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ABSTRACT 
In this paper, a deep reinforcement learning approach was 

implemented to achieve autonomous collision avoidance. A 
transfer reinforcement learning approach (TRL) was proposed 
by introducing two concepts: transfer belief – how much 
confidence the agent puts in the expert’s experience, and transfer 
period – how long the agent’s decision is influenced by the 
expert’s experience. Various case studies have been conducted 
on transfer from a simple task – single static obstacle, to a 
complex task – multiple dynamic obstacles. It is found that if two 
tasks have low similarity, it is better to decrease initial transfer 
belief and keep a relatively longer transfer period, in order to 
reduce negative transfer and boost learning. Student agent’s 
learning variance grows significantly if using too short transfer 
period. 

Keywords: Deep reinforcement learning, transfer learning, 
collision avoidance, task complexity, inter-task similarity 

1 INTRODUCTION 
Collision avoidance has been widely studied and researched 

in many industrial fields over the years, and is a crucial 
component for building self-driving systems. In the area of 
robotics, research has been focused on issues related to how 
vehicle robots avoid obstacles as well as each other (Brunn, 
1996; Alonso-Mora, 2013; Shiomi et al, 2014) and how 
assembly robots, or manipulators, avoid interferences among its 
own arms or with those of others (Hourtash et al, 2016; Hameed 
& Hasan, 2014). Another major field where collision avoidance 
represents a major problem is transportation. Self-driving cars 
must be able to avoid obstacles and other vehicles in various 

situations (Mukhtar et al, 2015). In the shipping industry, 
collision avoidance can be highly difficult, when the water areas 
are becoming congested, due to the large inertia of ships causing 
immovability when movement is needed (Goerlandt & Kujala, 
2014). Once a collision happens at sea, the loss can be 
tremendous (Eleftheria et al, 2016).  Airplane collision 
avoidance (Zou, 2016) and even the collision with debris in 
space (Casanova et al, 2014) have become issues due to the 
increasing level of congestion. 

Different approaches have been proposed to solve collision 
avoidance problems, which can be divided into two large 
categories, one is vehicle control system development and the 
other traffic system development. Vehicle control can be further 
categorized into the dynamical systems approach (e.g., Machado 
et al, 2016), which relies on traditional control theories, and the 
intelligent systems approach (e.g., Yang et al, 2017), which 
applies knowledge systems and machine learning techniques. 
While the dynamical systems approach can be effectively 
applied in mostly predictable circumstances, when the 
uncertainty level becomes high and exceptions happen, the 
intelligent systems approach will be needed. Traditional 
knowledge based systems have been applied to collision 
avoidance (Jin and Koyama, 1987). However, the issues of 
knowledge acquisition, formalization and management have 
remained to be practically challenging.  

Traditional collision avoidance algorithms will suffer when 
the environment can be quite dynamic, with random obstacle and 
other vehicles moving at a random speed. It is necessary to build 
a system that can efficiently learn from its own mistake and past 
experience. The recent progress in machine learning, especially 
deep learning (LeCun et al, 2015), has opened the ways to 
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developing systems that can learn from humans’ operation 
experiences (e.g., through supervised deep learning) and from 
machines’ own experiences (e.g., through reinforcement 
learning). The reinforcement learning approach allows an agent 
to learn from its past experience. By interacting with the 
environment, the agent learns to select actions at any state to 
maximize the total reward. In case of deep learning, e.g., Alpha-
Go (Chen, 2016), the agent learns from the experience of human 
experts and apply the learned skills to solving the problems in 
the same domain of the experts. 

One common observation about the current deep learning 
systems, including AlphaGo, is that they can only function well 
within the narrow domain of the tasks that they are trained to 
work for. This observation manifests the limited level of 
“intelligence” of the current systems.  

In his seminal paper, March (1991) examined the 
organizational learning in humans and presented various features 
of, and relationships between, the essences of human 
organization learning: exploration of new possibilities and 
exploitation of old certainties. Allocating resources to these two 
capabilities represents the adaptiveness of the human 
organization. Based on this insight, a machine’s intelligence can 
be considered as composed of the machine’s capabilities of 
exploration, exploitation, and its ability to regulate the 
“resource” allocation between the two. This basic idea has been 
implemented in our research at two different layers. First, the 
reinforcement learning itself is based on the exploration-
exploitation of the learned knowledge (i.e., a learner’s current 
neural network) and the random choices. Second, the transfer 
learning allows the agent to exploit the previously learned 
experience (i.e., an expert’s neural network obtained from the 
previous task context) and explore the new task context through 
learning and exploration. The long-term goal of this research is 
to develop an integrated transfer reinforcement learning 
technique that allows agents to learn from multiple task domains 
and exploit the learned knowledge in new task contexts for more 
effective learning and better task performance.  

