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ABSTRACT 

Self-organizing systems (SOS) are able to perform complex 
tasks in unforeseen situations with adaptability. Previous work 
has introduced field-based approaches and rule-based social 
structuring for individual agents to not only comprehend the task 
situations but also take advantage of the social rule-based agent 
relations in order to accomplish their overall tasks without a 
centralized controller. Although the task fields and social rules 
can be predefined for relatively simple task situations, when the 
task complexity increases and task environment changes, having 
a priori knowledge about these fields and the rules may not be 
feasible. In this paper, we propose a multi-agent reinforcement 
learning based model as a design approach to solving the rule 
generation problem with complex SOS tasks. A deep multi-agent 
reinforcement learning algorithm was devised as a mechanism to 
train SOS agents for acquisition of the task field and social rule 
knowledge, and the scalability property of this learning approach 
was investigated with respect to the changing team sizes and 
environmental noises. Through a set of simulation studies on a 
box-pushing problem, the results have shown that the SOS 
design based on deep multi-agent reinforcement learning can be 
generalizable with different individual settings when the training 
starts with larger number of agents, but if a SOS is trained with 
smaller team sizes, the learned neural network does not scale up 
to larger teams. Design of SOS with a deep reinforcement 
learning model should keep this in mind and training should be 
carried out with larger team sizes.  

Keywords: deep Q-learning, complex system, self-organizing 
system, scalability, robustness 
 

1 INTRODUCTION 
Self-organizing systems can consist of simple agents that 

work cooperatively to achieve complex system level behaviors 
without requiring global guidance. Design of SOS takes a 
bottom-up approach and the top-level system complexity can be 
achieved through local agent interactions [1,2]. Complex system 
design by applying a self-organizing approach has many 
advantages, such as scalability, adaptability, and reliability [3,4]. 
Moreover, compared to traditional engineering systems with 
centralized controllers, self-organizing systems can be more 
robust to external changes and more resilient to system damages 
or component malfunctions [5-7]. A swarm of robots is an 
example of self-organizing systems. In such systems, robots 
usually have compact sizes, limited functionality and adopt 
simple rules of interaction. Such systems often consist of many 
homogenous robots [8]. The collaborative behavior of the swarm 
robots can emerge, and such emergent phenomenon has been 
applied to situations such as search and rescue, distributed 
sensing, unmanned aerial vehicle patrolling, traffic control, and 
box-pushing [5,9,10]. 

Various approaches have been proposed to support the design 
of SOS. The field-based behavior regulation (FBR) approach 
[11] models the task environment with a field function and the 
behavior of the agents is regulated based on the positions of these 
agents in the field by applying a field transformation function. 
Generally, an agent is striving to maximize its own interests by 
moving toward higher (or lower, depending on definition) 
positions. The advantage of this approach is that the agents’ 
behaviors are simple hence requires little knowledge to perform 
tasks since moving toward a higher or lower position is the sole 
behavior. This behavioral simplicity has its limits in solving 
more complex domain problems because the field representation 
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has its limits in capturing all features of the task domains and the 
inter-agent relations are ignored in this approach. 

To overcome the limit of the FBR approach, an evolutionary 
design method [4] and the social structuring approach [5] have 
been proposed to make design of SOS parametric and 
optimizable, and to allow a SOS to deal with more complex 
domain tasks by considering both task fields and social fields 
modeled by social rules [5]. It has been demonstrated that 
applying social rules can promote the level of coherence among 
agents’ behaviors by avoiding potential conflicts and utilizing 
more cooperation opportunities. A fundamental issue with this 
social-rule based approach is that a designer must know a priori 
what the rules are and how they should be applied, which may 
not be the case especially when the tasks are highly complex and 
changeable. 

One of the long-term goals of our research is to develop 
mechanisms for self-organizing robotic agents to autonomously 
carry out physical structure assembly, as in space structure 
construction, and disassembly, as in disaster rescue situations, 
without centralized control or external guidance. It is anticipated 
that the task situations for these task domains can become highly 
complex and unpredictable, making it a challenge to predefine 
task fields and social rules. Therefore, in this research, we take a 
reinforcement learning approach to capture the self-organizing 
knowledge for agent behavior regulation in SOS design. More 
specifically, a multiagent Q-learning algorithm is explored to 
address two research questions: What are the factors that impact 
on the stability of learning dynamics in self-organizing systems? 
Will the knowledge captured from reinforcement learning be 
robust enough to be applied in a wide range of task situations?    

In the reinforcement learning literature, multiple agents can 
be trained using either a universal neural network or independent 
neural networks. Individual agents gather the state information 
and can be trained either collaboratively as a team or individually 
based on the reward they receive from the interactions with the 
environment [12]. The problem of designing self-organizing 
systems comes down to training the system either as a team using 
a centralized single agent reinforcement learning approach or as 
separate individuals going through multi-agent reinforcement 
learning. Although the centralized learning of joint actions of 
agents as a team can solve coordination problems and avoid 
learning non-stationarity, it does not scale well as the joint action 
space grows exponentially with the number of agents [13]. 
Secondly, learning to differentiate joint actions can be highly 
difficult. Further, the neural networks obtained from the 
centralized learning are only applicable to the situations with the 
same number of agents as the trained cases, because the action 
space is fixed by the trained cases.  

