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ABSTRACT 
Self-organizing systems (SOS) possess the potential of 

performing complex tasks in uncertain situations with 
adaptability. Despite the benefits of self-organizing, it is also 
subject to the influence of unpredictable behavior of individual 
agents and environment noises. In hostile situations for example, 
individual performance of self-organizing agents may 
deteriorate and this can lead to system malfunction, posing great 
challenge for the design of SOS. In this paper, we propose a trust 
based model as a design approach to SOS in consideration of the 
capability heterogeneity of the agents. A box-pushing task was 
presented and studied. Trust is measured using beta probability 
distribution, which takes into account both the positive and 
negative interactions between the agents. The simulation results 
have shown that our trust model ensures favorable interactions 
among agents and leads to increased system effectiveness and 
conditional system efficiency improvement in comparison to 
SOS without using a trust model. 

Keywords: trust-based model; complex system, self-organizing 
system; heterogeneity. 

 

1 INTRODUCTION 
Self-organizing systems consist of elementary agents that 

work collaboratively to achieve complex system level behavior 
without global knowledge. Design of SOS takes a bottom-up 
approach and the system complexity can be reached through 
local interaction of agents [1,2]. Complex system design by 
using a self-organizing approach has many advantages, such as 
increased adaptability, scalability and reliability [3,4]. In 

addition, self-organizing systems tend to be more robust to 
external changes and more resilient to system damage or partial 
malfunction [5-6]. A typical example of self-organizing systems 
would be a swarm of robots. In such systems, robots are usually 
compact in size, adopt simple interaction rules and are with 
limited functionality. Such systems often consist of a large 
number of homogenous robots [7]. Collaborative behavior of the 
swarm robots emerges and is used to apply to situations such as 
unmanned aerial vehicle patrolling, search and rescue, 
distributed sensing, traffic control, and box-pushing [5]. 

In real life, individual agents are not always ideal. Robots 
may have different speed and power due to production variance, 
wear and tear [8-9]. Products that come from the same 
production line may have variations in dimensions. The presence 
of heterogeneity within agents adds extra noise and uncertainty 
to SOS and causes unexpected or unwanted system behavior, 
which is usually outside of control. Thus, SOS design is under 
great challenge when the assumption of homogeneity of agents 
can not be met in real applications. Therefore, how can we design 
a SOS to achieve complex tasks when agents have differences in 
competency? How can agents have a better sense of its partner’s 
capability and make informed decisions during the self-
organizing process?  

In social sciences, social norm is generated through the 
interaction of socially active agents and is considered an 
agreement made by the members of the society [10]. By 
following ‘norm of cooperation’, people are able to avoid 
unnecessary conflicts and the average utility among group 
members can be increased [10]. Agents who do not obey the 
social norm are considered untrustworthy while a good social 
norm follower receives higher trust among other agents. SOS can 
be considered as a social society where agents follow the same 
set of rules and interact with their bounded rationality [11]. 
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Agents with different levels of competency react differently to 
the social norm and their trustworthiness can be updated by other 
agents through observation. When a given agent’s trust level 
falls below a trust threshold, it is no longer trusted [12]. 
Untrusted agents will be weighted less or ignored by other agents 
during cooperative tasks. In these cases, trust ensures good 
interactions and discourages norm breakers. Thus, it plays a key 
role in keeping the social-rule enforced.  

Like in the social society, devising a trust based model into 
SOS can take into account the uncertainty of the individual 
competencies and increase system’s resistance to internal 
perturbations or malfunctions. As updating trust is a dynamic 
process, it can be considered as a dynamic optimization tool for 
SOS.  

In the rest of this paper, we first review the relevant work of 
SOS and trust based modeling. Next, we present a beta-
probability based trust model in design of complex systems and 
show how dynamic trust and distrust can be formed. Then, we 
introduce a box-pushing problem and develop a trust based SOS 
framework as a solution. The box-pushing case study is 
presented and the results analyzed. Finally, conclusions are 
drawn from the case study: Trust based SOS model increases 
system effectiveness in general; depending on the number of 
heterogeneous agents in SOS, system efficiency either increases 
or decreases.  