In this paper we focus on the robotic collision avoidance 
problem and investigate how transfer learning (Pan and Yang, 
2010), in addition combined with deep reinforcement learning, 
can be applied to allow agents to exploit and explore in a much 
more complex task context. The rest of the paper is organized as 
follows. Section 2 provides a critical review of the relevant work 
in the areas of collision avoidance and machine learning and 
points out the gap in the literature. In Section 3, our proposed 
approach of transfer reinforcement learning is described in 
detail. Computational simulation based case studies are 
presented in Section 4 with the results being discussed in Section 
5. Section 6 draws the conclusions and points to future research 
directions. 

2 RELATED WORK 
Collision avoidance problems have always attracted the 

attention of researchers in various fields: artificial intelligence, 
control theory, robotics, multi-agent system, etc. The traditional 

practice to achieve real-time obstacle avoidance was to create an 
artificial potential field (Khatib, 1986). Fahimi (2008) proposed 
harmonic potential functions and the panel method to address 
multi-robot obstacle avoidance problem in the presence of both 
static and dynamic obstacles. Mastellone et al. (2008) designed 
a controller for collision avoidance based on Lyapunov-type 
approach, and demonstrated the robustness of the system when 
the communication between robots was unreliable. Keller et al. 
(2016) designed a path planner for unmanned aircraft systems to 
provide surveillance by combining graph search and B-spline 
parametric curve construction, which could successfully 
navigate around obstacles and provide sufficient coverage. Tang 
and Kumar (2018) proposed the OMP+CHOP algorithm for a 
centralized multi-robot system, which was shown to be safe and 
complete, but at the cost of optimality.   

In order for collision avoidance algorithms to be more 
adaptive and flexible in real world complex environment, 
learning capabilities of a multi-agent system have been 
developed. In recent years, deep learning has achieved 
tremendous success in various areas such as image recognition 
(Krizhevsky et al., 2012; Le et al., 2012), speech recognition 
(Hinton et al., 2012), automatic game playing (Mnih et al., 2013), 
self-driving (Bojarski et al., 2016) and so on. Deep learning 
algorithms can extract high-level features by utilizing deep 
neural networks, such as convolutional neural networks (CNNs) 
(Krizhevsky et al., 2012), multi-layer perceptrons and recurrent 
neural networks (RNNs) (LeCun, 2015). Scaling up deep 
learning algorithms is able to discover high-level features in a 
complex task. Dean et al. (2012) constructed a very large system 
which was able to train 1 billion parameters using 16000 CPU 
cores. Coates et al. (2013) scaled to networks with over 11 billion 
parameters using a cluster of GPU servers.  

Minh et al. (2013) introduced deep learning algorithm using 
experience replay and CNNs to learn a Q function, which is able 
to play various Atari 2600 games better than human players. 
Experience replay allows an online learning agent to random 
sample batches from past experiences to update Q values, thus 
breaking the correlations between consecutive frames. By 
combining supervised learning and reinforcement learning 
approach, the group at Google DeepMind has further proven that 
their deep learning algorithm can outperform a world champion 
in the most challenging classic game Go (Silver et. al., 2016), 
which has extremely large number of possible configurations, 
and is difficult to evaluate board positions. Schaul et al. (2016) 
further developed a prioritized experience replay framework to 
sample more important transitions and learn more efficiently.  

Chen (2016) developed a decentralized multi-agent collision 
avoidance algorithm based on deep reinforcement learning. Two 
agents were simulated to navigate toward their own goal 
positions and learn a value network which encodes the expected 
time to goal, and the solution was then generalized in multi-agent 
scenarios. Deep learning algorithms have been successful in 
achieving end-to-end learning. Dieleman and Schrauwen (2014) 
investigated whether it is possible to apply feature learning 
directly to raw audio signals by training convolutional neural 
networks. Traditionally content-based music information 
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retrieval tasks are resolved based on engineered features and 
shallow processing architectures, which relies on mid-level 
representations of music audio, e.g. spectrograms. The results 
showed that even though the end-to-end learning does not 
outperform the spectrogram-based approach, the system is able 
to learn automatically frequency decompositions and feature 
representations from raw audio. 