In contrast to the centralized single agent reinforcement 
learning, during the multi-agent reinforcement learning, each 
agent can be trained using its own independent neural network. 
Such approach solves the problem of curse of dimensionality of 
action space when applying single agent reinforcement learning 
to multi-agent settings. Although theoretical proof of 
convergence of multi-agent independent Q-learning is not 
mathematically given, there are numerous successful practices in 
real-world applications [13]. Thus, applying the state-of-the-art 

independent multi-agent reinforcement learning is a promising 
approach in tackling the existing problems faced by SOS design. 

In the rest of this paper, we first review the relevant work in 
self-organizing systems and reinforcement learning in Section 2. 
After that, we present a multi-agent independent Q-learning 
framework as a complex system design approach in Section 3 
and illustrate the system design implications. In Section 4, a box-
pushing case study is introduced that applies our proposed Q-
learning model. Section 5 provides a detailed analysis of the 
simulation results. Finally, in Section 6, the conclusions are 
drawn from the case study and future work directions are pointed 
out.  

2 RELATED WORK 

2.1 Artificial Self-organizing Systems 
An artificial self-organizing system is a system that is 

designed by human and has emergent behavior and adaptability 
like nature [1]. Much research has been done regarding the 
design of an artificial self-organizing system. Werfel developed 
a system of homogenous robots to build a pre-determined shape 
using square bricks [14]. Beckers et al. introduced a robotic 
gathering task where robots have to patrol around a given area to 
collect pucks [15]. As robots prefer to drop pucks in high-density 
areas, the collective positive feedback loop contributes to a dense 
group of available pucks [2,15]. Khani et al developed a social 
rule-based regulation approach in enforcing the agents to self-
organize and push a box toward the target area [5-6]. Swarms of 
UAVs can self-organize based on a set of cooperation rules and 
accomplish tasks such as target detection, collaborative 
patrolling and formation [16-19]. Chen and Jin used a field-
based regulation (FBR) approach and guides self-organizing 
agents to perform complex tasks such as approaching long-
distance targets while avoiding obstacles [11]. Price investigated 
into the use of genetic algorithm (GA) in optimizing Self-
organizing multi-UAV swarm behavior. He tested the 
effectiveness of GA algorithm in both homogenous and 
heterogeneous UAV in accomplishing the ‘destroying retaliating 
target’ task [20]. The robotic implementations mentioned above 
have demonstrated the potentials of building self-organizing 
systems, and the design methods of self-organizing systems 
[5,6,11] have had their drawbacks as indicated in Section 1. 

2.2 Multi-Agent Reinforcement Learning 
  Multi-agent reinforcement learning applies to multiagent 
settings and is based largely on the concept of single agent 
reinforcement learning such as Q-learning, policy gradient and 
actor-critic [12, 21]. Compared to single agent reinforcement 
learning, multi-agent learning is faced with the non-stationary 
learning environment due to the simultaneous learning of the 
multiple agents.  
  In the past several years, there has seen a move from tabular 
based methods to the deep reinforcement learning approach, 
resulting from the need to deal with the high-dimensionality of 
state and action spaces in multi-agent environments and to 
approximate state-action values [22-24]. Multi-agent systems 
can be classified into cooperative, competitive, and mixed 
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cooperative and competitive categories [22]. Cooperative agents 
receive the same rewards, competitive agents (often in two-agent 
settings) have the opposite rewards, and the mix cooperative and 
competitive settings assume agents are not only cooperating but 
also have individual preferences. In the SOS design, we focus on 
the cooperative agents since they share the same task goals. 
  One natural approach for multi-agent reinforcement learning 
is to optimize the policy or value functions of each individual. 
The most commonly used value-function based multi-agent 
learning is independent Q-learning [25]. It trains each 
individual’s state-action values using Q-learning [25-26] and is 
served as a common benchmark in the literature. Tampuu [22] 
extended previous Q-learning to deep neural networks and 
applied DQN [27] to train two independent agents playing the 
game Pong. His simulation shows us how the cooperative and 
competitive phenomenon can emerge based on the individual’s 
different reward schemes [22].  
  Foerster applied COMA framework to train multiple agents. 
He used a centralized critic to evaluate decentralized actors and 
estimated a counterfactual advantage function based on each 
agent and allocated credit among agents [23]. He trained multiple 
agents to learn to cooperatively play StarCraft games. In another 
work by Foerster, he analyzed his replay stabilization methods 
for independent Q-learning based on StarCraft combat scenarios 
[28]. 
  As multi-agent environment is usually partially observable, 
Hauskneche & Stone [29] used deep recurrent networks such as 
LSTM [30] or GRU [31] to speed up learning when agents are 
learning over long time periods. Lowe et al developed Multi-
agent Deep Deterministic Policy Gradient (MADDPG), which 
uses centralized training with decentralized execution [32]. They 
proposed an extension of the actor-critic policy gradient method 
and augmented critic with additional information about the 
policies of other agents and then tested their algorithm in 
predator-prey, cooperative navigation, and other environments. 
Their training algorithm shows good convergence properties 
[32]. Drogoul & Zucker developed a framework for multi-agent 
system design called ‘Andromeda’, which combines machine 
learning approach with agent oriented, role-based approach 
named ‘Cassiopeia’ [33,34]. The idea is to let learning occur 
within different layers of ‘Cassiopeia’ framework such as 
individual roles, relational roles and organizational roles so that 
the design of multi-agent system can be more systematic and 
modular [33,34]. However, as real multi-agent environment is 
rather complex, agent’s actions are affected by not only its own 
roles but also by other agents and the group. Separating learning 
into different layers of abstraction may not be feasible.  
  Most approaches to multi-agent reinforcement learning focus 
on achieving optimal system reward or desirable convergence 
properties. Many training algorithms are based on fully 
observable states. Training of multi-agent reinforcement model 
is usually conducted on prespecified environments and the 
generalizability of the training network to various multi-agent 
team sizes is not analyzed or considered, which is an important 
factor of consideration in SOS design. It is crucial to develop a 
multi-agent learning framework that is scalable to various team 
sizes, and also to provide guidelines on how design should be 

implemented and analyzed. Such areas are often omitted in the 
literature and are the focus of this paper.  