2 RELATED WORK 

2.1 Artificial Self-organizing Systems 
An artificial self-organizing system is a system that is 

designed by human and has the emergent behavior and 
adaptability similar to nature [1]. Much research has been done 
regarding design of an artificial self-organizing system. Werfel 
developed a system of homogenous robots to build a pre-
determined shape using square bricks [13]. Beckers et al. 
introduced a robotic gathering task where robots have to patrol 
around a given area to collect pucks [14]. As robots prefer to 
drop pucks in high density areas, the collective positive feedback 
loop contributes to a dense group of available pucks [2,14]. 
Khani et al developed a social rule based regulation approach in 
enforcing the agents to self-organize and push a box toward the 
target area [5-6]. Swarms of UAVs can self-organize based on a 
set of cooperation rules and accomplish tasks such as target 
detection, collaborative patrolling and formation [15-18]. Chen 
and Jin used a field based regulation (FBR) approach to guide 
self-organizing agents to accomplish complex tasks such as 
approaching long-distance targets while avoiding obstacles [19]. 
Price investigated into the use of genetic algorithm (GA) in 
optimizing Self-organizing multi-UAV swarm behavior. He 
tested the effectiveness of GA algorithm for both homogenous 
and heterogeneous UAV in accomplishment of ‘destroying 
retaliating target’ task [20].  

2.2 Trust based Modeling 
In the literature, trust is defined as a ‘mental state of a trustor 

who is willing to run the risk of vulnerability with the 
expectations on positive intentions or behavior from the trustee’ 
[21]. Trust implicitly means potential cooperation between the 
agents and risk of uncertainty. Typically, a trust model consists 
of three aspects: trust beliefs, trust decisions and trust actions 
[22]. Trust beliefs measure the probabilistic based belief that an 
agent has in other agents’ ability of accomplishing the 
cooperative task; trust decisions are individual assessment of 
either trust or distrust on a third party given its current belief. 
Trust actions are the actions that agents take based on its trust 
decisions [22].  

Castelfranchi [22] classified trust models into three different 
categories: the logical approach, the socio-cognitive approach 
and computational approach. Logical approach begins with 
mathematical logics for simulating trust relationships [23]. The 
socio-cognitive model of trust considers the cognitive 
ingredients of trust and describes trust by taken into 
consideration the mental ingredients of trust, its value and 
actions [22]. Computational approach takes advantage of the 
computational power and quantify trust in terms of trust values.  

Yu and Singh [24] suggested using information from referrals 
as an alternative source for information on building trust about 
other interacting agents. In ReGreT model developed by Sabater 
and Sierra [25-26], trust incorporates three different sources of 
information: direct experiences, information from other agents 
and social structures. Travos is a Bayesian based trust model in 
the context of inaccurate information [27]. The author in the 
article assumed interaction between agents is either positive or 
negative and used Bayesian posterior calculation to update trust 
value based on existing prior information [27]. Trust theory in 
game theoretical application includes prisoner dilemma 
situation: both prisoners need to trust each other and cooperate 
to achieve maximum system-level gain [28]. If one person 
defects while another cooperates, defectors receive satisfactory 
gain while cooperators losses [28]. Defection is good for 
individual utility, but is detrimental at the system level. 

