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Launch and on orbit operations for debris-field avoidance has been an issue in the 
community for many years.  However, with the increase in commercial space traffic, the 
need for assessing the risk of space activities has become more important.  In this paper, we 
used the situation-risk assessment (SRA) method contained within the intelligent situation 
assessment and collision avoidance (iSC) platform to develop a risk analysis of space 
operations.  We defined the concept of a launch theater and developed a risk metric to assess 
the chance of collision when traveling through the low earth orbit (LEO) debris field.  Then, 
we then used this concept to make decisions that lowered the launch risk.  Finally, this 
method was applied to objects already in orbit attempting to make decisions on how to avoid 
debris while also attempting to keep the necessary orbital parameters for mission success. 

I. Nomenclature 
ω = argument of periapsis 
Ω = right ascension of the ascending node 
a = semi-major axis 
δt = the time difference between the closest orbits (or trajectories) 
DCR = critical distance metric for risk assessment 
dmin = minimum safe distance 
e = eccentricity 
E = eccentric anomaly 
FV = future value 
i = inclination 
Pg = geometric risk 
Pt = theater risk 
PV = present value 
PXi = collision probability with the ith object 
r = discount rate 
Sf = scale factor for risk timing !u  = command decision 
V|min-d = speed at the minimum distance 

II. Introduction 
Space traffic management (STM) is a growing concern for commercial space operations.  Current estimates have 

a minimum of 15,000 (LEO) [1].  This is a collision danger for space flight.  This danger exists for both the active 
carrying of humans into space, as well as the unmanned spacecraft that carry logistical supplies to human space 
operations. 

There have been many proposals investigated in the past ten years discussing the need and the requirements for 
some sort of coordinated space traffic management [2-9].  These works have mainly focused on legal coordination 
for traffic management, as well as the challenges to developing a systematic and effective system for the safe and 
easy access to space.  However, currently, there is little to no coordination between international stakeholders.  The 
major issue is that space tracking is controlled by individual militaries that may or may not share their findings. 
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Currently there is no set system for checking launch clearance.  In [8], Cukurtepe discussed the data transfer and 
permission systems that are currently in use for tracking and resolving space traffic management.  This method has 
many moving parts and is reliant upon many key individuals to assess the current space traffic situation.  This paper 
addressed one of the bottlenecks in the space traffic management that is the debris avoidance. 

Unlike all the other STM systems proposed, the Intelligent Situation Awareness and Collision Avoidance (iSC) 
methodology proposes a decentralized system aboard each craft that would make use of whatever resources are 
available at the moment.  The iSC method is currently being developed at the University of Southern California 
(USC), which is a cognitive computing approach to situation awareness and collision avoidance.  Currently this 
method is being applied to the task of collision avoidance in maritime applications [10].  The similarities between 
the STM problem and maritime problem are striking.  They both involve dynamics that are stable on short time-
frames, but chaotic for the long term.  Both problems involve a large number of independent components that may 
or may not be under the control of an agent.  Finally, both problems have decisions that are made at the current time 
that affect both the current state of the situation as well as long-term implications for the situation. 

III. Situation Awareness 
Most people have a colloquial understanding of what is meant by a situation.  However, from an engineering and 

systems engineering standpoint there are two (related) schools of thought on situation, situation awareness (SAW), 
and situation assessment (SA).  The first is the method proposed by Dr. Endsley [11] on situation awareness.  Dr. 
Endsley proposed that SAW is developed in through three levels.  The first is determining the entities and states in 
the environment.  The second level is understanding the relationships between those entities.  Finally the third is the 
ability of an agent to project that situation into the future.  This model is shown graphically Fig. 1, below. 

 
Fig. 1 Endsley’s model of situation awareness. 

It should be noted that Endsley’s model was initially developed for human cognition, and not necessarily for 
autonomous systems.  Although it should be noted that Dr. Endsley and others have updated this cognition method 
to include multiple agents and system situational awareness [12-13].  As was noted in [10] Endsley’s model 
resembles the standard guidance, navigation, and control loop.  The main difference is that SA views allow for a 
broader scope of data, beyond standard navigation state and sensor data. 