3 A DEEP MULTI-AGENT REINFORCEMENT 
LEARNING MODEL 

3.1 Single Agent Reinforcement Learning  
It is important to discuss single agent reinforcement learning 

before moving into multiagent reinforcement learning because 
many concepts and algorithms of multi-agent reinforcement 
learning are based on the single agent reinforcement learning.  

Single agent reinforcement learning is used to optimize 
system performance based on training so that the system can 
automatically learn to solve complex tasks from the raw sensory 
input and the reward signal. In single agent reinforcement 
learning, learning is based on an important concept called 
Markov Decision Process (MDP). An MDP can be defined by a 
tuple of <S, A, P, R, g>. S is the state space, which consists of all 
the agent’s possible sense of environment information. A is the 
action space, including all the actions that could be taken by the 
agent. P is the transition matrix, which is usually not 
given/unknown in a model-free learning environment. R is the 
reward function, and g is the discount factor, which means the 
future value of the reward is discounted and worth less than the 
present value. At any given time t, the agent’s goal is to maximize 
its expected future discounted return, 𝑅" = ∑ 𝛾"&'"(

") 𝑟", where T 
is the time when the game ends. Also, agents estimate the action-
value function 𝑄(𝑠, 𝑎)  at each time step using Bellman 
equation (1) below as an update. E represents the expected value. 
Eventually, such value iteration algorithm will converge to 
optimal value function.  

𝑄123(𝑠, 𝑎) = 𝐸[𝑟 + 𝛾max
:&

𝑄1 (𝑠), 𝑎))|𝑠, 𝑎]      (1) 

Researchers in the past uses Q-learning as a common training 
algorithm in single agent reinforcement learning [35-36]. Q-
learning is based on Q-tables, each state-action value pair is 
stored in a single Q-table and such training algorithm has been 
applied in simple tasks with small discrete state and action spaces 
[35-36]. However, in real-life engineering applications, state 
space can often be continuous and action space vast, making it 
difficult or impossible to build a look-up Q-table to store every 
state-action value pair. To overcome such problems in Q-
learning, deep neural networks are introduced as functional 
approximator to replace the Q-table for estimating Q values. 
Such learning methods are called deep Q-learning [27]. A Q-
network with weights qi can be trained by minimizing the loss 
function at each iteration i, illustrated in equation (2), 

	𝐿1(𝜃1) = 𝐸[(𝑦1 − 𝑄(𝑠, 𝑎; 𝜃1))C]           (2)             

where 

𝑦1 = 𝐸[𝑟 + 	𝛾max
:&

𝑄(𝑠), 𝑎) ; 𝜃1'3)]		        (3) 

is the target value for iteration i. The gradient can be calculated 
with the following equation (4): 
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∇EF𝐿1(𝜃1) = 	𝐸G,:,H,G&[{r + 	𝛾max:&
𝑄(𝑠) , 𝑎); 𝜃1'3) 

−Q(s, a, 𝜃1)	}∇EFQ(s, a, 𝜃1)]    (4)  
   Various approaches have been introduced to stabilize training 
and increase sample efficiency for training deep Q-networks. In 
our multi-agent training algorithm, the neural network of every 
single agent is built based on the following two approaches: 

Experience Replay: 

   During each training episode, the agents’ experiences 𝑒" =
(𝑠", 𝑎", 𝑟", 𝑠"23), which represents state, action, reward and next 
state, are stored and appended to an experience replay memory 
𝐷 = (𝑒3, 𝑒C, … , 𝑒Q). N represents the capacity of the experience 
replay memory. At every training interval, mini-batches are 
randomly sampled from experience replay memory D and fed 
into Q-learning updates. At the same time, an agent selects its 
action based on the e-greedy policy, which means the agent 
selects its action based on exploration of random actions and 
exploitation of best decision given current information. 
Experience replay, as Minh described in his paper [37], increases 
data sample efficiency and can break down the correlations 
between subsequent experiences and is used to stabilize training 
performance.  

Dueling DQN  

The Dueling DQN architecture can identify the right action 
during policy evaluation faster than other algorithms as it 
separates the Q value into the representation of state value V and 
action advantages A, which are state-dependent [38]. In every Q 
value update, the dueling architecture’s state value V is updated, 
which contrasts with the single-stream architecture, where only 
value for one of the actions is updated, leaving other actions not 
updated. This more frequent updating allows for a better 
approximation of the state values and leads to faster training and 
better training performance.  

3.2 Multi-Agent Reinforcement Learning 
As mentioned above, there are generally two approaches in 

multi-agent training. One is to train the agents as a team, treating 
the entire multiagent system as ‘one agent.’ It has good 
convergence property similar to single agent reinforcement 
learning, but can hardly scale up. To increase learning efficiency 
and maintain scalability, we adopt a multi-agent independent 
deep Q-learning approach. In this approach, Ai , i = 1, . . . , n (n: 
number of agents) are the discrete sets of actions available to the 
agents, yielding the joint action set A = A1 ×· · ·×An. All 
agents share the same state space and the same reward function.  