Research on trust model falls in categories of wireless sensor 
network [29], P2P (peer to peer) [30], multi-robot patrolling [9], 
team formation [30-31], and human-computer interaction [32]. 
Pippin [8-9] adopted a centralized auction approach to dynamic 
update the trust from central controller towards collaborating 
agents. As one of the robots’ patrol speed slows down, nearby 
robot is able to jump in and help with the low performance agents 
through command from the center [8-9]. Tae Kyung Kim 
proposed a trust model based on fuzzy logic for efficient 
communication between wireless source node and destination 
node in the network [33]. If a given sensor node has high trust 
value, other nodes will send data to it. In field of human robot 
interaction, Mahasalem investigated how human’s perception of 
unusual robot behavior have an effect on their interaction choices 
and the willingness for cooperation with the robot [34]. In eBay 
and Amazon [35], the aggregate rating from the customer can be 
used as an indication of the product’s trustworthiness. 
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In SOS, the system level complexity needs to be reached in 
order to perform complex tasks. However, individual 
heterogeneity brings uncertainty and inherent noise or 
perturbations to the SOS, which makes desired emergent 
behavior unfeasible or outside of control. GA has been applied 
to optimize SOS in the face of heterogeneity, however, the model 
itself has to go through many trial runs against various fitness 
functions in order to find the optimal solution, which often only 
works for particular initial situations and is not applicable to 
changing or unknown heterogeneity situations. 

Moreover, existing trust models applied in engineering 
systems are limited in their own application and the tradeoffs of 
applying a trust model are hardly analyzed. It is crucial for 
designers to provide guidelines as to how to design a trust based 
framework in heterogeneous SOS and how to analyze the design 
tradeoffs. Such area is often omitted in the literature and is the 
focus of this paper. 
 

3 BETA PROBABILISTIC TRUST MODEL 

3.1 Illustration of Trust Model 
As past performance is a good indicator of an agent’s future 

performance, trust based model, which tasks into account 
previous interaction outcomes, can serve as an indication of 
future behavior of the agent. A simple way to look into agents’ 
heterogeneity is from a probabilistic perspective. We assume 
individual competency can be represented as the percentage of 
times an individual agent is able to successfully perform a 
required task. Also, such outcome can be observed by other 
agents and classified as either positive or negative experiences. 
Thus, each observation result can be simplified as a single 
Bernoulli experiment. Beta probability method is a useful tool in 
evaluating the outcome of a binomial Bernoulli experiment. 
Therefore we adopt a beta probability approach inspired by the 
TRAVOS model to measure trust [27].  

We denote a set of agents as 𝐴 = {𝑎%, 𝑎&, …, 𝑎'}. During 
each round of simulation, several pairs of agents 𝑎), 𝑎+  ⊆ A 
will interact with each other based on relative positions and 
sensor information. A trustor atr ∈ A would deem an interaction 
with a trustee ate ∈ A successful if trustee ate completes its 
obligation. The outcome of the interaction is represented as a 
binary value Oatr,ate.  

Oatr,ate = 1 means a positive or successful observation, 
whereas Oatr,ate = 0 indicates an unsuccessful observation, as 
expressed in equation (1). 
 

𝑂𝑎𝑡𝑟, 𝑎𝑡𝑒 =
1, 𝑖𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
	0, 𝑖𝑓	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛               (1) 

 
At a given time t ∈ Z and t > 0 , at most one interaction 

outcome can be observed between two agents, which can be 
either 1 or 0 . Agents at any given time t keeps track of a history 
of the positive and negative interaction outcomes, which can be 
denoted as a tuple Hatr,ate (t) = (m, n). Here, m and n represents 

the number of positive and negative outcomes observed from atr 
towards ate, respectively. 

The tendency of ate to fulfill its obligation is represented as 
Batr,ate ∈ [0,1]. It is a representation of the likelihood that ate will 
fulfill its task during interaction with atr from the perspective of 
atr, shown in equation (2). For instance, Batr,ate = 0.5 means the 
likelihood that ate will fulfill 50% of its obligation.  
 
𝐵𝑎𝑡𝑟, 𝑎𝑡𝑒 = 𝑝 𝑂𝑎𝑡𝑟, 𝑎𝑡𝑒 = 1 																																																							(2) 

 
If complete information about ate is obtained from atr, then 

the probability that ate generates positive outcome can be 
expressed by Batr,ate [27]. However, as complete knowledge can 
not be assumed since observation results are limited in quantity, 
from a Bayesian point of view, it is best we use expected value 
of Batr,ate as an estimation of trust [27]. 

