
 1 Copyright © 2018 by ASME

Proceedings of the ASME 2018 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE 2018
Aug 26-29, 2018, Quebec City Convention Center, Quebec City, Canada

DETC2018-86006

MODELING TRUST IN SELF-ORGANIZING SYSTEMS WITH HETEROGENEITY

Hao Ji
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engineering
University of Southern California
Los Angeles, California, 90089

haoji@usc.edu

Yan Jin
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engineering
University of Southern California
Los Angeles, California, 90089

yjin@usc.edu
(*corresponding author)

ABSTRACT
Self-organizing systems (SOS) possess the potential of

performing complex tasks in uncertain situations with
adaptability. Despite the benefits of self-organizing, it is also
subject to the influence of unpredictable behavior of individual
agents and environment noises. In hostile situations for example,
individual performance of self-organizing agents may
deteriorate and this can lead to system malfunction, posing great
challenge for the design of SOS. In this paper, we propose a trust
based model as a design approach to SOS in consideration of the
capability heterogeneity of the agents. A box-pushing task was
presented and studied. Trust is measured using beta probability
distribution, which takes into account both the positive and
negative interactions between the agents. The simulation results
have shown that our trust model ensures favorable interactions
among agents and leads to increased system effectiveness and
conditional system efficiency improvement in comparison to
SOS without using a trust model.

Keywords: trust-based model; complex system, self-organizing
system; heterogeneity.

1 INTRODUCTION
Self-organizing systems consist of elementary agents that

work collaboratively to achieve complex system level behavior
without global knowledge. Design of SOS takes a bottom-up
approach and the system complexity can be reached through
local interaction of agents [1,2]. Complex system design by
using a self-organizing approach has many advantages, such as
increased adaptability, scalability and reliability [3,4]. In

addition, self-organizing systems tend to be more robust to
external changes and more resilient to system damage or partial
malfunction [5-6]. A typical example of self-organizing systems
would be a swarm of robots. In such systems, robots are usually
compact in size, adopt simple interaction rules and are with
limited functionality. Such systems often consist of a large
number of homogenous robots [7]. Collaborative behavior of the
swarm robots emerges and is used to apply to situations such as
unmanned aerial vehicle patrolling, search and rescue,
distributed sensing, traffic control, and box-pushing [5].

In real life, individual agents are not always ideal. Robots
may have different speed and power due to production variance,
wear and tear [8-9]. Products that come from the same
production line may have variations in dimensions. The presence
of heterogeneity within agents adds extra noise and uncertainty
to SOS and causes unexpected or unwanted system behavior,
which is usually outside of control. Thus, SOS design is under
great challenge when the assumption of homogeneity of agents
can not be met in real applications. Therefore, how can we design
a SOS to achieve complex tasks when agents have differences in
competency? How can agents have a better sense of its partner’s
capability and make informed decisions during the self-
organizing process?

In social sciences, social norm is generated through the
interaction of socially active agents and is considered an
agreement made by the members of the society [10]. By
following ‘norm of cooperation’, people are able to avoid
unnecessary conflicts and the average utility among group
members can be increased [10]. Agents who do not obey the
social norm are considered untrustworthy while a good social
norm follower receives higher trust among other agents. SOS can
be considered as a social society where agents follow the same
set of rules and interact with their bounded rationality [11].

 2 Copyright © 2018 by ASME

Agents with different levels of competency react differently to
the social norm and their trustworthiness can be updated by other
agents through observation. When a given agent’s trust level
falls below a trust threshold, it is no longer trusted [12].
Untrusted agents will be weighted less or ignored by other agents
during cooperative tasks. In these cases, trust ensures good
interactions and discourages norm breakers. Thus, it plays a key
role in keeping the social-rule enforced.

Like in the social society, devising a trust based model into
SOS can take into account the uncertainty of the individual
competencies and increase system’s resistance to internal
perturbations or malfunctions. As updating trust is a dynamic
process, it can be considered as a dynamic optimization tool for
SOS.

In the rest of this paper, we first review the relevant work of
SOS and trust based modeling. Next, we present a beta-
probability based trust model in design of complex systems and
show how dynamic trust and distrust can be formed. Then, we
introduce a box-pushing problem and develop a trust based SOS
framework as a solution. The box-pushing case study is
presented and the results analyzed. Finally, conclusions are
drawn from the case study: Trust based SOS model increases
system effectiveness in general; depending on the number of
heterogeneous agents in SOS, system efficiency either increases
or decreases.

2 RELATED WORK

2.1 Artificial Self-organizing Systems
An artificial self-organizing system is a system that is

designed by human and has the emergent behavior and
adaptability similar to nature [1]. Much research has been done
regarding design of an artificial self-organizing system. Werfel
developed a system of homogenous robots to build a pre-
determined shape using square bricks [13]. Beckers et al.
introduced a robotic gathering task where robots have to patrol
around a given area to collect pucks [14]. As robots prefer to
drop pucks in high density areas, the collective positive feedback
loop contributes to a dense group of available pucks [2,14].
Khani et al developed a social rule based regulation approach in
enforcing the agents to self-organize and push a box toward the
target area [5-6]. Swarms of UAVs can self-organize based on a
set of cooperation rules and accomplish tasks such as target
detection, collaborative patrolling and formation [15-18]. Chen
and Jin used a field based regulation (FBR) approach to guide
self-organizing agents to accomplish complex tasks such as
approaching long-distance targets while avoiding obstacles [19].
Price investigated into the use of genetic algorithm (GA) in
optimizing Self-organizing multi-UAV swarm behavior. He
tested the effectiveness of GA algorithm for both homogenous
and heterogeneous UAV in accomplishment of ‘destroying
retaliating target’ task [20].

2.2 Trust based Modeling
In the literature, trust is defined as a ‘mental state of a trustor

who is willing to run the risk of vulnerability with the
expectations on positive intentions or behavior from the trustee’
[21]. Trust implicitly means potential cooperation between the
agents and risk of uncertainty. Typically, a trust model consists
of three aspects: trust beliefs, trust decisions and trust actions
[22]. Trust beliefs measure the probabilistic based belief that an
agent has in other agents’ ability of accomplishing the
cooperative task; trust decisions are individual assessment of
either trust or distrust on a third party given its current belief.
Trust actions are the actions that agents take based on its trust
decisions [22].