During training, each agent has its own dueling neural 
network and is trained by applying deep Q-learning with 
experience replay. Agents perceive the state space through their 
local sensors. Each agent learns its own policy and value 
function individually to choose its actions based on its own 
neural network given the reward from the shared reward function 
from the environment. As each agent’s action space size is the 
same, each agent’s trained neural network can be reused and 
applied in various team sizes and such multi-agent system can 
scale well to agent teams of different sizes. 

In our multiagent reinforcement learning mechanism 
described above, each agent i (i = 1, 2, …, n) engages in learning 
as if it is in the single agent reinforcement learning situation. The 
only difference is that the next state of the environment, St+1, is 
updated in response to the joint action at = {a1, a2, …, an}, instead 
of its own action ai, in addition to the current state St. Through 
this research, we aim to explore the stability or convergence 
issue of the learning process—i.e., whether the knowledge can 
be acquired in the form of neural networks through 
reinforcement learning, and the adaptability issue—i.e., whether 
the learned neural networks can be effectively applied to the 
situations of similar tasks but different agent team sizes.  

3.3 Simulation based System Design  
There have been several methods for guiding the design of 

self-organizing systems [5-6,39]. Based on the previous work 
[39], a simulation-based system design method is proposed as 
shown in Figure1. Like other design or system engineering 
methodologies [5-6,39], it starts with breaking down the tasks 
into subtasks, analyzing system constraints and then represents 
the state space of the agents. Functional design defines both 
individual and group level functions for agents to achieve. As the 
agent-level behavior is the focus of SOS design, the major design 
factors will include (1) the agent-level actions and (2) reward 
schema. 

Agent’s state, action and reward schema 

In self-organizing systems, agents have only its local view of 
the environment, due to their limited sensor capability and motor 
constraints. An MDP with such property is called a partially 
observable MDP. An Agent’s state representation of the design 
process should reflect such characteristics of self-organizing 
systems. For homogeneous self-organizing systems, where 
agents share the same functionality and capabilities, the agents 
share the same actions from which they can choose. However, at 
any given time, different agents may perform different actions, 
resulting in the combined impact on the overall transition of the 
state. For heterogeneous systems, on the other hand, agents may 
have individualized action sets to choose from. This research 
explores the homogeneous situations and the heterogeneous 
cases will be dealt with as future work. 

Training of individual agents is based on how much reward 
each agent receives. Designing and allocating reward is very 
important in self-organizing system design and has been proven 
to be important in the past multi-agent deep Q-learning 
algorithms as well [22]. Good reward schema or functions can 
lead to optimal agent level and system level performance, 
whereas the bad reward structure leads to nonconvergent 
learning or undesirable performance.  

Simulation/Optimization 

Since the dynamics of a complex environment is hard to be 
modeled and captured analytically, simulation becomes an 
important step for social rule knowledge capturing. The 
simulation should be combined with optimization algorithms for 
searching the optimal policy and value functions given the 
agent’s sensor information. Multi-agent deep Q-learning 
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networks can be integrated with simulation to perform such 
simulation optimization tasks. The hope is that the output of the 
trained neural networks can be applied to various team sizes for 
system implementation. 

 

 
Figure 1. Steps for Simulation based Design of Self-Organizing 
Systems 

4 CASE STUDY 
To test the concepts and explore the multiagent reinforcement 

learning algorithm discussed above, a box-pushing case study 
has been carried out. In choosing this case example, several 
requirements were considered based on our long-term goal of 
developing robotic self-organizing assembly systems. First, the 
task environment requires relatively intense agent interactions, 
instead of sparse interactions, for efficient learning. For example, 
the ant foraging task may be less desirable as the interaction 
between agents during training is only passive, causing it slow 
and ineffective. Second, the tasks require cooperative work 
among agents. Although each agent might have different short-
term rewards, in the long run they work for the same maximum 
reward. Lastly, we consider only the homogeneous cases, for 
simplicity at this stage of research, and the action space should 
be the same for all the agents. This will allow us to add more 
agents to the system using the same learned neural networks. 

After considering several options, the box-pushing problem 
was finally chosen for the case study.  

4.1 The Box-Pushing Problem  
The box-pushing problem is often categorized as a trajectory 

planning or piano mover’s problem [40]. Many topological and 
numerical solutions have been developed in the past [40]. In our 
paper, we adopt a self-organizing multi-agent deep Q-learning 
approach to solve the box-pushing problem. During the self-
organizing process, each agent acts based on its trained neural 
network, and collectively all agents can push the box towards a 
goal without system level global control.  

In this research, the box-pushing case study was implemented 
in pygame, a multi-agent game package in the Python 
environment. In the box-pushing case study, we trained each 
individual with independent deep Q-learning (IQL) neural 

networks and tested successfully trained network parameters 
with various team sizes between 3-6 and analyzed its scalability 
characteristics.  

A graphical illustration of the box-pushing case study is 
shown in Figure 2. The game screen has a width x of 600 pixels 
and a height y of 480 pixels. Numerous agents (the green 
squares) with limited pushing and sensing capabilities need to 
self-organize in order to push and rotate the box (the brown 
rectangle) towards the goal (the white dot with a “+” mark). As 
there is an obstacle (the red dot) on the path and walls (the white 
solid lines) along the side, the agents cannot just simply push the 
box but have to rotate the box when necessary [5,6]. This adds 
complexity to the task. The box has sensors deployed at its 
outside boundary. When the outside perimeter of the box reaches 
horizontal x-coordinate of the goal, which is represented as a 
white vertical dotted line, the simulation is deemed success. 