Confidence is another measure that an agent atr has in 
evaluation of the trust value and is denoted as γatr,ate. Here, 
confidence measures how accurate the trust value is given the 
number of past observations that an agent had. Basically, more 
observation results give an agent higher confidence in its 
evaluation of trust value towards another agent. The detailed 
definition and evaluation measures of trust and confidence are 
illustrated below.  

Trust of an agent atr towards another agent ate is represented 
as τatr,ate, which is atr’s estimation of the probability that ate will 
generate successful outcomes during interaction and is 
represented as the expected value of Batr,ate given atr’s history 
knowledge Hatr,ate(t) in period t, as shown in equation (3). 
 

𝜏𝑎𝑡𝑟, 𝑎𝑡𝑒 =	E[Batr,ate | Hatr,ate(t)]                    (3)                               
 

To be able to determine the expected value of trust, a 
probability density function (pdf) should be modeled to measure 
the relative probability that Batr,ate will adopt a certain value. In 
Bayesian analysis, the beta pdf has been widely used as a tool to 
model distribution of a random variable like Batr,ate, representing 
probability of a binary event (either 0 representing unsuccessful 
outcome or 1 indicating successful outcome) [27]. The standard 
formula for beta distributions is given in equation (4), where α 
and β dictate the shape of the density function and is related to 
positive m and negative n observations according to equation (5) 
and (6).  
 

𝑓 𝐵atr, ate α, β = 	 D𝑎𝑡𝑟,𝑎𝑡𝑒
EFG(%ID𝑎𝑡𝑟,𝑎𝑡𝑒)KFG

LEFGG
M (%IL)KFGNL

														(4) 

α = m + 1                                  (5)                                        
β = n + 1                                   (6)                                          

 
Example plots for the beta distribution are shown in Figure 1. 

Here, the horizontal axis represents the possible values of Batr,ate 
and the vertical axis represents the probability density 
distribution. And the shape of the distribution represents the 
degree of uncertainty over the true value of Batr,ate.  
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At the initial stage of the trust updating process, no prior 
observation results are gained from atr towards ate . So, m=n =0, 
it would be reasonable to assume all possible values of Batr,ate 
are equally likely, here, with α=β=1, the beta distribution 
becomes uniform. As time proceeds, a number of positive 
observation and negative observation would be collected by atr 
towards ate, and α and β would be updated based on equation (5) 
and (6) accordingly . Then the trust value τatr,ate can be calculated 
using the derived mathematical equation representing 
expected value of beta distribution, shown in equation (7). 
The expected trust value for agent i towards another agent j is 
based on the number of positive and negative experiences it 
observed from agent j and can be represented as, 
 

Etrust i,j = O
OPQ

                                   (7)  
                                                                 

Given a set of history observations Hatr,ate and the elapsed 
time t, the trust value τ can be expressed as  
 
𝜏 = 𝐸𝑡𝑟𝑢𝑠𝑡	𝑖, 𝑗	 	𝐻𝑎𝑡𝑟, 𝑎𝑡𝑒(𝑡)]                        (8) 

                                            
However, the current formula for trust value does not 

differentiate between cases where atr has enough observation 
experience about trustee and cases where trustor has little 
experience. So, we added confidence metric γXYZ,XY[  to measure 
how accurate the trust value is and it is defined as the posterior 
probability that the exact value of Batr,ate falls with a margin of 
error ε around τ. In our simulation, ε is defined 0.1. Confidence 
value is expressed as 

 

γXYZ,XY[ =
𝑋𝛼−1𝜏+𝜀

𝜏−𝜀 (1−𝑋)β−1𝑑𝑋

𝑈α−11
0 (1−𝑈)β−1𝑑𝑈

						                      (9) 
                                   

Figure 1 shows an example of the beta distribution of trust 
value with different number of positive and negative 
observations. Left column graphs (a), (b), (c) show an example 
simulation of probability distribution of trust value of a third 
agent who has 10% competency (an agent is able to successfully 
fulfill its obligation 10% of the times). And right column shows 
how probability distribution of trust value changes with a full 
competent agent.  