Self-driving is a promising field which took off in the last 
few years and heavily relies on the advances in deep learning. 
Since self-driving cars always require a great deal of expensive 
and complex hardware, Yu et al. (2016) implemented a deep Q-
learning algorithm using dataset (images) from real-time play of 
the game JavaScript Racer. In a recent published paper (Bojarski 
et al., 2016), a convolutional neural network is trained to map 
steering commands directly from raw pixels from camera input. 
The system automatically learned internal processing steps such 
as detecting useful road features with only the human steering 
angle as the training signal. This end-to-end learning approach is 
challenging in that it requires huge number of inputs and the 
advantage is that it releases the rely on the designer’s prior 
domain knowledge. 

Given a complicated task which is difficult to learn directly, 
transfer learning is a commonly used technique which can 
generalize previously learned experience and apply these 
experience into new tasks. Transfer learning refers to utilizing 
knowledge gained from source tasks to solve a target task. It is 
believed that in a reinforcement learning context, transfer 
learning can speed up the learning agent to learn a new but 
related task (i.e., target task) by learning source tasks first. Tayler 
and Stone (2007) introduced a transfer algorithm called Rule 
Transfer, which summarizes source task policy, modifies the 
decision list and generates a policy for the target task. Rule 
learning is well understood and human readable. The agent 
benefits from the decision list initially, and continues to refine its 
policy through target task training. It was shown that Rule 
Transfer could significantly improve learning in robot soccer 
using learned policy from a grid-world task.  

Fernandez and Veloso (2006) proposed two algorithms to 
address the challenges of Policy Reuse in a reinforcement 
learning agent. The major components include an exploration 
strategy and a similarity function to estimate the similarity 
between past policies and new ones. Torrey (2006) introduced 
induction logic programming for analyzing previous experience 
of source task, and transferred rules for when to take actions. 
Through an advice-taking algorithm, the target task learner could 
benefit from outside imperfect guidance. A system AI2 (Advice 
via Induction and Instruction) for transfer learning in 
reinforcement learning was built, which creates relational 
transfer advice using inductive logic programming. Based on a 
human-provided mapping from source tasks to target tasks, the 
system was able to speed up reinforcement learning.  

When utilizing deep neural networks in transfer learning, a 
base network on a base dataset is first trained on a source task, 
and the learned features are then transferred to the target network 
to be trained on a target dataset and task. If the size of target 
dataset is much smaller than source dataset, transfer learning is 

always beneficial to train a large target network. One common 
practice is to copy the first n layers of the base network to the 
first n layers of the target network while the remaining layers of 
the target network are randomly initialized and trained. Yosinski 
(2014) presented a way to determine whether a certain layer is 
general or specific. It was found that initializing a network with 
transferred features from almost any layers could boost the 
performance after fine-tuning to a new dataset. Dint et al. (2016) 
proposed a task-driven deep transfer learning framework for 
image classification, where the features and classifiers are 
obtained at the same time. Through pseudo labels for target 
domain, the system could transfer more discriminative 
information to the target domain. Parisotto et al. (2016) proposed 
a transfer reinforcement learning approach (Actor-Mimic) with 
two objectives – a policy regression objective and feature 
regression objective – to train a single policy network based on 
the insights of several experts, in order to mimic expert decisions 
for multi-task learning, which adopts the concept of policy 
distillation (Hinton et al, 2015). This approach has been tested to 
be successful in learning multiple Atari games. 

Liu and Jin (2018) proposed a transfer reinforcement 
learning approach for autonomous collision avoidance where 
only static cases with high task-similarity were considered, and 
showed that transfer learning could boost learning as well as 
bring variance to the student learning process. To date there has 
been little literature aiming to combine deep reinforcement 
learning and transfer learning to solve robotic collision 
avoidance problems, because a) it is difficult to directly learn 
from raw pixel or distance sensory inputs, and b) it requires large 
amount of training data, which is not easy to generate in real life, 
c) the reward function is difficult to design. This research aims 
to close the gap between real world collision avoidance and deep 
learning by studying transfer reinforcement learning at a low 
inter-task similarity and developing transfer strategies 
accordingly. 