 

 
Figure 2. Graphical illustration of Box-pushing task  

There are four major tasks of box-pushing, as summarized 
below. Agents need to move, rotate the box, and keep the box 
away from potential walls and obstacles. 

T1 = <Move><Box> to <Goal> 
T2 = <Rotate><Box> to <Goal> 
T3 = <Move><Box> away from <Walls> 
T4 = <Move><Box> away from <Obstacle> 

In pygame, the distance is measured by pixels. Each pixel is 
a single square area in the simulation environment. As an 
example, the box in our simulation is 60 pixels wide and 150 
pixels long.  

In box-pushing, agents have limited sensing and 
communication capabilities. They can receive information from 
the sensor of the box, which measures orientation of the box and 
senses obstacles at a range of distance. They have limited storage 
of observation information: trained neural network parameters 
and their experiences such as state, action, reward and next state. 
They possess a neural network that can transform the perceived 
state information into action. These assumptions are in line with 
the definition of the “minimalist” robot [41] and are reasonable 
with the current applications of physical robot hardware [42].  
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4.2 State and Action 
Based on the task decomposition and constraint analysis 

mentioned above, the state space of the box-pushing task is 
defined as shown in Figure 3. To gather relevant environment 
information, a sensor is deployed in the center of the box, which 
can sense nearby obstacles. The radius of sensor range is 150 
pixels and the entire circular sensor coverage is split into 8 
sectors of equal size with each sector corresponding to a bit 
representation of state information. For example in Figure 3, 
there are three red obstacles within the sensor detection range, 
and the corresponding state s3, s5, s7 are having value 1, 
indicating the presence of the obstacle. If there is no obstacle in 
a sector, the sector’s state value will be 0. Like the past literature, 
we assume sensors can also detect the orientation of the box from 
the box’s x-axis with respect to the goal position, illustrated with 
angle q [35-36]. This is a reasonable assumption based on real-
world sensor capability. In Figure 3, the current angle q is around 
30 degrees. And such degree information can be shaped into the 
range of [-1,1] by applying equation (5). Angle 𝜃) serves as the 
final input state s9. This shaped angle method can facilitate deep 
Q-network training and is used commonly in practice [35-36]. 

𝜃) = (E'3ST)
3ST

	 = -0.83                  (5) 

 
Figure 3. Box State Representation 

Given the above, the state representation of Figure 3 can be 
expressed as a 9-digit tuple <0,0,1,0,1,0,1,0, -0.83>.  

As during training, each agent is close to the vicinity of the 
box center, it can receive the sensor information broadcasted 
locally among agents. Sensor can also sense the distance from 
the center of the box to the goal area, analogous to real-world 
radar sensor, and is also like the gradient-based approach in 
literature where the task field is assumed [5-6]. Agents can also 
receive such distance information from the sensor.  
   Box neighborhood: The box neighborhood is defined as six 
regions [6,39], as shown in Figure 4. During each simulation, 
individual agent can move to one of the six regions of the box 
neighborhood and that specific neighborhood is the position of 
the agent. As individual agent is relatively small, we assume 
there can be multiple agents in the same region at the same time. 
This is in line with the definition of the “minimalist” robot [41]. 

Box dynamics: The box dynamics is based on a simplified 
physical model. The box movement depends on the simulated 
force and torque. Forces equal the sum of vector forces of each 
pushing agent. Every push carries the same amount of force, 
which acts from an agent towards the box. The sum of two 

pushes will move the box 10 pixels in a given direction. Torque 
is assumed to be exerted on the centroid of the box and equals to 
the sum of moment arm of all vector forces of the pushing agents. 
2 pushes with a moment arm of 75 pixels each will rotate the box 
20 degrees. We assume the box carries a large moment of inertia 
and when it hits the obstacle, which is considered rather small, it 
will continue its movement until its expected end position is 
reached.  
 

 
Figure 4. The six regions of box neighborhood 
 

Agent action space: The agent action space is defined based 
on the box neighborhood and simulated box dynamics. As each 
time step, an agent can choose a place in one of the six regions 
of the box neighborhoods to push the box. Therefore, the agents 
share the same actions space of A = {a1, a2, a3, a4, a5, a6}, as 
shown in Figure 4. For instance, if an agent chooses action a1, it 
will move to box region “1” and push from there, the box will 
move downwards along the box’s y-axis based on the simulated 
box dynamics and the same logic applies to other agent actions. 

4.3 Reward Schema and Training model  
  In order to train multiple agents to self-organize and push the 
box to the final goal area, which is the group level function, we 
need to design a proper reward schema to facilitate agent 
training. Adapted from previous Q-table based box-pushing 
reward schema [35-36], we designed a new reward schema for 
agents’ box-pushing training. The total reward is composed of 
four parts: distance, rotation, collision, and goal. 

Distance Reward: The reward for pushing the box closer to 
the goal position is represented as 𝑅U1G, and is shown in equation 
(6). The previous distance 𝐷VWU represents how far the center of 
the box is away from the goal position (measured in pixels) and 
can be evaluated by the box sensor and stored into an agent’s 
memory. 𝐷XYZ	represents the distance to the goal position from 
the center of the box at the current time step. 𝐶Uis a constant, 
called distance coefficient in our simulation, and is set to 2.5. At 
each simulation time step, agents calculate the change of distance 
between the current distance and previous distance based on 
Equation (6) and draw its distance reward. 