Castelfranchi [22] classified trust models into three different
categories: the logical approach, the socio-cognitive approach
and computational approach. Logical approach begins with
mathematical logics for simulating trust relationships [23]. The
socio-cognitive model of trust considers the cognitive
ingredients of trust and describes trust by taken into
consideration the mental ingredients of trust, its value and
actions [22]. Computational approach takes advantage of the
computational power and quantify trust in terms of trust values.

Yu and Singh [24] suggested using information from referrals
as an alternative source for information on building trust about
other interacting agents. In ReGreT model developed by Sabater
and Sierra [25-26], trust incorporates three different sources of
information: direct experiences, information from other agents
and social structures. Travos is a Bayesian based trust model in
the context of inaccurate information [27]. The author in the
article assumed interaction between agents is either positive or
negative and used Bayesian posterior calculation to update trust
value based on existing prior information [27]. Trust theory in
game theoretical application includes prisoner dilemma
situation: both prisoners need to trust each other and cooperate
to achieve maximum system-level gain [28]. If one person
defects while another cooperates, defectors receive satisfactory
gain while cooperators losses [28]. Defection is good for
individual utility, but is detrimental at the system level.

Research on trust model falls in categories of wireless sensor
network [29], P2P (peer to peer) [30], multi-robot patrolling [9],
team formation [30-31], and human-computer interaction [32].
Pippin [8-9] adopted a centralized auction approach to dynamic
update the trust from central controller towards collaborating
agents. As one of the robots’ patrol speed slows down, nearby
robot is able to jump in and help with the low performance agents
through command from the center [8-9]. Tae Kyung Kim
proposed a trust model based on fuzzy logic for efficient
communication between wireless source node and destination
node in the network [33]. If a given sensor node has high trust
value, other nodes will send data to it. In field of human robot
interaction, Mahasalem investigated how human’s perception of
unusual robot behavior have an effect on their interaction choices
and the willingness for cooperation with the robot [34]. In eBay
and Amazon [35], the aggregate rating from the customer can be
used as an indication of the product’s trustworthiness.

 3 Copyright © 2018 by ASME

In SOS, the system level complexity needs to be reached in
order to perform complex tasks. However, individual
heterogeneity brings uncertainty and inherent noise or
perturbations to the SOS, which makes desired emergent
behavior unfeasible or outside of control. GA has been applied
to optimize SOS in the face of heterogeneity, however, the model
itself has to go through many trial runs against various fitness
functions in order to find the optimal solution, which often only
works for particular initial situations and is not applicable to
changing or unknown heterogeneity situations.

Moreover, existing trust models applied in engineering
systems are limited in their own application and the tradeoffs of
applying a trust model are hardly analyzed. It is crucial for
designers to provide guidelines as to how to design a trust based
framework in heterogeneous SOS and how to analyze the design
tradeoffs. Such area is often omitted in the literature and is the
focus of this paper.

3 BETA PROBABILISTIC TRUST MODEL

3.1 Illustration of Trust Model
As past performance is a good indicator of an agent’s future

performance, trust based model, which tasks into account
previous interaction outcomes, can serve as an indication of
future behavior of the agent. A simple way to look into agents’
heterogeneity is from a probabilistic perspective. We assume
individual competency can be represented as the percentage of
times an individual agent is able to successfully perform a
required task. Also, such outcome can be observed by other
agents and classified as either positive or negative experiences.
Thus, each observation result can be simplified as a single
Bernoulli experiment. Beta probability method is a useful tool in
evaluating the outcome of a binomial Bernoulli experiment.
Therefore we adopt a beta probability approach inspired by the
TRAVOS model to measure trust [27].

We denote a set of agents as 𝐴 = {𝑎%, 𝑎&, …, 𝑎'}. During
each round of simulation, several pairs of agents 𝑎), 𝑎+ ⊆ A
will interact with each other based on relative positions and
sensor information. A trustor atr ∈ A would deem an interaction
with a trustee ate ∈ A successful if trustee ate completes its
obligation. The outcome of the interaction is represented as a
binary value Oatr,ate.

Oatr,ate = 1 means a positive or successful observation,
whereas Oatr,ate = 0 indicates an unsuccessful observation, as
expressed in equation (1).

𝑂𝑎𝑡𝑟, 𝑎𝑡𝑒 =
1, 𝑖𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
	0, 𝑖𝑓	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (1)

At a given time t ∈ Z and t > 0 , at most one interaction

outcome can be observed between two agents, which can be
either 1 or 0 . Agents at any given time t keeps track of a history
of the positive and negative interaction outcomes, which can be
denoted as a tuple Hatr,ate (t) = (m, n). Here, m and n represents

the number of positive and negative outcomes observed from atr
towards ate, respectively.

The tendency of ate to fulfill its obligation is represented as
Batr,ate ∈ [0,1]. It is a representation of the likelihood that ate will
fulfill its task during interaction with atr from the perspective of
atr, shown in equation (2). For instance, Batr,ate = 0.5 means the
likelihood that ate will fulfill 50% of its obligation.

𝐵𝑎𝑡𝑟, 𝑎𝑡𝑒 = 𝑝 𝑂𝑎𝑡𝑟, 𝑎𝑡𝑒 = 1 																																																							(2)

If complete information about ate is obtained from atr, then

the probability that ate generates positive outcome can be
expressed by Batr,ate [27]. However, as complete knowledge can
not be assumed since observation results are limited in quantity,
from a Bayesian point of view, it is best we use expected value
of Batr,ate as an estimation of trust [27].

Confidence is another measure that an agent atr has in
evaluation of the trust value and is denoted as γatr,ate. Here,
confidence measures how accurate the trust value is given the
number of past observations that an agent had. Basically, more
observation results give an agent higher confidence in its
evaluation of trust value towards another agent. The detailed
definition and evaluation measures of trust and confidence are
illustrated below.

Trust of an agent atr towards another agent ate is represented
as τatr,ate, which is atr’s estimation of the probability that ate will
generate successful outcomes during interaction and is
represented as the expected value of Batr,ate given atr’s history
knowledge Hatr,ate(t) in period t, as shown in equation (3).

𝜏𝑎𝑡𝑟, 𝑎𝑡𝑒 =	E[Batr,ate | Hatr,ate(t)] (3)

To be able to determine the expected value of trust, a
probability density function (pdf) should be modeled to measure
the relative probability that Batr,ate will adopt a certain value. In
Bayesian analysis, the beta pdf has been widely used as a tool to
model distribution of a random variable like Batr,ate, representing
probability of a binary event (either 0 representing unsuccessful
outcome or 1 indicating successful outcome) [27]. The standard
formula for beta distributions is given in equation (4), where α
and β dictate the shape of the density function and is related to
positive m and negative n observations according to equation (5)
and (6).

