What is also intriguing is that sometimes when applying the
trained network to smaller team sizes, the success rate can be
even higher than when applied to its own team sizes. For
instance, in Table 2, when we train 6 agents and run it with the
same team size, we get 94.6% success rate, but applying such
trained network to smaller team sizes such as 3-5 agents, the
success rate is higher. This might be because 6 agents’ case is a
more difficult team setting to learn. While agents learn from
more complex situations and apply to simpler settings, they can
achieve better success rates. However, this situation does not
work for all experiments. For example, in Table 2, if we train
agents with team size 4 and apply to a team of size 3, the success
drops, so when training with relatively small team size, the
knowledge captured might not be transferred well to a smaller
size. Only when team sizes reach beyond a threshold, such
trained knowledge becomes more transferable to smaller teams.

Table 2. Success Rate with 10% individual random actions

Table 3. Success Rate with 30% individual random actions

Table 4. Success Rate with 50% individual random actions

Summary
The following summaries are drawn from the case study

results.
• Multiagent reinforcement learning (MARL) is an effective

approach to capture self-organizing knowledge through
extensive training. In our box-pushing case, the agents
successfully accomplished the task with very high success
rates based on the learned neural networks.

• The MARL learning process has relatively good stability
with a limited number of agents. In our simulation results, the
agents up to 6 have shown very stable learning convergence
without specific issues. Failure cases do happen in the early
stage of training. The converged networks have shown highly
effective utility.

• Although the agents share the same reward function during
training, they do specialize in their own ways as the learning
converges at the final stage of training. This is a very
interesting feature, and we plan to explore more to understand
how this feature may be applied to evolve complex
mechanisms to deal with highly complex tasks.

• The MARL based self-organizing knowledge capture in the
form of neural networks can scale downward but not upward
in terms of team size. When the range of scaling down is
large, e.g., from 6 to 4 or 5 to 3, the scaling loss is ignorable.
For small starting team size, the scaling down loss can be up
to 40%. Scaling upward in any case is not advisable.

• The influence of random action noise only has a limited effect
until 10%. After that, the impact is more noticeable. The
teams with more agents are more robust against random
actions. For a given task, there appears to be a specific team
size, 4 for the box-pushing task, that is most robust against
random actions.
It is worth mentioning that the above conclusions are limited

to the experiments reported in this paper. Further investigations
are needed to generalize the claims.

6 CONCLUSIONS AND FUTURE WORK
In multiagent reinforcement learning based SOS design,

learning stability and scalability of the system with various team
sizes are two important issues to consider. In addition, the system
needs to be robust enough to perform well in the face of noises,
such as failures or malfunctions of other agents.

In this paper, we applied the multi-agent independent Q-
leaning algorithms in the design of SOS and investigated the
learning stability, scalability, and robustness characteristics of
such design approach through a box-pushing case study. Results
show that multi-agent reinforcement learning can be a useful tool
in design of SOS and can achieve good learning stability. Also,

 11 Copyright © 2019 by ASME

training of the agents should occur with team sizes at least as
large as the intended end-use case.

Future work includes testing the scalability of multi-agent Q-
learning algorithm with a wider range of complex tasks and team
sizes. Also, adding individual heterogeneous reward and testing
the different weights for reward functions will also be the focus
of research for the next step.

7 ACKNOWLEDGMENTS
This paper was based on the work supported in part by the

Monohakobi Technology Institute (MTI) and Nippon Yusen
Kaisha (NYK). The authors are grateful to the sponsors and the
MTI team for their discussions and insights on this research.

REFERENCES
[1] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed

behavioral model. ACM SIGGRAPH computer graphics, 21(4),
25-34.

[2] Ashby, W. R. (1991). Requisite variety and its implications for the
control of complex systems. In Facets of systems science (pp. 405-
417). Springer US.

[3] Chiang, Winston, and Yan Jin. "Design of Cellular Self-Organizing
Systems." IDETC/CIE. 2012.

[4] Humann, J., Khani, N., & Jin, Y. (2014). Evolutionary
computational synthesis of self-organizing systems. AI
EDAM, 28(3), 259-275.

[5] Khani, N., Humann, J., & Jin, Y. (2016). Effect of Social
Structuring in Self-Organizing Systems. Journal of Mechanical
Design, 138(4), 041101.

[6] Khani, N., & Jin, Y. (2015). Dynamic structuring in cellular self-
organizing systems. In Design Computing and Cognition'14(pp. 3-
20). Springer, Cham.

[7] Ji, Hao, and Yan Jin. "Modeling Trust in Self-Organizing Systems
With Heterogeneity." ASME 2018 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of
Mechanical Engineers, 2018.

[8] Kennedy, J. (2006). Swarm intelligence. In Handbook of nature-
inspired and innovative computing (pp. 187-219). Springer US.

[9] Pippin, C., & Christensen, H. (2014, May). Trust modeling in
multi-robot patrolling. In Robotics and Automation (ICRA), 2014
IEEE International Conference on (pp. 59-66). IEEE.

[10] Pippin, Charles Everett. Trust and reputation for formation and
evolution of multi-robot teams. Diss. Georgia Institute of
Technology, 2013.

[11] Chen, C., & Jin, Y. (2011). A behavior based approach to cellular
self-organizing systems design. ASME Paper No. DETC2011-
48833.

[12] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[13] Rashid, Tabish, et al. "QMIX: monotonic value function
factorisation for deep multi-agent reinforcement learning." arXiv
preprint arXiv:1803.11485 (2018).