𝑅U1G = 	 (𝐷VWU − 𝐷XYZ) ∗ 𝐶U           (6) 
 

Rotation Reward: The reward for rotation 𝑅HV"	 is 
represented in equation (7).   

𝑅HV"	 = 𝐶𝑜𝑠(𝛼C − 𝛼3) − 0.98          (7) 
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where 𝛼3 is the previous time step angle of the box’s x-axis with 
respect to goal position and 𝛼C the current angle. The rotation 
reward is given to discourage the rotation of more than 11 
degrees, this way, box can be rotated constantly with small 
degrees and avoid large rotation momentum, which can result in 
a collision with obstacles. The rotation reward is relatively small 
as it is used only for rotation of the box rather than pushing the 
box towards the goal, which is the ultimate goal. 

Collision Reward: The collision reward is analogous to the 
reward schema in common collision avoidance tasks [43] and is 
represented in equation (8) with 𝑅bVW, 

𝑅bVW = c
−900	𝑖𝑓	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑐𝑐𝑢𝑟𝑠
0	𝑖𝑓	𝑛𝑜	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑐𝑐𝑢𝑟𝑠         (8) 

During each simulation step, if there is no collision for the box 
with either the obstacle or the wall, 𝑅bVW	 = 0. If a collision 
occurs, a -900 reward will be given to all the agents as a penalty. 

Goal Reward: The reward for reaching the goal 𝑅jV:W	 is 
represented in equation (9), 

𝑅jV:W	 = 	 c
900	𝑖𝑓	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑔𝑜𝑎𝑙
0	𝑖𝑓	𝑛𝑜𝑡	𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔	𝑔𝑜𝑎𝑙																						(9) 

At each simulation step, if the box reaches the goal position, 
each agent will receive a positive 900 reward; if the goal is not 
reached, the agents do not receive any reward.  

The total reward is a weighted sum of all these rewards, as 
shown in Equation (10) below. 

𝑅"V"	 = 𝑤3 ∗ 𝑅U1G + 𝑤C ∗ 𝑅HV" +	𝑤o ∗ 𝑅bVW	 +	𝑤p ∗ 𝑅jV:W (10) 

In our simulations, after repeated testing, the weights were 
set as 𝑤3 = 0.6, 𝑤C = 0.1, 𝑤o = 0.1, 𝑤p = 0.2,with	the sum of 
these weights equal to 1. The weights are chosen so that during 
each step in training: w1 = 0.6, which means agents can have 
more immediate reward in terms of whether or not they are closer 
to the goal; w2 = 0.1, which gives a little incentive for agents to 
rotate the box a small angle; w3 = 0.1, to offer some penalty 
reward if box collides with an obstacle; w4 = 0.2, as agents’ final 
goal is to reach the target zone, agents should be given more 
reward if its goal is achieved, than when box collides with an 
obstacle. The weight for four different rewards is adapted and 
based on previous research on multi-agent box-pushing [35-36]. 

𝑤1 +𝑤2 + 𝑤3 + 𝑤4 = 1																					 (11) 

During training, as the agents are homogenous and are 
cooperating to push the box, they should receive the same 
rewards. This is the reason why the reward equations (8) through 
(10) are defined based only on the box’s position and orientation. 
In this way, each agent’s neural network will consider other 
agents’ actions as part of its environment and learn to explore its 
action space and its best policy based on an e-greedy action 
selection strategy. Gradually the agent grasps how to 
differentiate its actions from other agents to collaboratively push 
the box towards the goal position, which is the characteristics of 
multi-agent independent deep Q-leaning neural networks.  

A shown in Figure 5, the training network consists of an input 
layer, which gets input information from the raw sensor of the 

box, a subsequent fully connected layer with 16 hidden neurons, 
a dueling layer and outputs final state-action values.  

 
Figure 5. Training network illustration 

4.4 Issues and Experiment Setup 
As aforementioned, the two issues of this research are (1) the 

stability of the learning dynamics for agents to acquire 
knowledge for self-organizing behavior regulation, and (2) the 
use of neural network knowledge captured from the 
reinforcement learning in the extended situations such as varying 
team sizes and noisy environment. 

We vary the number of agents during training and plot the 
cumulative reward each agent gets as the number of training 
episodes increases. Through the cumulative reward plot, we can 
see how fast the cumulative reward converges and whether the 
cumulative reward is stable or not. The experiment setup for the 
stability study is shown in Figure 6. 

With the box-push case study, we change the number of 
agents from 3 to 6 and train each agent with independent deep 
Q-learning networks. Each simulation was run 10 times with 
different random seed. Then we tested our training neural 
network with various team sizes from 3-6 by feeding the trained 
neural network parameters to the new neural network and tested 
how scalable our trained neural network can be in various teams’ 
sizes.  

 
Figure 6. Experiment Setup for Stability of Learning Dynamics 

of Agents 

During testing, we added 10%, 30%, 50% random individual 
actions. Such randomness does not follow maximum state-action 
value. This way, the robustness of our trained neural network can 
be evaluated with individual action noises. Figure 7 is a detailed 
illustration of the training experiment setup. Need to mention 
that when training with smaller team size, for instance 3, and 
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apply learned neural networks to larger team size, such as team 
size 4, we randomly choose one of the individual networks to the 
added new team members. When training with larger team size, 
for instance 5, and apply trained neural networks to a smaller 
size, such as size 3, we randomly choose three different 
individual neural network parameters and apply them to smaller 
teams. 