The second direction comes from the ontological build up of SAW and SA through the sensor fusion 
community.  This begins with the work of Barwise and later Devlin on the philosophical basis of situation and 
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situation awareness [14-15].   The ontology based SAW [16] was developed as an object orientated data model 
completed with a UML based diagram.  The use of predicate calculus and infons through the use of object orientated 
data development allows for the development of autonomous SA methods to be developed. 

In both of these methods it is assumed that the situation is known a-priori, and that the data that arrives is either 
in or out of the situation.  In the situation-risk assessment (SRA) portion of iSC we make note that an agent’s goals 
specifically create a situation.  Our goal defined situation then uses data infons to determine what data are relevant 
to that user-defined situation.  With this we now look to define what our goals/objectives are.  In this paper we look 
at two sets of goals/objectives.  The first set of goals is for maintaining an asset that is already in orbit: 

1) Do not collide with anything 
2) Maintain our orbital parameters 
3) Use the lowest amount of energy (fuel) 

The second set of goals is for placing an object in low earth orbit: 
1) Do not collide with anything 
2) Provide our object with the correct orbital parameters 
3) Use the lowest amount of energy (fuel) 

We note that these are similar, but the subtle differences in our goals/objectives make for different results as we 
will see later.  In this work we specifically make use of the model based SA method that defines the entities and the 
relationships between those entities.  By doing this we can set up a systematic process to identify what is happening 
to our situation and to make decisions to achieve those goals/objectives that we have set forth.  The basic 
computational loop is shown in Fig. 2, below. 

 

 
Fig. 2 Comparison of traditional guidance, navigation, and control to situation assessment. 

IV. Risk Analysis 
The definition of risk is more nuanced than the definition of a situation.  Like the word “situation”, the word 

“risk” is commonly understood when used in casual conversation.  However, for us to appropriately use the concept, 
we must define clearly what is meant by risk as different industries and individuals have differing definitions of the 
word.  For our purposes risk is the probability that events in our future situation will cause us to not be able to 
achieve our goals or objectives.  The cause of that risk is defined to be a threat. 

To identify what a threat is we need to go back to our definition of a situation.  If an object, entity, or agent is a 
part of a situation (that is defined by our goals/objectives), and it has the potential to act contrary to those 
goals/objectives it is a threat.  By projecting the states of those threats into the future through some model 
(cognitive, mathematical, or otherwise), we can determine the likelihood that the threat will cause harm to our goal. 

This is generally how humans assess the world around us, however, in this formalized method, we can use this 
method to control our own system to minimize our risk.  To do this we employ a method that was described in [17] 
of using a Poisson process with the miss timing differential denoting the arrival time to obtain the probability of an 
incident. 
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A. Collision Risk Calculation 
We start by assuming we know the positions of each of the objects within the situation (for this problem the 

objects within LEO) with a high degree of accuracy.  Such that we can calculate the positions of the objects out to a 
few days ahead in time.  Errors in the current (t=0) navigation state are currently outside the scope of this work.  For 
each debris cluster, we determine either from the orbital parameters or the objects’ ephemeris table, two values.  The 
first is the current distance between “us” and the other object, d(t).  Notice this is a function of time and thus will 
change from t=0 until tf (defined later). 

The second value is the minimum time difference at the closest orbital distance, δt.  Meaning that one object will 
be at the point where the orbits are closest at some time, t1.  The other object will then be at the point in that object’s 
orbit of closest orbit distance at some time, t2.  The difference between t1 and t2 is δt, and is defined in Eq. (1).  We 
must be clear to note that the value of δt assumes a specific trajectory with a specified set of control inputs that we 
provide. 

 δt = t1 − t2  (1) 

Like was used in [10], we define two risk components.  We look at the risk that comes from the theater itself.  
This is the component that uses the current distance between the two objects.  We then use this in a Poisson 
distribution simulating arrival times.  This distance is then scaled by a critical distance parameter, DCR.  This value is 
specific to us.  Typically this value would be filtered from some training data to scale the risk.  This component of 
the risk is given in Eq. (2), below.  

 Pt t( ) = e
−
d t( )
DCR  (2) 

The second of the collision risk component is the geometric component.  This is also a Poisson arrival 
distribution shown in  Eq. (3).  Like in the theater risk component we need to scale the value δt by a scale factor; this 
is denoted by Sf.  We note that while Eq. (2) is a function of time, Eq. (3) is not.  Since the value δt is the minimum 
time difference between t=0 and tf it is independent of time, and is only a function of a given trajectory. 