[14] Werfel, J. (2012). Collective construction with robot swarms.
In Morphogenetic Engineering (pp. 115-140). Springer Berlin
Heidelberg.

[15] Beckers, R., Holland, O. E., & Deneubourg, J. L. (1994, July).
From local actions to global tasks: Stigmergy and collective
robotics. In Artificial life IV (Vol. 181, p. 189).

[16] Dasgupta, P. (2008). A multiagent swarming system for distributed
automatic target recognition using unmanned aerial vehicles. IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 38(3), 549-563.

[17] Ruini, F., & Cangelosi, A. (2009). Extending the Evolutionary
Robotics approach to flying machines: An application to MAV
teams. Neural Networks, 22(5), 812-821.

[18] Lamont, G. B., Slear, J. N., & Melendez, K. (2007, April). UAV
swarm mission planning and routing using multi-objective
evolutionary algorithms. In Computational Intelligence in
Multicriteria Decision Making, IEEE Symposium on (pp. 10-20).
IEEE.

[19] Wei, Y., Madey, G. R., & Blake, M. B. (2013, April). Agent-based
simulation for UAV swarm mission planning and execution.
In Proceedings of the Agent-Directed Simulation Symposium (p.
2). Society for Computer Simulation International.

[20] Price, I. C., & Lamont, G. B. (2006, December). GA directed self-
organized search and attack UAV swarms. In Proceedings of the
38th conference on Winter simulation (pp. 1307-1315). Winter
Simulation Conference.

[21] Bu, Lucian, Robert Babu, and Bart De Schutter. "A comprehensive
survey of multiagent reinforcement learning." IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 38.2 (2008): 156-172.

[22] Tampuu, Ardi, et al. "Multiagent cooperation and competition with
deep reinforcement learning." PloS one 12.4 (2017): e0172395.

[23] Foerster, Jakob N., et al. "Counterfactual multi-agent policy
gradients." Thirty-Second AAAI Conference on Artificial
Intelligence. 2018.

[24] Peng, Xue Bin, et al. "Deeploco: Dynamic locomotion skills using
hierarchical deep reinforcement learning." ACM Transactions on
Graphics (TOG) 36.4 (2017): 41.

[25] Tan, Ming. "Multi-agent reinforcement learning: Independent vs.
cooperative agents." Proceedings of the tenth international
conference on machine learning. 1993.

[26] Watkins, Christopher John Cornish Hellaby. Learning from
delayed rewards. Diss. King's College, Cambridge, 1989.

[27] Mnih, Volodymyr, et al. "Human-level control through deep
reinforcement learning." Nature 518.7540 (2015): 529.

[28] Foerster, Jakob, et al. "Stabilising experience replay for deep multi-
agent reinforcement learning." Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017.

[29] Hausknecht, Matthew, and Peter Stone. "Deep recurrent q-learning
for partially observable mdps." 2015 AAAI Fall Symposium
Series. 2015.

[30] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term
memory." Neural computation 9.8 (1997): 1735-1780.

[31] Chung, Junyoung, et al. "Empirical evaluation of gated recurrent
neural networks on sequence modeling." arXiv preprint
arXiv:1412.3555 (2014).

[32] Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-
competitive environments." Advances in Neural Information
Processing Systems. 2017.

[33] Drogoul, Alexis, and Jean-Daniel Zucker. "Methodological issues
for designing multi-agent systems with machine learning
techniques: Capitalizing experiences from the robocup
challenge." Rapport technique LIP6 41 (1998).

[34] Collinot, Anne, and Alexis Drogoul. "Using the cassiopeia method
to design a robot soccer team." Applied Artificial
Intelligence 12.2-3 (1998): 127-147.

[35] Wang, Ying, and Clarence W. De Silva. "Multi-robot box-pushing:
Single-agent q-learning vs. team q-learning." 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2006.

 12 Copyright © 2019 by ASME

[36] Rahimi, Mehdi, et al. "A Comparison of Various Approaches to
Reinforcement Learning Algorithms for Multi-robot Box
Pushing." International Conference on Engineering Research and
Applications. Springer, Cham, 2018.

[37] Mnih, Volodymyr, et al. "Playing Atari with deep reinforcement
learning." arXiv preprint arXiv: 1312.5602 (2013)

[38] Wang, Ziyu, et al. "Dueling network architectures for deep
reinforcement learning." arXivpreprint arXiv:1511.06581 (2015).

[39] Humann, J., Khani, N., & Jin, Y. (2016). Adaptability Tradeoffs in
the Design of Self-Organizing Systems. In ASME 2016 IDETC
(pp.V007T06A016). American Society of Mechanical Engineers

[40] LaValle, Steven M. Planning algorithms. Cambridge
University Press, 2006.

[41] Jones, Chris, and Maja J. Mataric. "Adaptive division of labor in
large-scale minimalist multi-robot systems." Intelligent Robots
and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on. Vol. 2. IEEE, 2003.

[42] Groß, Roderich, et al. "Autonomous self-assembly in swarm-
bots." IEEE transactions on robotics 22.6 (2006): 1115-1130.

[43] Liu, Xiongqing, and Yan Jin. "Design of Transfer Reinforcement
Learning Mechanisms for Autonomous Collision
Avoidance." International Conference on-Design Computing and
Cognition. Springer, Cham, 2018.

[44] Makar, Rajbala, Sridhar Mahadevan, and Mohammad
Ghavamzadeh. "Hierarchical multi-agent reinforcement
learning." Proceedings of the fifth international conference on
Autonomous agents. ACM, 2001.