Before agent gains observation of another agent, the number 
of positive and negative observation is 0. So, according to 
equation (5) and (6), α=1, β=1, the probability density 
distribution becomes uniform as shown in Figure 1(a) and this 
means that all trust value is equally likely from the point of view 
of trustor towards trustee. As time goes on, agent gains more 
observation, when agent has 1 positive observation and two 
negative observation, α=1+1=2, β=2+1=3, the distribution is 
moving towards left hand and is becoming more steep, 
confidence in the expected trust value increases to 0.339. As 
more observation is gained, as shown in plot (c), the distribution 
is becoming more centered around 0.1, and agent’s confidence in 
its judgment of expected trust value increases to 0.983 and 
trustor can become very sure that the other agent under 

consideration has an expected trust value of around 0.107.  
Similarly, Figure 1 (d) (e) (f) show how the trust value changes 
for a full competency agent. Initially, there is no observation, so 
the distribution becomes uniform. After 3 successful 
observation, distribution shifts to the right and expected trust 
value becomes 0.8 and confidence value γ = 0.416. As more 
observation is collected, the beta distribution forms the shape of 
(f), in which α = 10 and β =1 and expected trust value equals 
0.909 and confidence level γ = 0.88.   
 

  
           (a)                       (d) 

  
           (b)                       (e) 

  
           (c)                       (f) 
Figure 1. An example of the probability density distribution of 
trust value with increasing number of observations (a) α= 1, β=1, 
ε=0.1, τ= 0.5, γ= 0.2  (b) α= 2, β=3, ε=0.1, τ= 0.4, γ=0.339 (c) 
α= 3, β=25, ε=0.1, τ= 0.107 , γ=0.983  (d) α= 1, β=1, ε=0.1, τ= 
0.5, γ= 0.2  (e) α= 4, β=1, ε=0.1, τ= 0.8, γ=0.416 (f) α= 10, 
β=1, ε=0.1, τ= 0.909, γ=0.88 
 

In the trust modeling literature, Marsh [12] proposed a trust 
cooperation threshold concept. He argued that once expected 
trust value reaches a given threshold, an agent is considered 
trusted and vice versa. In our simulation, when an agent 
measures trust towards another agent, it compares the trust value 
with the cooperation threshold and measures confidence value 
with respect to confidence threshold, shown in equation (10). If 
both of them are larger than the associated threshold, the third 
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agent under consideration is trusted. Here, we set cooperation 
threshold and confidence threshold to be 0.5, which is the neutral 
point between 0 and 1 to prevent bias towards trust assessment. 
 
𝑇𝑟𝑢𝑠𝑡	𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑠𝑡𝑒𝑑 𝑖𝑓	𝜏 > 0.5	&	𝛾 > 0.5

𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (10) 

 

3.2 Accuracy of Trust Assessment  
As discussed above, individual competency can be 

considered as a percentage rate of obligation fulfillment and each 
observation can be either successful or unsuccessful. Beta trust 
model is able to measure such binomial Bernoulli experiment 
and suggest trust decision. So, how quickly can our proposed 
trust model converge to reasonable trust decisions given the 
observation experience? Can trustworthy agents always be 
identified as trustworthy?  

We analyzed three different trust cases where individual 
agent has 100%, 90%, 80% competency. In industrial 
applications, three-sigma and six-sigma concept [36] has been 
introduced to help engineers decide at which error rate should 
they reject a product. One standard deviation is a value where 
around two thirds of data fall within the range of one sigma 
below average and one sigma above average [36]. In SOS, 
because system is more resilient than traditional engineering 
system and thus is more tolerable of individual error rate. 
Therefore, we consider 80% competency agents as acceptable 
case for trustworthiness, which is around 13% more than one 
standard deviation case.  