 
Figure 7. Simulation environment Setup 
 
Simulation Parameters: Table 1 summarizes the training 
parameters used in our simulation. Replay memory size is 2000, 
and we sample 32 mini-batches randomly from memory size 
during each training step. The discount factor is 0.99 and 
learning rate is 0.001. Total training episode is 5000 (one episode 
means one simulation run which starts from initial position to 
ending position). It is chosen because training cost decreases to 
0 and stabilizes at this threshold. We follow e-greedy action 
selection algorithm where e is annealed from 1.0 to 0.005 during 
100,000 annealing steps. After each annealing step, e decreases 
a little bit until total annealing steps are reached and e is 0.005. 
Agents choose actions from entirely random to nearly greedy. 
The target network is updated at every 5 simulation steps to 
stabilize training.  
 
Table 1. Simulation parameters 

Replay memory size 2000 
Mini-batch size 32 
Discount factor 0.99 
Learning rate a 0.001 
Total training episodes 5,000 
e 1.0 à 0.005 
Annealing steps 100,000 
Target network update frequency 5 

5 RESULTS AND DISCUSSION 

5.1 Typical Failure Modes 
Figure 8 illustrates some typical failures with motion trace 

during training. Figures 8 (a) to (d) are the results of running the 
simulation cases of 6 pushing agents. During training, the box 
sometimes experiences excessive momentum, leading to moving 
towards the red obstacle, as shown in (a). Sometimes agents have 
insufficient or excessive rotation torque, resulting in the edge of 
the box hitting the red obstacle, as shown in (b). Agents try many 

actions but still could not get to the goal; they collide with 
obstacles or reach a maximum training step size of 500 (each 
time an agent chooses its action, it is considered one training step 
size. When maximum training step size is reached, the episode 
terminates), as shown in (c). Boxes are occasionally pushed 
backward, forming a round circle around the obstacle, as shown 
in (d).    

  
(a) (b) 

  
(b) (d) 

Figure 8. (a) failure with excessive pushing momentum (b) 
failure with insufficient/excessive rotation torque (c) failure with 
reaching maximum training episode length (d) failure with 
pushing box backward 

 
Figure 9 Successful Box-pushing trajectory with motion traces  

5.2 Simulation Results 
Box-pushing Trajectory 
Figure 9 shows one successful training run with 4 agents by 
following max state-action values with motion trace examples. 
Although the final optimized trajectory is not strict perfect, 
through multi-agent deep Q-networks, agents can approximate 
its actions and push the box towards the goal area.  
Training stability 

Figure 10 shows the convergence results of our simulation 
with a different number of agents. The results are based on the 
running average of 10 training results with different random 
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seeds. Only the cumulative reward of the training instances 
where agents successfully pushed the box is plotted.  

 

 
(a)                       (b) 

 
          (c)                        (d) 

Figure 10. Cumulative Reward Plot vs Training Episode (every 
100 episode) with varying team size (a) team size:3 (b) team 
size:4 (c) team size:5 (d) team size:6 
 

As shown in Figure 10, in all training, the cumulative reward 
of each agent converges to close to 700 and once the cumulative 
reward reaches the threshold, it stays the same without much 
oscillation. Also, as agents number increases, it takes a longer 
time to reach the maximum cumulative reward. In Figure 10 (a), 
with team size 3, it takes about 2000 episodes for agents to get 
an average of around 700 rewards. As agent number increases, it 
takes about 2800 episodes for 4 agents and 3500 for 5 agents to 
reach the maximum cumulative reward. In subplot (d), with team 
size 6, we can see that it takes almost 4000 episodes for a large 
team to acquire a stable cumulative reward. The increase in 
convergence time might be explained by that when the team 
becomes larger, the learning dynamics of the environment are 
more complex: agents learn not only the physical environment 
but also other agents’ dynamics. Thus, a larger number of agents 
require more training time to reach stable convergence. 
 
Distance traveled by individual agents 
We measure the distance traveled by each agent in different team 
size settings, shown in Figure 11. The vertical total distance plot 
is the average of 100 training episodes. As there are a total of 
5000 episodes, we plot 50 distance values during training based 
on the trained neural networks. Here, the distance is based on a 
hierarchical measurement [44], which means the top-level 
distance is measured. For instance, when agents move from box 
region 1 to box region 2, as shown in Figure 4, it is considered 
as one step-wise distance. When an agent moves from box region 
1 to region 3, its distance is two-step distances. If an agent 
chooses the same action in the subsequent run, its moving 
distance is 0.  

 
(a)                       (b) 

 
(c)                       (d) 

Figure 11. (a) Total distance traveled by each agent with team 
size 3 (b) Total distance traveled by each agent with team size 4 
(c) Total distance traveled by each agent with team size 5 (d) 
Total distance traveled by each agent with team size 6 
  

During the initial phase of training, the distance traveled by 
all agents tends to increase. After some training episodes, it starts 
to decrease. This is reasonable as initially all agents are learning 
how to push the box and more randomly exploring the search 
space. After some episodes, when agents gather enough positive 
and negative experience, and as the epsilon value decreases, 
agents choose more greedy actions, their travel distance tends to 
decrease.  
  After 5000 episodes of training, the distance traveled by all 
agents tends to converge to low distance values. The final 
optimal distance by each individual agent is different as they 
finally tend to specialize in their own individual behavior to 
collaboratively push the box to the goal position.  
  We found that as agent team size increases, the maximum 
travel distance by each individual agent decreases. This has some 
implications in real robots learning: if the maximum energy 
consumption is the limiting factor for each robot, robot training 
should start with a larger team size to avoid failure. We also 
found that initially the distance traveled by agents are 
approximately the same and total distance traveled by each agent 
tend to diverge when it reaches a certain threshold, around 1000 
episode. We speculate that the real speed-up in learning occurs 
after this threshold as the percentage of random actions drops 
below a certain value and at the same time agents have gathered 
enough training experiences.  
 