3 TRL APPROACH 
3.1 Deep reinforcement learning 

Q-learning algorithm is a popular off-policy algorithm of 
reinforcement learning (RL), which assigns a value for each 
state-action pair and perform updates based on Bellman equation 
at iteration i (here , , ,s a r sʹ denote the current state, action, 
immediate reward, and next state, respectively): 

 

          1( , ) max ( , ) ,i ia
Q s a r Q s a s aγ+ ʹ

⎡ ⎤ʹ ʹ= +
⎣ ⎦

E      (1) 

 
We first start by summarizing the deep reinforcement 

learning (DRL) algorithm (Minh et al, 2013), which was 
originally applied to play Atari games. For an infinitely large 
state space such as a game window (a big array of pixel values), 
it is impossible to build a lookup Q-table and learn an optimal 
value for each state-action pair. DRL uses deep neural network 
as function approximator to approximate Q values. A Q-network 
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with weights iθ  can be trained by minimizing the loss function 
at each iteration i, 

 

          2( ) ( ( , ; )i i i iL y Q s aθ θ⎡ ⎤= −⎣ ⎦E          (2)       

 
where 

1max ( , ; )i ia
y r Q s aγ θ −ʹ

⎡ ⎤ʹ ʹ= +
⎣ ⎦

E  (3) is the target signal 

for iteration i. The gradient is calculated by the following: 
 

( ), , , ' 1( ) max ( , ; ) ( , ; ) ( , ; )
i ii i s a r s i i ia
L r Q s a Q s a Q s aθ θθ γ θ θ θ−ʹ

⎡ ⎤ʹ ʹ∇ = + − ∇⎢ ⎥⎣ ⎦
E  

                                              (4) 
 

Various approaches have been proposed to stabilize and 
boost the learning process. Our neural network is built based 
upon the following three approaches: 

• Experience replay (Minh et al, 2013) 
The agents’ experiences, 1( , , , )t t t t te s a r s += , are stored into 

a replay memory, 
1 2, ,..., ND e e e=  (N is the capacity of the 

replay memory). Then mini-batches are randomly sampled from 
D and applied to Q-learning updates. The agent selects an action 
according to the ε -greedy policy. Experience replay increases 
data efficiency and breaks down the correlations between 
consecutive samples. 

• Double DQN (van Hasselt et al., 2015) 
The double DQN algorithm is able to solve the problem of 

overoptimistic value estimates, by separating the target network 
which is used for action evaluation, from the current network 
which is used for action selection. The agent’s experience, is 
randomly assigned to update one of the two networks.  

• Dueling DQN (Wang et al., 2016b) 
In standard DQN, at each update of the Q values, only the 

value for one of the actions is updated whereas others remain 
untouched. Dueling DQN separates the Q value into a state value 
and action advantages, so that the state value is updated more 
frequently. Dueling network is useful to learn which states are or 
are not valuable, without having to explore each action for each 
state. 

3.2 Transfer reinforcement learning 
An expert network is obtained by training through a source 

task. The traditional can be expressed as: with probabilityε of 
exploration and probability 1 - ε of exploitation, ε is often 
linearly decreasing through the learning process:  

 

               0
explr

(1 )t
T

ε ε= −                 (5) 

where explrT  is the total exploration period during which ε is 

annealed to its minimum value. 

In order to efficiently balance exploration and exploitation 
in the target task, a new transfer phase is added to the ε -greedy 
policy, which involves two crucial concepts: transfer belief and 
transfer period.  
• Transfer belief β: how much confidence the agent puts in 

expert experience. More mathematically, transfer belief 
measures the probability of the agent picking transfer action 
suggested by the expert network.  

• Transfer period Γ: how long the agent decision is influenced 
by expert network. After the transfer period, the agent will 
explore the environment based on its own using traditional 
ε -greedy policy. Transfer belief is linearly decreasing over 
the transfer period:  

              0 (1 ), for

0, for

t t

t

β
β

⎧ − ≤ Γ⎪
= Γ⎨
⎪ > Γ⎩

          (6) 

Then, the new Tε - greedy policy is as following (see 
Figure 3.1): 

 
(a) Transfer: With probability 1p β= , pick the transfer action. 

The transfer action is defined as one of the three actions with 
the top three values of the expert network. 

(b) Exploration: With probability 2 (1 )p ε β= − , pick a 
random action. 