We use p as the percentage of times an agent is able to 
generate successful outcomes. So, each observation of an 
individual action can be considered as a Bernoulli experiments 
and given the total number of observation n, the probability of k 
positive observation 𝑃 𝑘 𝑛)	is 
 
𝑃 𝑘 𝑛) = 𝑛

𝑘 𝑝o(1 − 𝑝)'Io                        (11) 
 

For total number of n observation, there is possibility of 0, 1, 
2, … n positive outcomes. The accuracy of successful 
measurement of trust is sum of all individual probability P(k|n) 
that meets the trust threshold and confidence threshold of beta 
distribution, which can be calculated using the simple algorithm 
shown in Figure 2.  
 
___________________________________________________ 
1.Set k= 0 
2.Set Prob = 0 
3.𝐖𝐡𝐢𝐥𝐞	 	k ≤ n  
4.				{	 
5.   If ( τ = > 0.5 &		γ	> 0.5) 
6.     {Prob = 𝑃𝑟𝑜𝑏 +	(𝑛𝑘)𝑝

o(1 − 𝑝)'Io} 
7.   k = k + 1 
8.  } 
___________________________________________________ 

Figure 2 Algorithm for computing accuracy of trust assessment  

Here, Prob represents the accuracy of trust measurement, n is 
the total number of observation, k is the number of positive 
observation. α = k +1, β = n-k+1, τ = O

OPQ
= oP%

'P&	
, 

 

γXYZ,XY[ 	=
𝑋𝛼−1𝜏+𝜀

𝜏−𝜀 (1−𝑋)β−1𝑑𝑋
𝑈α−11

0 (1−𝑈)β−1𝑑𝑈
. 

 
Figure 3 shows the results of the plot based on algorithm 

described in Figure 2. The horizontal axis represents the number 
of total observations; vertical axis represents how likely trust 
model is able to successfully predict the trustworthiness of an 
agent given the number of observations. In terms of 100% 
competency agent, it only takes 5 runs to successfully predict 
trustworthy agents and it takes 8 and 10 observations for the trust 
accuracy of 90% and 80% competency agents to converge to 1. 
There is a slight drop of trust accuracy assessment with 6 
observation compared to 5 observations in 90% and 80% 
competency settings. However, the trust accuracy quickly 
converges to 1 afterwards.  
 

 
Figure 3 Probability of correct trust assessment vs. number of 
observation with respect to different competency levels of agents 

 
The number of 4 observations is a tipping point for all three 

settings of trust evaluation. Below 4 observations, it is unlikely 
that a trustworthy agent would be discovered. This is consistent 
with the real-life trust building where it takes a number of 
positive interactions for people to build trust towards others. 
Moreover, as the number of observation becomes large, trust 
value is able to converge to unity and agent is able to make high 
accuracy trust assessment.  

4 A TRUST BASED MODEL OF SELF-ORGANIZING 
SYSTEMS 
Field is considered a mathematical representation of the 

influence present in the physical environments [37]. In physics, 
gravitational field, electronic field and magnetic field is used 
very common. In biology, chemical field can influence the 
development of living creatures [38]. Inspired by the natural 
field, we present a two field approach to govern agent behavior 
in SOS [37]. Based on information from task field and social 
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field, and trust value, social rule based behavior regulation 
(SRBR) can suggest optimal actions for agents to take.  

4.1 Task Field 
Task field of SOS is considered the field generated by the 

task environments such as repulsion of obstacles and attraction 
of the target [39]. In the self-organizing box-pushing example 
from previous research [19], agents do not have explicit 
communication between each other but make movements based 
only on perceived task field strength. In a task environment 
where there are m targets (represented by 𝜃) and n obstacles 
(represented by 𝛽), the task field can be shown as, 
 
 𝑡𝐹𝑖𝑒𝑙𝑑	 = 	𝐹𝐿𝐷𝑇 𝜃1, 𝜃1, … 𝜃𝑚, 𝛽1, 𝛽2, … 𝛽𝑛 ,         (12) 
 
where FLDT indicates an operator for task field generation.  