𝑓 𝐵atr, ate α, β = 	 D𝑎𝑡𝑟,𝑎𝑡𝑒
EFG(%ID𝑎𝑡𝑟,𝑎𝑡𝑒)KFG

LEFGG
M (%IL)KFGNL

														(4)

α = m + 1 (5)
β = n + 1 (6)

Example plots for the beta distribution are shown in Figure 1.

Here, the horizontal axis represents the possible values of Batr,ate
and the vertical axis represents the probability density
distribution. And the shape of the distribution represents the
degree of uncertainty over the true value of Batr,ate.

 4 Copyright © 2018 by ASME

At the initial stage of the trust updating process, no prior
observation results are gained from atr towards ate . So, m=n =0,
it would be reasonable to assume all possible values of Batr,ate
are equally likely, here, with α=β=1, the beta distribution
becomes uniform. As time proceeds, a number of positive
observation and negative observation would be collected by atr
towards ate, and α and β would be updated based on equation (5)
and (6) accordingly . Then the trust value τatr,ate can be calculated
using the derived mathematical equation representing
expected value of beta distribution, shown in equation (7).
The expected trust value for agent i towards another agent j is
based on the number of positive and negative experiences it
observed from agent j and can be represented as,

Etrust i,j = O
OPQ

 (7)

Given a set of history observations Hatr,ate and the elapsed
time t, the trust value τ can be expressed as

𝜏 = 𝐸𝑡𝑟𝑢𝑠𝑡	𝑖, 𝑗	 	𝐻𝑎𝑡𝑟, 𝑎𝑡𝑒(𝑡)] (8)

However, the current formula for trust value does not

differentiate between cases where atr has enough observation
experience about trustee and cases where trustor has little
experience. So, we added confidence metric γXYZ,XY[to measure
how accurate the trust value is and it is defined as the posterior
probability that the exact value of Batr,ate falls with a margin of
error ε around τ. In our simulation, ε is defined 0.1. Confidence
value is expressed as

γXYZ,XY[=
𝑋𝛼−1𝜏+𝜀

𝜏−𝜀 (1−𝑋)β−1𝑑𝑋

𝑈α−11
0 (1−𝑈)β−1𝑑𝑈

						 (9)

Figure 1 shows an example of the beta distribution of trust
value with different number of positive and negative
observations. Left column graphs (a), (b), (c) show an example
simulation of probability distribution of trust value of a third
agent who has 10% competency (an agent is able to successfully
fulfill its obligation 10% of the times). And right column shows
how probability distribution of trust value changes with a full
competent agent.

Before agent gains observation of another agent, the number
of positive and negative observation is 0. So, according to
equation (5) and (6), α=1, β=1, the probability density
distribution becomes uniform as shown in Figure 1(a) and this
means that all trust value is equally likely from the point of view
of trustor towards trustee. As time goes on, agent gains more
observation, when agent has 1 positive observation and two
negative observation, α=1+1=2, β=2+1=3, the distribution is
moving towards left hand and is becoming more steep,
confidence in the expected trust value increases to 0.339. As
more observation is gained, as shown in plot (c), the distribution
is becoming more centered around 0.1, and agent’s confidence in
its judgment of expected trust value increases to 0.983 and
trustor can become very sure that the other agent under

consideration has an expected trust value of around 0.107.
Similarly, Figure 1 (d) (e) (f) show how the trust value changes
for a full competency agent. Initially, there is no observation, so
the distribution becomes uniform. After 3 successful
observation, distribution shifts to the right and expected trust
value becomes 0.8 and confidence value γ = 0.416. As more
observation is collected, the beta distribution forms the shape of
(f), in which α = 10 and β =1 and expected trust value equals
0.909 and confidence level γ = 0.88.

 (a) (d)

 (b) (e)

 (c) (f)
Figure 1. An example of the probability density distribution of
trust value with increasing number of observations (a) α= 1, β=1,
ε=0.1, τ= 0.5, γ= 0.2 (b) α= 2, β=3, ε=0.1, τ= 0.4, γ=0.339 (c)
α= 3, β=25, ε=0.1, τ= 0.107 , γ=0.983 (d) α= 1, β=1, ε=0.1, τ=
0.5, γ= 0.2 (e) α= 4, β=1, ε=0.1, τ= 0.8, γ=0.416 (f) α= 10,
β=1, ε=0.1, τ= 0.909, γ=0.88

In the trust modeling literature, Marsh [12] proposed a trust
cooperation threshold concept. He argued that once expected
trust value reaches a given threshold, an agent is considered
trusted and vice versa. In our simulation, when an agent
measures trust towards another agent, it compares the trust value
with the cooperation threshold and measures confidence value
with respect to confidence threshold, shown in equation (10). If
both of them are larger than the associated threshold, the third

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n
Pr

ob
ab

ili
ty

 d
en

si
ty

 fu
nc

tio
n

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

𝐵atr, ate

𝐵atr, ate

𝐵atr, ate

𝐵atr, ate

𝐵atr, ate

𝐵atr, ate

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n
Pr

ob
ab

ili
ty

 d
en

si
ty

 fu
nc

tio
n

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

 5 Copyright © 2018 by ASME

agent under consideration is trusted. Here, we set cooperation
threshold and confidence threshold to be 0.5, which is the neutral
point between 0 and 1 to prevent bias towards trust assessment.

𝑇𝑟𝑢𝑠𝑡	𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑠𝑡𝑒𝑑 𝑖𝑓	𝜏 > 0.5	&	𝛾 > 0.5

𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

3.2 Accuracy of Trust Assessment
As discussed above, individual competency can be

considered as a percentage rate of obligation fulfillment and each
observation can be either successful or unsuccessful. Beta trust
model is able to measure such binomial Bernoulli experiment
and suggest trust decision. So, how quickly can our proposed
trust model converge to reasonable trust decisions given the
observation experience? Can trustworthy agents always be
identified as trustworthy?

We analyzed three different trust cases where individual
agent has 100%, 90%, 80% competency. In industrial
applications, three-sigma and six-sigma concept [36] has been
introduced to help engineers decide at which error rate should
they reject a product. One standard deviation is a value where
around two thirds of data fall within the range of one sigma
below average and one sigma above average [36]. In SOS,
because system is more resilient than traditional engineering
system and thus is more tolerable of individual error rate.
Therefore, we consider 80% competency agents as acceptable
case for trustworthiness, which is around 13% more than one
standard deviation case.