 Pg = e
−
δt
S f  (3) 

The value Sf is mostly analytically derived.  We assume that at some specified minimum safe distance our risk 
tolerance is 95%.  So we can derive the value of Sf through the use of this through Eq. (4).  In Eq. (4), dmin is the 
minimum safe distance, and V|min-d is our orbital speed at the time of closest approach. 

 S f = −
dmin

ln 0.95( )V min−d

 (4) 

With this we can now calculate what the collision risk is.  We notice that regardless of the orbital miss distance, 
if we have a 100% theater based risk the distance is 0 and thus our total collision risk is by definition 100%.  
Similarly, if we have a 100% geometric risk but we are “far” away from the object our risk is only the current 
distance from the object.  This is similar to a logical AND function.  Thus our total risk can be calculated by Eq. (5).  

 PX t( ) = Pt t( ) Pg + 1− Pg( )Pt t( )( )  (5) 

The topology for Eq. (5) can be found in Fig. 3, below.  Note that this satisfies how we need the collision 
components to be combined to provide a logical risk assessment.   
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Fig. 3  Collision function risk components 

With Eq. (1) – Eq. (5) we have a way to categorize the risk of us colliding with another object.  How then do we 
determine what our risk is for an entire set of objects?  We first note that on any given trajectory we can collide with 
one object, or we can collide with many objects, so collisions are not independent events.  However, missing all the 
objects requires us to calculate the chance to miss one then another object and these are independent probabilities.  
With this in mind we can calculate the chance to collide with any object by using Eq. (6).  In Eq. (6), the value, PXi, 
is the probability that we will collide with object i.   

 PX t( ) =1− Pmiss t( ) =1− 1− PXi t( )( )
i=1

n

∏  (6) 

B. Energy Risk 
We wish to use the least amount of energy for both our launch and in-orbit station-keeping operations.  For the 

launch problem. we assume that the amount of launch energy is set and the final system orbit is determined to be the 
optimum orbit for the mission success.  However, in the in-orbit debris avoidance problem, we look at the risk of the 
energy usage. 

For the determination of this risk, we assume that we have a system specified maximum Δv budget.  Any use of 
propellant is a risk to the objective of minimal energy expenditure.  We initially assume we have a maximum of 450 
m/s to spend on our fuel budget for debris avoidance.  So the calculation of the fuel risk is given in Eq. (7).  

 Rfuel =
Δv2

Δvmax
2

 (7) 

C. Combining Two Risk Components 
Returning to the definition of risk, we notice that it is the probability that a goal or objective of ours will not be 

met; meaning that if we fail on any of our goals or objectives we have failed in our intent.  We can then use this to 
determine what our overall system risk is.  Much like in Eq. (6), where we combined the miss probabilities, we do 
that with the individual risks. 

We combine the risks in Eq. (8), where m is the number of risks/objectives that we have.  Equation 8 shows us 
the total risk at a given time.  It is not the entire risk along a given trajectory, but is an instantaneous value of risk. 

 Risk t( ) =1− 1− Rj t( )( )
j=1

m

∏  (8) 

D. Total Trajectory Risk 
Up until now, we have looked at the risk of our object at a specific time.  However, for us to compare different 

trajectories we must see what the changes occur given guidance decisions.  How should we compute the entirety of 
our trajectory?  We start by employing a standard technique in financial computations by looking at the present 

10
1

0.2

0.8

0.4

0.8

Px

0.6

0.6

Pg

0.6

Pt

0.8

0.40.4

1

0.20.2
00



6 
 

value of “something” and comparing that to the future value of “something”.  This is done through the future 
valuation and some discount rate, r.  This is shown in Eq. (9).  This standard equation says that some value in the 
future is worth less to us now.  Similarly, value that we hold currently will be worth more to us in the future through 
the use of interest. 

 PV = FVe−rt  (9) 

We take this concept and use the future value of risk.  The present value of an instantaneous risk is worth less to 
us the further that system state is out from us.  Equation (10) shows this.  We use the prime on the risk to denote that 
this is an instantaneous value.  