4.2 Social Field 
Besides task field, agents’ behavior in SOS can also be 

affected by their peers. Social field is generated by an agent’s 
neighbors and adds an another layer of information to the self-
organizing agents. It can be considered an aggregation of the 
relationships between the individual agent and the other agents 
it is interacting with.  

For an agent i with n neighboring agents within its 
communication range, social field can be represented as,  

 
	𝑠𝐹𝑖𝑒𝑙𝑑	 = 	𝐹𝐿𝐷𝑠 𝜑1, 𝜑2, …𝜑𝑛 ,                     (13) 

 
where FLDs represents a generation operator of social field. ψ1, 
ψ2, …ψn indicates the relationship between agent i and his 
neighboring n agents.  

4.3 Social Rule based Behavior Regulation 
The application of task field and social field allows us the 

opportunity to devise social structuring into the SOS to explicitly 
distinguish between the two fields and perform complex tasks 
[6,39]. We define a term called ‘social rule based behavior 
regulation’ (SRBR) as a mapping between the two field, trust 
value and the agent actions. When agents have task field, social 
field and trust information in place, social rules define 
recommended actions for agents to take. Relationship between 
suggested action and task field, social field, trust value can be 
shown in equation (14). 
 

Action = SRBR (tField, sField, trust value)        (14)           
 
where SRBR means the social rule based behavior regulation. 
tField represents task field and sField represents social field. 
While each agent makes decisions based on social rules, the 
combined effect will generate emergent complex behavior at the 
system level. 

4.4 Trust based Framework for SOS 
Trust model can be used in combination with task field, social 

field, and social rules to tackle the SOS uncertainty and its 
framework is shown in Figure 3.  

Trust is measured based on observation of selected partners 
within observation range. By observation, we mean observations 
of positive and negative behaviors from other agents with respect 
to following social rule. Whenever an agent violates the social 
rule, its behavior is considered a negative experience from other 
agent’s point of view; strictly following the social rule is 
considered a positive action. After trust is measured, agents 
compare expected trust value with cooperation threshold and its 
confidence of expected trust value with respect to confidence 
threshold. If trust value and confidence towards an agent is 
greater than the threshold, the agent is consider trusted and vice 
versa. At the same time, social rules combine information from 
task field, social field and trust decisions (trust or distrust) and 
suggest actions. The collective effort made by each single agent 
will affect the emergent system performance, and this will in turn 
lead to another round of observation by the agents. The iterative 
loop will continue until systems complete required task. Upon 
completion, system performance can be measured in terms of 
system effectiveness and system efficiency.  

 
Figure 3. The trust based model for Self-organizing System with 
heterogeneity 

5 CASE STUDY 

5.1 The Box-pushing Problem  
The box-pushing problem is often classified as a piano 

mover’s problem or trajectory planning [40]. Numerous 
mathematical and topological solutions have been proposed in 
the past [40]. In our paper, we are using a self-organizing 
approach to solve box-pushing problem in which agents work 
collectively, follow simple rules and push the box towards a 
target without global knowledge. 

The box-pushing case study was modeled in Netlogo 
platform [41], a multi–agent simulation software. A R extension 
package was installed and enables communication between 
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Netlogo and R software, which allows agents to analyze beta 
distributions and evaluate trust values.  

In box-pushing simulation, we took into account the 
possibility of presence of various number of heterogeneous 
agents and integrated a trust model with SOS. We showed the 
design tradeoffs of application of trust model in SOS. In detail, 
we investigated into how trust among agents can have an impact 
on system effectiveness and efficiency with respect to different 
number of incompetent agents. Such an understanding will 
provide helpful guidance on future SOS design. 

A graphical illustration of box-pushing case study is shown 
in Figure 4. As we can see from the figure, multiple agents with 
limited sensing and communication range, and different 
capability (competency of pushing the box) need to self-organize 
to push and rotate the box towards the goal/target. During the 
transportation process, as there is an obstacle and walls along 
agents’ path and as the road becomes narrower, agents couldn’t 
just simply push the box but need to rotate the box when 
necessary [5,6], which adds complexity to the task. When the 
center of the box reaches the same horizontal x-coordinate of the 
target, the simulation is deemed a success.  