We use p as the percentage of times an agent is able to
generate successful outcomes. So, each observation of an
individual action can be considered as a Bernoulli experiments
and given the total number of observation n, the probability of k
positive observation 𝑃 𝑘 𝑛)	is

𝑃 𝑘 𝑛) = 𝑛

𝑘 𝑝o(1 − 𝑝)'Io (11)

For total number of n observation, there is possibility of 0, 1,
2, … n positive outcomes. The accuracy of successful
measurement of trust is sum of all individual probability P(k|n)
that meets the trust threshold and confidence threshold of beta
distribution, which can be calculated using the simple algorithm
shown in Figure 2.

1.Set k= 0
2.Set Prob = 0
3.𝐖𝐡𝐢𝐥𝐞	 	k ≤ n
4.				{	
5. If (τ = > 0.5 &		γ	> 0.5)
6. {Prob = 𝑃𝑟𝑜𝑏 +	(𝑛𝑘)𝑝

o(1 − 𝑝)'Io}
7. k = k + 1
8. }

Figure 2 Algorithm for computing accuracy of trust assessment

Here, Prob represents the accuracy of trust measurement, n is
the total number of observation, k is the number of positive
observation. α = k +1, β = n-k+1, τ = O

OPQ
= oP%

'P&	
,

γXYZ,XY[=
𝑋𝛼−1𝜏+𝜀

𝜏−𝜀 (1−𝑋)β−1𝑑𝑋
𝑈α−11

0 (1−𝑈)β−1𝑑𝑈
.

Figure 3 shows the results of the plot based on algorithm

described in Figure 2. The horizontal axis represents the number
of total observations; vertical axis represents how likely trust
model is able to successfully predict the trustworthiness of an
agent given the number of observations. In terms of 100%
competency agent, it only takes 5 runs to successfully predict
trustworthy agents and it takes 8 and 10 observations for the trust
accuracy of 90% and 80% competency agents to converge to 1.
There is a slight drop of trust accuracy assessment with 6
observation compared to 5 observations in 90% and 80%
competency settings. However, the trust accuracy quickly
converges to 1 afterwards.

Figure 3 Probability of correct trust assessment vs. number of
observation with respect to different competency levels of agents

The number of 4 observations is a tipping point for all three

settings of trust evaluation. Below 4 observations, it is unlikely
that a trustworthy agent would be discovered. This is consistent
with the real-life trust building where it takes a number of
positive interactions for people to build trust towards others.
Moreover, as the number of observation becomes large, trust
value is able to converge to unity and agent is able to make high
accuracy trust assessment.

4 A TRUST BASED MODEL OF SELF-ORGANIZING
SYSTEMS
Field is considered a mathematical representation of the

influence present in the physical environments [37]. In physics,
gravitational field, electronic field and magnetic field is used
very common. In biology, chemical field can influence the
development of living creatures [38]. Inspired by the natural
field, we present a two field approach to govern agent behavior
in SOS [37]. Based on information from task field and social

 6 Copyright © 2018 by ASME

field, and trust value, social rule based behavior regulation
(SRBR) can suggest optimal actions for agents to take.

4.1 Task Field
Task field of SOS is considered the field generated by the

task environments such as repulsion of obstacles and attraction
of the target [39]. In the self-organizing box-pushing example
from previous research [19], agents do not have explicit
communication between each other but make movements based
only on perceived task field strength. In a task environment
where there are m targets (represented by 𝜃) and n obstacles
(represented by 𝛽), the task field can be shown as,

 𝑡𝐹𝑖𝑒𝑙𝑑	 = 	𝐹𝐿𝐷𝑇 𝜃1, 𝜃1, … 𝜃𝑚, 𝛽1, 𝛽2, … 𝛽𝑛 , (12)

where FLDT indicates an operator for task field generation.

4.2 Social Field
Besides task field, agents’ behavior in SOS can also be

affected by their peers. Social field is generated by an agent’s
neighbors and adds an another layer of information to the self-
organizing agents. It can be considered an aggregation of the
relationships between the individual agent and the other agents
it is interacting with.

For an agent i with n neighboring agents within its
communication range, social field can be represented as,

	𝑠𝐹𝑖𝑒𝑙𝑑	 = 	𝐹𝐿𝐷𝑠 𝜑1, 𝜑2, …𝜑𝑛 , (13)

where FLDs represents a generation operator of social field. ψ1,
ψ2, …ψn indicates the relationship between agent i and his
neighboring n agents.

4.3 Social Rule based Behavior Regulation
The application of task field and social field allows us the

opportunity to devise social structuring into the SOS to explicitly
distinguish between the two fields and perform complex tasks
[6,39]. We define a term called ‘social rule based behavior
regulation’ (SRBR) as a mapping between the two field, trust
value and the agent actions. When agents have task field, social
field and trust information in place, social rules define
recommended actions for agents to take. Relationship between
suggested action and task field, social field, trust value can be
shown in equation (14).

Action = SRBR (tField, sField, trust value) (14)

where SRBR means the social rule based behavior regulation.
tField represents task field and sField represents social field.
While each agent makes decisions based on social rules, the
combined effect will generate emergent complex behavior at the
system level.

4.4 Trust based Framework for SOS
Trust model can be used in combination with task field, social

field, and social rules to tackle the SOS uncertainty and its
framework is shown in Figure 3.

Trust is measured based on observation of selected partners
within observation range. By observation, we mean observations
of positive and negative behaviors from other agents with respect
to following social rule. Whenever an agent violates the social
rule, its behavior is considered a negative experience from other
agent’s point of view; strictly following the social rule is
considered a positive action. After trust is measured, agents
compare expected trust value with cooperation threshold and its
confidence of expected trust value with respect to confidence
threshold. If trust value and confidence towards an agent is
greater than the threshold, the agent is consider trusted and vice
versa. At the same time, social rules combine information from
task field, social field and trust decisions (trust or distrust) and
suggest actions. The collective effort made by each single agent
will affect the emergent system performance, and this will in turn
lead to another round of observation by the agents. The iterative
loop will continue until systems complete required task. Upon
completion, system performance can be measured in terms of
system effectiveness and system efficiency.

Figure 3. The trust based model for Self-organizing System with
heterogeneity

5 CASE STUDY

5.1 The Box-pushing Problem
The box-pushing problem is often classified as a piano

mover’s problem or trajectory planning [40]. Numerous
mathematical and topological solutions have been proposed in
the past [40]. In our paper, we are using a self-organizing
approach to solve box-pushing problem in which agents work
collectively, follow simple rules and push the box towards a
target without global knowledge.