 ʹR = Risk t( )e−rt  (10) 

Our discount rate, r, is set by arbitrarily saying that at our final projection time, tf, the value of that state is 1% of 
the value of our current risk state.  This is given in Eq. (11).  

 r = −
ln 0.01( )
t f

 (11) 

Returning to Eq. (9), is should be obvious that we will then integrate this risk value along some trajectory to get 
our entire system trajectory.  This is done in Eq. (12).  The coefficient outside the integral ensures that the risk along 
the entire trajectory’s maximum value is 1.  

 R!u =
r

1− e−rt f
e−rτRisk τ ,

!u( )dτ
τ=0

t f

∫  (12) 

E. Decision Making Loop 
Now that we have a method to analyze a specific trajectory we create a system that uses risk and is consistent 

with the use of SA as discussed earlier.  At this point, there are a few options available to us, the first is to minimize 
the value of Ru by utilizing a gradient based or some other formalized optimization based approach.  We can also 
minimize Ru by enumerating the potential decisions for u and then selecting the lowest value of Ru.  Finally, we have 
the ability to utilize data driven pattern recognition to determine the best risk assessment.  This final piece is 
currently being developed and worked on as a part of the iSC system. 

With this we can now see how the entire loop works. Our system receives infons from the theater that are 
interpreted through our situation definition.  These infons are converted to data through our sensors.  That then 
begins our situation assessment loop.  This system loop is shown in Fig. 4, below. 
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Fig. 4 Risk assessment decision loop 

As was alluded to in Fig. 2, this loop is similar to the traditional GN&C loop.  However, there are some subtle 
differences.  The first is that there are no implicit constraints.  Any constraint that exists is only seen as a risk to a 
goal/objective and therefore becomes intrinsic to the situation itself.  The second is that by removing implicit 
constraints the system can adapt to be more concerned about one risk vs. another risk by the evolution of the 
situation alone; we do not need to develop specific logic to adapt the objective if there is a conflict.  Third, by using 
infon based data we have the potential to make decisions that are outside traditional sensor data, thus allowing for 
more data based modeling and decision-making. 

V. Results 
For this analysis, we are using basic two-body orbital mechanic properties [18] for simplicity of calculation.  It 

must be noted, however, that while a more advanced calculation method would change the simulation values, the 
methodology itself is independent of the orbital mechanics used.  The simple mechanics here can be substituted for 
more accurate dynamics with no loss of generality. 

To illustrate the methodology the simulation was run using 1,500 debris cluster objects randomly placed in low 
earth orbit.  The variation used is listed in Table 1, below.  The values for the eccentricity were taken from a study 
of debris in geosynchronous orbit [21]. 

Table 1 Minimum and maximum orbital parameters 

 
The positions of the objects are shown in Fig. 5, below.  This debris field, while randomly generated, is used for 

both the launch analysis and the on orbit maneuver analysis. 

situation	/	
theater	

Sensors	 Situation	Analysis	 Decision	Analysis	

objective	 plan	

defines	

sensed	

perceived	

risk	
value	

control	commands	

Orbit Parameter Minimum Maximum
a (km) 6820 7970

e 0 0.3
i (deg) 0 90
Ω (deg) -180 180
ω (deg) -180 180
Eo (deg) -180 180
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Fig. 5 Initial debris distribution for orbital and launch analysis 

A. Launch analysis 
For our launch scenario, we assume that we are using an Atlas V launching from Kennedy Space Center.  The 

trajectory determination is set to achieve a delivery to the ISS.  The mechanics used to determine the launch 
trajectory were determined using a simplified mechanic system as described in [22].  Once again, it is important to 
note that while the particular results shown here would change with different dynamics and simulators, the 
methodology itself is independent of the dynamics used. 

We are determining the lowest risk launch.  As was discussed in section III, we have only two goals, the first is 
to not collide with anything, and the second is to hit our launch window.  For this, we assume a 45 min launch 
window (chosen arbitrarily) with a launch window risk shown in Fig. 6, below. 

 
Fig. 6 Launch window risk curve 

The collision risk was then run using the methodology presented above.  Each launch time was looked at in 5 
min intervals for a total of 45 min.  The results of the launch trajectories’ risk values are shown in Fig. 7, below.  
This plot shows that delaying the launch will drop the risk of collision.  Also it should be noted that this plot shows 
the instantaneous risk during the launch of colliding with in orbit debris.   
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Fig. 7 Launch trajectory instantaneous collision risk 

To determine the risk of the entire trajectory we use the method shown in Section IV-D.  With this we get the 
results in Table 2. 