(c) Exploitation: With probability 3 (1 )(1 )p ε β= − − , pick the 
best action calculated by the agent’s current network. 
 

 
Figure 3.1: Tε - greedy policy. 

 

3.3 Agent learning behavior 
A video game was created in Pygame to conduct case studies 

of transfer reinforcement learning on collision avoidance. The 
game environment consists a RL agent (green), obstacle and 
boundary walls (red), and goal area (orange), as shown in Figure 
3.2. 
• The state is defined as the pixel values of the game window. 

Figure 3.2 shows an example. 
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• The action space is composed of seven actions with different 
combinations of linear and angular velocity, a1 through a7, 
as indicated in Table 1.  

• The reward function is defined as: 
 

200 if reach goalposition
900  if hit anyobstacle
1   otherwise

r
⎧
⎪

= −⎨
⎪−⎩

 

 

 
Figure 3.2: Game environment 

Fig. 3.3 illustrates the proposed transfer reinforcement 
learning process. An expert network Ne is first obtained by 
training through the source task, which involves a single 
obstacle. In the target task, the learning agent (the student) 

follows Tε - greedy policy to select actions with probabilities 
p1, p2, and p3 as described in Subsection 3.2. After receiving a 
reward rt from the environment, the agent stores the current 
experience et into the experience replay memory. The online 
network Nc is then updated by sampling mini-batches from the 
experience replay, as shown in Fig. 3.3. 

Table 3.1 Agent actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.4 Task complexity and similarity 
In our previous work (Liu and Jin, 2018), we investigated 

transfer reinforcement learning between two similar tasks, i.e. 
from single static source task (Task A) to multiple static target 
task (Task B). There are several factors that contribute to the 

Action v  ω  

1a  5 0.35 

2a  5 0.2 

3a  5 0.1 

4a  10 0 

5a  5 -0.1 

6a  5 -0.2 

7a  5 -0.35 

Ne 

Figure 3.3: Agent learning behavior 

 

Nc 
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overall complexity of each task (Table 3.2). For example, in the 
static case, the task complexity is determined by the shape and 
size of the obstacle, and possible locations of the obstacle. In the 
dynamic case where obstacles are moving, the obstacle speed 
may be constant, or changing over time bounded by obstacle’s 
acceleration, which makes the environment much more complex.  
Tasks with similar complexity levels are believed to have higher 
similarity, whereas more difference on complexity levels makes 
the inter-task similarity lower. Our previous work on transferring 
from Task A to Task B is believed to have high inter-task 
similarity. In this research, we focus on transferring Task A to 
Task D, which has lower inter-task similarity comparatively. 
Even though Task D is the most complex among all task types, 
we keep the obstacle speed as constant for now to make it simpler 
and easier for agents to learn.  

Table 3.2: Task complexity 

 
 

Static Dynamic (Moving) 

• Shape/size 
• Location 
• … 

• Speed 
• … 

Si
ng

le
 

Task A 
Low complexity 

Task C 
Medium complexity 

M
ul

tip
le

 

Task B 
Medium complexity 

Task D 
High complexity 

 

4 CASE STUDIES 
The objective of our case study is to test whether the optimal 

transfer belief / period from our previous work still works well 
in target tasks with lower similarity. If not, how to choose 
transfer belief and transfer period in the new task setting? 

Two task situations are used for the case studies, namely 
“Source task – one static obstacle” and “Target task – two 
dynamic obstacles”, as shown in Fig. 4.1. The obstacle is the 
same size as the agent. In the source task, at the beginning of 
each episode (game play), a random obstacle is generated within 
the dashed rectangle. In the target task, the obstacles are moving 
at a constant speed (20 pixels/time-step). 

4.1 Choice of hyperparameters 
The network structure is the same as the original DQN paper 

(Minh et al, 2013) with 84*84-pixel input and an output of 7 
actions. The case studies were trained using Adam optimizer 
with a learning rate of 0.001. The discount factor γ  is 0.99. In 
the source task the agent follows ε - greedy policy and in the 
target task the agent follows Tε - greedy policy, with the 
exploration rate ε annealed from 1.0 to 0.1 over the first 1 
million frames (1 frame = 1 state). The replay memory consists 

of 50, 000 most recent frames, and 50, 000 episodes were trained 
in total, (1 episode = from starting position to ending position). 
The initial transfer belief is chosen to be 0.9 or 0.5. The transfer 
period could be the first 300k or 700k frames. The choice of 
hyperparameters is summarized in Table 4.1. 
 