The box-pushing case study was modeled in Netlogo
platform [41], a multi–agent simulation software. A R extension
package was installed and enables communication between

 7 Copyright © 2018 by ASME

Netlogo and R software, which allows agents to analyze beta
distributions and evaluate trust values.

In box-pushing simulation, we took into account the
possibility of presence of various number of heterogeneous
agents and integrated a trust model with SOS. We showed the
design tradeoffs of application of trust model in SOS. In detail,
we investigated into how trust among agents can have an impact
on system effectiveness and efficiency with respect to different
number of incompetent agents. Such an understanding will
provide helpful guidance on future SOS design.

A graphical illustration of box-pushing case study is shown
in Figure 4. As we can see from the figure, multiple agents with
limited sensing and communication range, and different
capability (competency of pushing the box) need to self-organize
to push and rotate the box towards the goal/target. During the
transportation process, as there is an obstacle and walls along
agents’ path and as the road becomes narrower, agents couldn’t
just simply push the box but need to rotate the box when
necessary [5,6], which adds complexity to the task. When the
center of the box reaches the same horizontal x-coordinate of the
target, the simulation is deemed a success.

There are seven major task summarized as below:
T1 = <Move><Box> to <Goal>
T2 = <Rotate><Box> to <Goal>
T3 = <Move><Box> away from <Walls>
T4 = <Move><Box> away from <Obstacle>
T5 = <Sense><Task Field>
T6 = <Sense><Social Field>
T7 = <Evaluate><Trust> on <Agents’ competency>

Figure 4 Box-pushing task illustration [5]

In Netlogo, distance is measured by patch-widths (pw). Patch
is a single square area in the simulation environment [41]. As an
example, the box in our simulation is 5 pw wide and 11 pw long.

In box-pushing, agents have limited sensing and
communication capabilities. They can broadcast their
information to nearby agents but not to the whole team. They can
also measure direction and distances, reason with simple rules,
and have limited storage of observation information. These
assumption is in line with the definition of “minimalist” robot
[42] and is reasonable with the current applications of physical
robot hardware [43].

Box neighborhood can be simplified as six regions [6,44],
as shown in Figure. 5. In determining agent’s neighborhood, an
agent looks for agents in its own zone, and if it is on a long edge
of the box, agents in adjacent zone on the long edge and agents
in the opposite zone along vertical axis. For instance, the red

agent in region 3 can sense the field strength of blue and green
agents and itself. It can also count the number of agents in region
2, 3 and 5.

Figure 5. The six regions of box neighborhood

Box dynamics is based on a simplified physical model. Its
movement depends on simulated force and torque. Forces equals
the sum of vector forces of every pushing agent. Each push
carries same amount of force, which acts from the agents towards
the box. Sum of 9 pushes will move the box 1 pw in a given
direction. Torque is assumed to be exerted on the centroid of the
box and equals to sum of moment arm of all vector forces of the
pushing agents. 3 pushes with a moment arm of 5pw each will
rotate the box 1 degree. We assume box carries a large moment
of inertia and when it hits the obstacle, which is considered rather
small, it will continue its movement until its expected end
position is reached.

In our simulation, there are total 9 pushing agents and
individual agent’s competency vary depending on the simulation
setup. We assume heterogeneous agents are always able to move
to suggested positions of box neighborhood by following social
rule but are limited by their competency of pushing the box.
Competent agents are able to push the box 100% of the times.
Incompetent agents can only successfully push the box 10% of
times—i.e., only 10% of the total of number of pushes during the
simulation are effective with a uniform distribution of time ticks.
This simulates the real-life systematic error/noise or malfunction
of force execution mechanism of physical robots. Need to
mention that if entire robot is broken down and robots can not
even move, it will make zero contribution to the box movement
and such situation is not considered in our case study.

Defining rules for the behavior of agent on the individual-
level is quite a challenge due to limited knowledge of agents.
Moreover, although social rules can be designed for homogenous
self-organizing box-pushing agents [5], when heterogeneity is
presented, uncertainty might generate unexpected system
behavior, such as hitting the obstacle and etc. How can we
mitigate such uncertainty in SOS and accomplish task with
reasonable time and good performance even with individual
heterogeneity? And if so, what are the design tradeoffs?

5.2 Task field, social field and trust model
In order to facilitate heterogeneous self-organizing agents in

accomplishing box-pushing tasks, we devise task field, social
field and trust model into the system.

 8 Copyright © 2018 by ASME

Task field: Task field in box-pushing case consists of an
attraction field from the target and gradient like repulsion field
from the walls & obstacles as warning to agents in case of
dangerous situations. Here, attraction field from target is
expressed in equation (14)

tField = VeI�� (15)

where tField represents task field, V and λ are design constants,
we choose V to be 80 and lambda is 0.1, d represents the distance
between selected position and the target zone.

Task field from the walls and obstacles is gradient based and
is below 0. For position within 1,2 and 3 patch radius of obstacles
and walls, it is -10, -8 and -6 respectively. In simulation
environment, positions with higher field values are more
preferable for agents. During the box movement, agents always
seek low field position in the box neighborhood and try to push
the box towards a position with higher field strength value [5,6].
At the same time, agents make predictions on preferred torque
and force of box movement based on task field information and
its position of box neighborhood. As shown in Figure. 6, red
agent in box region 3 can obtain task field information from the
green, blue agents and itself, represented by tFieldgreen, tFieldblue
and tFieldred. Based on the task field information of nearby
regions, agents estimate on the direction of preferred torque and
force of box movement. They will then compare information
from social field, trust value and make suggested movements.
For instance, as tFieldgreen is smaller than tFieldred and also
smaller than tFieldblue, according to our simulation algorithm,
the preferred torque would be positive (counter-clockwise) and
preferred force is towards target. Red agent has a tendency to
move to a green region where it will contribute to preferred
torque or force.

Figure 6. Illustration of preferred torque and preferred force for
red agent in box-pushing task

Figure 7 is the pseudo code of how the red agent in box region
3 in Figure 6 calculates its preferred torque and force. Agents in
other regions estimate their preferred torque and force following
similar logic and we will not give details of algorithm for agents
in other regions here.