Table 2 Total launch trajectory risk with delay risk 

 
On this set of risks and goals alone it would be recommended to delay the launch by 10 min for a more favorable 

debris field pattern. 

B. In orbit collision risk 
This method can also be used for determining the risk of a given orbit given the debris field in orbit.  To do this 

we first look at what the risk of our current orbit is.  With no loss of generality, we use the same random debris field 
described above.  We then place “us” in a nearly circular orbit (e=0.001) in the middle of the LEO orbit band 
(a=7400 km) at an inclination of 63.4°.  The result of this over a 2 day orbital period gives us the risk plot shown in 
Fig. 8.  The associated integrated collision risk is 8.96%.   

Launch	Delay	
(min)

Trajectory	
Collision	Risk

Launch	
Window	Risk

Total	
Trajectory	Risk

0 10.57% 0.00% 10.57%
5 15.55% 1.23% 16.59%
10 3.91% 4.94% 8.65%
15 2.12% 11.11% 12.99%
20 1.17% 19.75% 20.69%
25 1.46% 30.86% 31.88%
30 0.78% 44.44% 44.88%
35 0.57% 60.49% 60.72%
40 0.58% 79.01% 79.13%
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Fig. 8 Unmodified instantaneous collision risk over time 

We assume that currently the integrated risk and the maximum absolute risk is currently too high.  So we will 
now look at the effect of changing our orbit to minimize the overall risk.  While we could investigate the effect of 
performing a 3-d velocity maneuver, we restrict the maneuver to be a change of inclination.  This is done for 
visualization purposes only, but, like before, the methodology is easily generalizable to any type of proposed 
maneuver.  When we do this we come up with the results shown in Table 3, below. 

Table 3 Trajectory change risk results 

 
In Table 3 the 0°, inclination change is the results that were shown initially.  As we look at changing the 

inclination, the risk changes and we can lower the maximum collision risk for the next 48 hours by decreasing the 
inclination by 2.5°.  However, the lowest integrated collision risk would occur when we increase the inclination by 
10°.  When we look at the risk to us changing our orbit (we have assumed that we chose that orbit for mission 
success) the lowest risk would occur when we do not perform any maneuver.  However, if we wanted to lower the 
maximum risk and included the cost of the maneuver we would choose to decrease the inclination by the 2.5°, as 
discussed above.  The risk trajectory for this decrease is shown in Fig. 9. 

Δ-inc	(deg) Δv	(km/s)
Trajectory	

Collision	Risk
Maximum	

Collision	Risk
Maneuver	

Risk
Total	Trajectory	

Risk
Total	Maximum	

Risk
-10.0 0.330 8.54% 75.97% 53.73% 57.68% 88.88%
-7.5 0.248 8.60% 86.15% 30.26% 36.26% 90.34%
-5.0 0.165 8.74% 89.55% 13.46% 21.02% 90.96%
-2.5 0.083 8.40% 76.97% 3.37% 11.48% 77.74%
0.0 0.000 8.11% 78.28% 0.00% 8.11% 78.28%
2.5 0.083 8.19% 79.49% 3.37% 11.28% 80.18%
5.0 0.165 8.64% 78.35% 13.46% 20.93% 81.26%
7.5 0.248 8.05% 78.65% 30.26% 35.87% 85.11%
10.0 0.330 8.00% 88.69% 53.73% 57.43% 94.76%
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Fig. 9 Minimized maximum instantaneous risk orbit 

VI. Conclusion 
The iSC methodology is able to look at all different types of problems where decisions are made in dynamic 

systems with uncertainty.  This paper shows the methodology is appropriate for multiple scenarios.  However, the 
key is that we go in with no prior assumption of how the system will behave.  We only look at the data and only use 
the known physics to act as a constraint to infer what the data are saying. 

Future work in the area will occur in two areas.  The first is in adding more uncertainty to the data and using that 
uncertainty in both the dynamic model itself, and also in the navigation errors.  These errors can be incorporated to 
the final decision by acting as a weighting on both our state and the state of the other objects’ in the situation. 

Second, by developing data driven decision-making we can utilize pattern recognition systems and machine 
learning to characterize the risk much more efficiently.  Also using these methods will allow us to access more and 
broader databases to determine the best course of action. 
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