Scalability of training algorithm to various team sizes 
  Two important issues of SOS are the scalability to different 
team sizes and the robustness to various noises. We stored our 
trained neural networks of different team sizes and applied them 
to other team sizes to assess their scalability. Further, we 
introduced a certain percentage of random agent actions ranging 
from 10%, 30% and 50%, to evaluate the robustness of the 
trained networks. The results are shown in Table 2-4. Training in 
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the table means how many agents are trained in the simulation, 
running means transferring the trained neural network to various 
other team sizes. When the box is pushed successfully to the goal 
without hitting obstacle/wall, such running episode is considered 
success. We run each 10 trained neural networks with a specific 
team size to various other team sizes. Each simulation is run 
1000 times and we average the trained results.   
  Interesting trends can be seen through all experiments. As 
shown in Table 2, the diagonal cell represents how the trained 
network performs with the same team size with 10% random 
actions. As such trained network is applied to the same team size, 
agents can successfully push the box towards the goal with  
~90% of runs. If we transfer the individual learned neural 
network to teams of smaller size, the success rate remains high, 
although training-4 to running-3 has a medium success rate.  
  Additionally, we found that when we train teams of smaller 
size and apply the trained network to larger team sizes, success 
rate is very low as shown in Table 2. Except for the transferring 
learning from 3 to 4 agents, where 5.7% success rate is reached, 
all other test cases get around 0% success rate. This means 
training multi-agent system is very good at scaling downwards, 
but not scaling upwards. Such phenomenon can be called ‘lower 
triangle phenomenon’. Table 3 and Table 4 are based on 30% and 
50% random actions. The total percentage success rate drops 
with the increase of noise, as expected.  

What is also intriguing is that sometimes when applying the 
trained network to smaller team sizes, the success rate can be 
even higher than when applied to its own team sizes. For 
instance, in Table 2, when we train 6 agents and run it with the 
same team size, we get 94.6% success rate, but applying such 
trained network to smaller team sizes such as 3-5 agents, the 
success rate is higher. This might be because 6 agents’ case is a 
more difficult team setting to learn. While agents learn from 
more complex situations and apply to simpler settings, they can 
achieve better success rates. However, this situation does not 
work for all experiments. For example, in Table 2, if we train 
agents with team size 4 and apply to a team of size 3, the success 
drops, so when training with relatively small team size, the 
knowledge captured might not be transferred well to a smaller 
size. Only when team sizes reach beyond a threshold, such 
trained knowledge becomes more transferable to smaller teams.  

Table 2. Success Rate with 10% individual random actions  

 

Table 3. Success Rate with 30% individual random actions 

 

Table 4. Success Rate with 50% individual random actions  

 
 

Summary 
The following summaries are drawn from the case study 

results. 
• Multiagent reinforcement learning (MARL) is an effective 

approach to capture self-organizing knowledge through 
extensive training. In our box-pushing case, the agents 
successfully accomplished the task with very high success 
rates based on the learned neural networks. 

• The MARL learning process has relatively good stability 
with a limited number of agents. In our simulation results, the 
agents up to 6 have shown very stable learning convergence 
without specific issues. Failure cases do happen in the early 
stage of training. The converged networks have shown highly 
effective utility. 

• Although the agents share the same reward function during 
training, they do specialize in their own ways as the learning 
converges at the final stage of training. This is a very 
interesting feature, and we plan to explore more to understand 
how this feature may be applied to evolve complex 
mechanisms to deal with highly complex tasks. 

• The MARL based self-organizing knowledge capture in the 
form of neural networks can scale downward but not upward 
in terms of team size. When the range of scaling down is 
large, e.g., from 6 to 4 or 5 to 3, the scaling loss is ignorable. 
For small starting team size, the scaling down loss can be up 
to 40%. Scaling upward in any case is not advisable. 

• The influence of random action noise only has a limited effect 
until 10%. After that, the impact is more noticeable. The 
teams with more agents are more robust against random 
actions. For a given task, there appears to be a specific team 
size, 4 for the box-pushing task, that is most robust against 
random actions.  
It is worth mentioning that the above conclusions are limited 

to the experiments reported in this paper. Further investigations 
are needed to generalize the claims.  

6 CONCLUSIONS AND FUTURE WORK 
In multiagent reinforcement learning based SOS design, 

learning stability and scalability of the system with various team 
sizes are two important issues to consider. In addition, the system 
needs to be robust enough to perform well in the face of noises, 
such as failures or malfunctions of other agents.  

In this paper, we applied the multi-agent independent Q-
leaning algorithms in the design of SOS and investigated the 
learning stability, scalability, and robustness characteristics of 
such design approach through a box-pushing case study. Results 
show that multi-agent reinforcement learning can be a useful tool 
in design of SOS and can achieve good learning stability. Also, 
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training of the agents should occur with team sizes at least as 
large as the intended end-use case.  

Future work includes testing the scalability of multi-agent Q-
learning algorithm with a wider range of complex tasks and team 
sizes. Also, adding individual heterogeneous reward and testing 
the different weights for reward functions will also be the focus 
of research for the next step.  
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