Social field: Social field is an abstraction of relationships
between agents. Here, social field represents agent’s sense of
how many agents are in its neighboring regions and their relative

positions, which has already been illustrated in Figure 5. It will
be used combined with trust model to calculate expected torque
and forces illustrated below.
__
1. If tFieldgreen <= tFieldred
2. If tFieldgreen <= tFieldblue
3. Set preferred torque positive
4. Set preferred force towards-goal
5. Else
6. If |tFieldblue – tFieldred| < 2
7. Set preferred force away-from-goal
8. Else
9. Set preferred force away-from-goal
10. Set preferred torque positive
11. Else
12. If tFieldblue < tFieldred
13. If |tFieldblue–tFieldred | < 2
14 If tFieldblue < 0
15. Set preferred force away-from-goal
16. Else
17. Set preferred torque positive
18. Set preferred force away-from-goal

Figure 7. Pseudo code for estimating preferred torque and force
based on task field information

Trust model: In box-pushing task, agents have two kinds of
actions. One is to per suggested action from SRBR, move to a
recommended region in a box neighborhood, the other one is
performing pushing action after moving to the recommended
box region. We assume individual agent in box-pushing task are
able to follow SRBR and successfully move to suggested box
region, but their pushing behavior is limited by their
competency. Whenever agents push the box, it is assessed by
nearby agents as a positive experience and if agents fail to push
the box, it is deemed a negative experience. Agents assess the
trustworthiness of other agents by adopting the trust model
described in section 3 and the dynamic of trust updating process
of box-pushing case study can be seen in Figure 1.

If agent j is considered by agent i to be trustworthy, it is
considered by agent i to be competent enough to make the future
push effort. And if it is not considered trustworthy, agent i will
not count agent j in making the future push effort. Once trust
information is gained, agents make predictions on expected force
and expected torque (different from preferred torque and force):
sum of vector forces of all trustworthy agents and sum of torque
of all trustworthy agents. When the number of agents in a
specific region is unknown to an agent due to its limited sensing
ability, agent estimate the number to be rounded sum of all
agents within sensing range divided by number of observed
regions.

5.3 Social Rule based Behavior Regulation
Social rule based behavior regulation makes suggested

actions for agents based on obtained task field, social field and

 9 Copyright © 2018 by ASME

trust information. Agents first sense task and social filed
information of nearby agents and itself. Based on obtained
information, it makes estimations on direction of preferred
torque and force. Then agent makes trust decisions (either
trustworthy or untrustworthy) based on observations of other
agents. It counts number of perceived competent agents in
different neighborhood and calculate expected torque and force.
By comparing expected torque and force with preferred torque
and force, agents make associated actions: When preferred
torque and force matches with expected torque and force, agents
stay at the current position; otherwise, it moves to a region where
torque or force conflict could be alleviated. Figure 8 below
shows a pseudo code for SRBR:
__
1.Sense task field of neighboring agents and myself
2. Sense social field of neighboring agents and myself
3. Make estimations on preferred torque and force
4. Apply trust model and measure trustworthiness of agents
5. Calculate perceived number of competent agents
in different regions
6. Calculate expected torque and expected force
7. If expected torque calculation matches with preferred torque
8. If expected force calculation matches with preferred force
9. Stay at current position
10. Else
11. Move to region where force conflict can be alleviated
12. Else
13. If expected force calculation matches with preferred force
14. Move to region where torque conflict can be alleviated
15. Else
16. Move to region where torque or force conflict can be
alleviated
__

Figure 8. Pseudo code for Social rule based behavior regulation
algorithm

5.4 Simulation Environment Setup
Figure 9 summarizes the simulation environment setup.

Independent variables are the input/control variables in the
simulation. Here, we vary the number of incompetent agents and
compare how the use of trust model affects system performance
with respect to without the use of trust model. To explain, when
agents do not use trust model, they make predictions on expected
torque and force value based only on observed presence of
number of agents in nearby region rather than evaluate real
competency of agents in those regions using trust model.

There are two dependent variables we use for performance
measurement:

Success rate: the percentage of number of runs where agents
can successfully push the box towards goal without hitting
obstacles.

Time duration: the total simulation time steps it takes for
agents to push the box to target. Time duration is measured in
ticks in Netlogo, similar to real-time seconds. Only time duration

of successful runs is incorporated into the time duration
calculation.

Figure 9. Box-pushing environment setup, independent
variables vs dependent variables

6 RESULTS AND DISCUSSIONS

6.1 Typical Failure Modes
Figure 10 shows a visual representation of some typical

failure and undesirable modes of box movement with motion
trace examples when heterogeneous agents are presented.
Figures 10 (a) through (d) are the results of running the
simulation case of 7 incompetent agents and without trust model
applied. It can be seen that incompetent agents result in sudden,
excessive momentum, which leads to pushing the box towards
the red obstacle, as shown in (a). Sometimes incompetent agents
cause insufficient or excessive rotation torque, resulting in edge
of the box hitting the red obstacle, as shown in (b). Besides
failure mode of box-pushing, undesirable box movements are not
critical but should be reduced, such as tumbled pushing
trajectory in picture (c) or pushing the box slightly off the target
in the vertical axis in picture (d).

 (a) (b)

 (c) (d)

Figure 10. (a) failure with excessive pushing momentum (b)
failure with insufficient/excessive rotation torque (c) undesirable
tumbled trajectory (d) undesirable ending position of box

 10 Copyright © 2018 by ASME

6.2 Simulation Results
Applying a trust model should help decrease failure rate and

optimize the moving trajectory of the box movement given task
filed, social field information and the social rules applied. Figure
11 shows the box-pushing trajectory with motion traces of 7
incompetent agents and with the application of trust model. We
can see that box movement trajectory is more smooth and the
box ending position is closer to the target than without trust
model applied.

Figure 11. Visual representation of box movement with motion
traces for 7 incompetent agents with trust model applied.

(a)

(b)

Figure 12. Time duration & success rate of box pushing task for
without & with trust model under different number of
incompetent agents

Figure 12 shows the statistical results of the simulation. Each
simulation is composed of 100 runs and we take the average of
all simulation results to maintain statistical significance.

As shown in Figure 12(a), as number of incompetent agents
gets larger (up to 5), incorporating trust between agents first
increase the time for accomplishing the task and then decrease
the time for finishing the task compared to without use of trust
model and this difference is statistically significant (p < 0.05)
according to the results of two sample t tests. The might be due
to the fact that building trust between agent requires a certain
number of observations. As there are relatively more competent
agents in these settings compared to 7 incompetents and 9
incompetent cases, the initial trust building process can be
chaotic and would have errors in its assessment, which results in
some loss of system efficiency. This means integration of a trust
model with SOS does not necessarily increase system efficiency.
It only increases system efficiency when number of incompetent
agents reach a threshold value.