 
Figure 4.1: Source task (left): one static obstacle; Target 

task (right): two moving obstacles 
 

Table 4.1 Case parameters 

 Source task Target task 

Replay memory size 50,000 50,000 
Mini-batch size 32 32 
Discount factor 0.99 0.99 
Learning rate α  0.001 0.001 

Total training episodes 50,000 50,000 
ε  1à 0.1 1à 0.1 
Annealing frames 1 million 1 million 
Transfer period (frames) N/A 300k/700k 
Initial transfer belief N/A 0.5/0.9 

 

5 RESULTS AND DISCUSSION 
Each case result is obtained by running with 8 different 

random seeds (the shaded area in Figure 5.1, 5.2, and 5.3. The 
horizontal axis is the number of training episodes, and vertical 
axis represents the average reward). The darker line shows the 
average of these 8 runs. In each of these cases, the network is 
first initialized with the pre-trained weights from the source task. 
The baseline (green) is constructed by the agent exploring the 
environment using only ε -greedy policy. 

Figure 5.1 shows the performance of β0 = 0.9 and Γ = 700k 
(orange) compared with the baseline. The choice of β0 = 0.9 and 
Γ = 700k comes from our previous study of transfer from Task A 
to Task B. As can be seen, the jumping start is still obvious due 
to the initial high transfer belief. But overall the boosting effect 
of transfer learning is rather small. The average performance 
almost overlaps with the baseline, which implies that the expert 
experience does not help that much in the new context where 
target task and source task have low similarity.  
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5.1 Decrease transfer period 
The first option is to decrease transfer period Γ, from 700k 

to 300k, while keeping the initial transfer belief β0 (0.9) the same 
(Figure 5.2). During the early stage, the performance is better 
than the baseline. However, after the transfer period, the learning 
variance starts to grow. Though the maximum performance is 
still better than baseline, many students perform worse than the 
baseline. The average performance is slightly higher than 
baseline, but should not be considered as improvement.  

5.2 Decrease transfer belief 
The second option is to decrease initial transfer belief β0, 

from 0.9 to 0.5, which means in the beginning the agent has 50% 
chance of picking transfer action suggested by the expert 
network (this probability is linearly decreasing to 0 until the end 
of transfer period). As is shown in Figure 5.3, the jump-start 
effect is less obvious compared to β0 = 0.9. Additionally, the 
starting variance is higher than β0 = 0.9. However, after the 
transfer period, many students perform much better than the 
baseline. The average performance (red) converges to the 
optimal much earlier than baseline (blue).  

 
Figure 5.1: Performance of β0 = 0.9 and Γ = 700k 

 
Figure 5.2: Performance of β0 = 0.9 and Γ = 300k 

 
Figure 5.3: Performance of β0 = 0.5 and Γ = 700k 

6 CONCLUSIONS AND FUTURE WORK 
In this research, both transfer learning and deep 

reinforcement learning have been adopted to solve the problem 
of collision avoidance. The proposed TRL approach is tested in 
a context where source task and target task share low similarity. 
Based on the case studies, our findings are summarized as 
following: 

• As a designer, we need to carefully choose transfer belief 
and transfer period. Most of the time transfer learning will 
boost learning in a new target task. However, some bad 
choices of transfer belief and transfer period can bring 
negative transfer.  

• One set of transfer belief and transfer period which works 
well in a certain target task might not work as well in another 
target task that has different similarity. In fact, sticking with 
a fixed transfer belief and transfer period is more likely to 
cause negative transfer – either slows down the learning 
process or increases the learning variance.  

• If two tasks have low similarity, it is better to decrease initial 
transfer belief and keep a relatively longer transfer period, 
due to two reasons: first, expert experience from the source 
task does not help the agent as much in the target task; 
second, transfer period being too short makes the learning 
vary a lot among different student networks and many 
students perform even worse than the baseline without 
transfer.  

• Compared with lower initial transfer belief (β0 = 0.5), higher 
initial transfer belief (β0 = 0.9) has more jump-start effect 
and makes the variance rather small during the early stage.  
 
Our ongoing research is to quantitatively measure task 

complexity levels and systematically determine the inter-task 
similarity accordingly. We also plan to design an automated 
mechanism to choose (initial) transfer belief and transfer period 
given different inter-task similarity.   
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