Also, as the number of incompetent agent increase (for both
without and with the trust model), time for task accomplishment
first decreases and then increases, which implies incorporating
some incompetent agents during the box-pushing task might be
beneficial to the system efficiency as compared to when system
is with full competent agents. This can be explained by
characteristics of the box-pushing task: box-pushing task
requires both cooperation and conflict resolution. Too few agents
are not able to achieve cooperation in pushing box, while too
many agents result in too much conflict and is not beneficiary
either. So, optimal number of competent box-pushing agents
should be neither too large nor too small. In our case, either 2
competent agents, 7 incompetent agents or 4 competent agents 5
incompetent agents is a good number for achieving optimal
system efficiency. Such findings are also consistent with the
finding from past literature [5] where moderate social structuring
is crucial for collaborative box-pushing. Here, social structuring
means the percentage of time agents are able to follow the social
rule, which is similar to our simulation setup, where competency
means percentage of time agents are able to make the push effort
enforced by social norm.

In Figure12 (b), we can see that SOS can be very tolerant of
incompetent agents in terms of success rate. Even there are 5
incompetent agents, the system can still maintain high success
rate for both trust model and without trust model situation. This
proves that SOS has high resiliency [3,4]. We also noticed that
when the number of incompetent agent increases to 5, the
success rate drops a little bit. Applying trust model can move the
success rate back to almost 100%, which is larger than without
trust model (p < 0.05 according to the results of two sample t
tests). However, when 7 agents are incapable in the system, the
success rate drops dramatically to 25%. With trust building
among agents, system is able to maintain around 75% success
rate, a large increase than 25% (difference is statistically
significant, p < 0.05 according to the results of two sample t
tests). What is also interesting is when incompetent agents are 9,
the system success rate goes back to high percentage even
without use of trust model, this can be explained by the fact that

 11 Copyright © 2018 by ASME

pushing forces of all incompetent agents lead to a more balanced
state of box movement compared to when there are 7
incompetent agents (individual unbalanced pushing effort of the
2 competent agents may not be corrected by the rest of 7
incompetent agents), so success rate remains high in this case.
Still, Adoption of a trust model can assist agents push the box
with almost 100% success rate when system is full of
incompetent agents.

7 CONCLUSIONS
When tasks become more complex, self-organizing systems

can be a useful approach to achieve task goals. From a system
design perspective, there are two levels of design parameters that
require careful design attentions, one is individual level (i.e.,
agent level) and the other social level (i.e., system level or
interaction level). Our previous research has demonstrated that
for homogeneous self-organizing systems, where all
participating agents are equally capable and competent, devising
social structures plays an important role for increased system
level effectiveness and efficiency [5]. In real world applications,
however, agent competencies cannot be guaranteed since some
agents may experience damage for various reasons. The system
heterogeneity due to the partial loss of competency among agents
adds another layer of complexity to the design of self-organizing
systems. In this paper, we presented a trust modeling based
approach to deal with this issue, which essentially is to add a
layer of mutual behavior prediction capability to agents.

While social structuring allows agents to explicitly assume
their social roles (i.e., system level roles) through shared social
rules [5], it does not provide any information of the functional
capability and competence of agents. When the effective
coordination among agents is demanded by tasks, an agent must
predict such information based on its own observation. In this
paper, a beta probabilistic trust model is introduced and applied
to the box-pushing case study. By setting up the cooperation
threshold and confidence threshold, an agent can effectively
make trust decisions (i.e., trust or do not trust another agent being
able to perform the push action) and coordinate more effectively.

The simulation results of our proposed trust model based
approach have led us to some interesting findings:

• Incorporating a trust model into SOS can improve the

system effectiveness (i.e., success rate) in general. The
results show that positive effect of adding trust model does
not depend on the number of incompetent agents. The
positive impact of trust modeling is especially strong when
the system performed poorly with 7 incompetent agents.

• Depending on the number/percentage of incompetent
agents, the system efficiency (i.e., time duration) first
decreases then increases. In another word, efficiency of the
system might suffer when system does not have many
incompetent agents with trust model applied.

It is worth mentioning that the above findings are now limited

to the box-pushing type of tasks. For more complex tasks, each

agent in a system needs to perform multiple and different
combinations of functions, just as different components in a
system perform different functions. In such highly
heterogeneous situations, in order for an agent to effectively self-
organize with others, it will need to establish a complete trust
profile of other agents through observation. Such a trust profile
will include competence trust values of a set of functions.
Furthermore, by moving from observing of single agent’s
behavior to observing the patterns of multi-agent behaviors,
more advanced trust calculation can be developed. We plan to
explore further along these two directions.

This paper was based on the work supported in part by the

Monohakobi Tech-nology Institute (MTI) and Nippon Yusen
Kaisha (NYK). The authors are grateful to the MTI team for their
discussions and insights on this research.

REFERENCES
[1] Reynolds, C. W. (1987). Flocks, herds and schools: A

distributed behavioral model. ACM SIGGRAPH computer
graphics, 21(4), 25-34.

[2] Ashby, W. R. (1991). Requisite variety and its implications
for the control of complex systems. In Facets of systems
science (pp. 405-417). Springer US.

[3] Chiang, Winston, and Yan Jin. "Design of Cellular Self-
Organizing Systems." IDETC/CIE. 2012.

[4] Humann, J., Khani, N., & Jin, Y. (2014). Evolutionary
computational synthesis of self-organizing systems. AI
EDAM, 28(3), 259-275.

[5] Khani, N., Humann, J., & Jin, Y. (2016). Effect of Social
Structuring in Self-Organizing Systems. Journal of
Mechanical Design, 138(4), 041101.

[6] Khani, N., & Jin, Y. (2015). Dynamic structuring in cellular
self-organizing systems. In Design Computing and
Cognition'14(pp. 3-20). Springer, Cham.

[7] Kennedy, J. (2006). Swarm intelligence. In Handbook of
nature-inspired and innovative computing (pp. 187-219).
Springer US.

[8] Pippin, C. E. (2013). Trust and reputation for formation and
evolution of multi-robot teams (Doctoral dissertation,
Georgia Institute of Technology).

[9] Pippin, C., & Christensen, H. (2014, May). Trust modeling
in multi-robot patrolling. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on (pp. 59-
66). IEEE.

[10] Elster, J. (1989). Social norms and economic
theory. Journal of economic perspectives, 3(4), 99-117.

[11] Simon, H. A. (1982). Models of bounded rationality:
Empirically grounded economic reason (Vol. 3). MIT press.

[12] Marsh, S. P. (1994). Formalising trust as a computational
concept.

[13] Werfel, J. (2012). Collective construction with robot
swarms. In Morphogenetic Engineering (pp. 115-140).
Springer Berlin Heidelberg.

 12 Copyright © 2018 by ASME

[14] Beckers, R., Holland, O. E., & Deneubourg, J. L. (1994,
July). From local actions to global tasks: Stigmergy and
collective robotics. In Artificial life IV (Vol. 181, p. 189).

[15] Dasgupta, P. (2008). A multiagent swarming system for
distributed automatic target recognition using unmanned
aerial vehicles. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 38(3), 549-563.

[16] Ruini, F., & Cangelosi, A. (2009). Extending the
Evolutionary Robotics approach to flying machines: An
application to MAV teams. Neural Networks, 22(5), 812-
821.

[17] Lamont, G. B., Slear, J. N., & Melendez, K. (2007, April).
UAV swarm mission planning and routing using multi-
objective evolutionary algorithms. In Computational
Intelligence in Multicriteria Decision Making, IEEE
Symposium on (pp. 10-20). IEEE.

[18] Wei, Y., Madey, G. R., & Blake, M. B. (2013, April). Agent-
based simulation for UAV swarm mission planning and
execution. In Proceedings of the Agent-Directed Simulation
Symposium (p. 2). Society for Computer Simulation
International.

[19] Chen, C., & Jin, Y. (2011). A behavior based approach to
cellular self-organizing systems design. ASME Paper No.
DETC2011-48833.

[20] Price, I. C., & Lamont, G. B. (2006, December). GA
directed self-organized search and attack UAV swarms.
In Proceedings of the 38th conference on Winter
simulation (pp. 1307-1315). Winter Simulation Conference.

[21] Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C.
(1998). Not so different after all: A cross-discipline view of
trust. Academy of management review, 23(3), 393-404.

[22] Castelfranchi, C., & Falcone, R. (2010). Trust theory: A
socio-cognitive and computational model (Vol. 18). John
Wiley & Sons.

[23] Castelfranchi, C., Falcone, R., & Lorini, E. (2009). A Non-
reductionist Approach to Trust.

[24] Yu, B., Singh, M. P., & Sycara, K. (2004, August).
Developing trust in large-scale peer-to-peer systems.
In Multi-Agent Security and Survivability, 2004 IEEE First
Symposium on (pp. 1-10). IEEE.

[25] Sabater, J., & Sierra, C. (2001, May). Regret: A reputation
model for gregarious societies. In Fourth workshop on
deception fraud and trust in agent societies (Vol. 70, pp. 61-
69).

[26] Sabater, J., & Sierra, C. (2002, July). Reputation and social
network analysis in multi-agent systems. In Proceedings of
the first international joint conference on Autonomous
agents and multiagent systems: Part 1 (pp. 475-482). ACM.

[27] Teacy, W. L., Patel, J., Jennings, N. R., & Luck, M. (2006).
Travos: Trust and reputation in the context of inaccurate
information sources. Autonomous Agents and Multi-Agent
Systems, 12(2), 183-198.

[28] Poundstone, W. (1993). Prisoner's Dilemma/John von
Neumann, Game Theory and the Puzzle of the Bomb.
Anchor.

[29] Mármol, F. G., & Pérez, G. M. (2011). Providing trust in
wireless sensor networks using a bio-inspired
technique. Telecommunication systems, 46(2), 163-180.

[30] Jarvenpaa, S. L., & Leidner, D. E. (1998). Communication
and trust in global virtual teams. Journal of Computer-
Mediated Communication, 3(4), 0-0.

[31] McDonough, E. F., Kahnb, K. B., & Barczaka, G. (2001).
An investigation of the use of global, virtual, and colocated
new product development teams. Journal of product
innovation management, 18(2), 110-120.

[32] Baecker, R. M. (Ed.). (2014). Readings in Human-
Computer Interaction: toward the year 2000. Morgan
Kaufmann.

[33] Kim, Tae Kyung, and Hee Suk Seo. "A trust model using
fuzzy logic in wireless sensor network." World academy of
science, engineering and technology 42.6 (2008): 63-66.

[34] Salem, Maha, et al. "Would you trust a (faulty) robot?:
Effects of error, task type and personality on human-robot
cooperation and trust." Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 2015.

[35] Resnick, P., & Zeckhauser, R. (2002). Trust among strangers
in Internet transactions: Empirical analysis of eBay's
reputation system. In The Economics of the Internet and E-
commerce (pp. 127-157). Emerald Group Publishing
Limited.

[36] Binder, Robert V. "Can a manufacturing quality model
work for software?." IEEE Software 14.5 (1997): 101-102.

[37] Humann, J., Khani, N., & Jin, Y. (2014). Evolutionary
computational synthesis of self-organizing systems. AI
EDAM, 28(3), 259-275.

[38] Haken, H. (1978). Nonequilibrium phase transitions and
bifurcation of limit cycles and multi-periodic flows.
Zeitschrift für Physik B Condensed Matter, 29(1), 61-66.

[39] Jin, Y., & Chen, C. (2014). Field based behavior regulation
for self-organization in cellular systems. In Design
Computing and Cognition'12 (pp.605-623). Springer,
Dordrecht.

[40] LaValle, Steven M. Planning algorithms. Cambridge
university press, 2006.

[41] Wilensky, U. (2001). Modeling nature’s emergent patterns
with multi-agent languages. In Proceedings of EuroLogo
(pp. 1-6).

[42] Jones, Chris, and Maja J. Mataric. "Adaptive division of
labor in large-scale minimalist multi-robot
systems." Intelligent Robots and Systems, 2003.(IROS
2003). Proceedings. 2003 IEEE/RSJ International
Conference on. Vol. 2. IEEE, 2003.

[43] Groß, Roderich, et al. "Autonomous self-assembly in
swarm-bots." IEEE transactions on robotics 22.6 (2006):
1115-1130.

[44] Humann, J., Khani, N., & Jin, Y. (2016). Adaptability
Tradeoffs in the Design of Self-Organizing Systems.
In ASME 2016 IDETC (pp.V007T06A016). American
Society of Mechanical Engineers