There are seven major task summarized as below: 
T1 = <Move><Box> to <Goal> 
T2 = <Rotate><Box> to <Goal> 
T3 = <Move><Box> away from <Walls> 
T4 = <Move><Box> away from <Obstacle> 
T5 = <Sense><Task Field>  
T6 = <Sense><Social Field>  
T7 = <Evaluate><Trust> on <Agents’ competency> 
 

 
Figure 4 Box-pushing task illustration [5] 
 

In Netlogo, distance is measured by patch-widths (pw). Patch 
is a single square area in the simulation environment [41]. As an 
example, the box in our simulation is 5 pw wide and 11 pw long.  

In box-pushing, agents have limited sensing and 
communication capabilities. They can broadcast their 
information to nearby agents but not to the whole team. They can 
also measure direction and distances, reason with simple rules, 
and have limited storage of observation information. These 
assumption is in line with the definition of “minimalist” robot 
[42] and is reasonable with the current applications of physical 
robot hardware [43].  

Box neighborhood can be simplified as six regions [6,44], 
as shown in Figure. 5. In determining agent’s neighborhood, an 
agent looks for agents in its own zone, and if it is on a long edge 
of the box, agents in adjacent zone on the long edge and agents 
in the opposite zone along vertical axis. For instance, the red 

agent in region 3 can sense the field strength of blue and green 
agents and itself. It can also count the number of agents in region 
2, 3 and 5.  

 
Figure 5. The six regions of box neighborhood 
 

Box dynamics is based on a simplified physical model. Its 
movement depends on simulated force and torque. Forces equals 
the sum of vector forces of every pushing agent. Each push 
carries same amount of force, which acts from the agents towards 
the box. Sum of 9 pushes will move the box 1 pw in a given 
direction. Torque is assumed to be exerted on the centroid of the 
box and equals to sum of moment arm of all vector forces of the 
pushing agents. 3 pushes with a moment arm of 5pw each will 
rotate the box 1 degree. We assume box carries a large moment 
of inertia and when it hits the obstacle, which is considered rather 
small, it will continue its movement until its expected end 
position is reached.  

In our simulation, there are total 9 pushing agents and 
individual agent’s competency vary depending on the simulation 
setup. We assume heterogeneous agents are always able to move 
to suggested positions of box neighborhood by following social 
rule but are limited by their competency of pushing the box.  
Competent agents are able to push the box 100% of the times. 
Incompetent agents can only successfully push the box 10% of 
times—i.e., only 10% of the total of number of pushes during the 
simulation are effective with a uniform distribution of time ticks.  
This simulates the real-life systematic error/noise or malfunction 
of force execution mechanism of physical robots. Need to 
mention that if entire robot is broken down and robots can not 
even move, it will make zero contribution to the box movement 
and such situation is not considered in our case study.  

Defining rules for the behavior of agent on the individual-
level is quite a challenge due to limited knowledge of agents. 
Moreover, although social rules can be designed for homogenous 
self-organizing box-pushing agents [5], when heterogeneity is 
presented, uncertainty might generate unexpected system 
behavior, such as hitting the obstacle and etc. How can we 
mitigate such uncertainty in SOS and accomplish task with 
reasonable time and good performance even with individual 
heterogeneity? And if so, what are the design tradeoffs? 

5.2 Task field, social field and trust model 
In order to facilitate heterogeneous self-organizing agents in 

accomplishing box-pushing tasks, we devise task field, social 
field and trust model into the system.  
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Task field: Task field in box-pushing case consists of an 
attraction field from the target and gradient like repulsion field 
from the walls & obstacles as warning to agents in case of 
dangerous situations. Here, attraction field from target is 
expressed in equation (14) 

 
tField = VeI��                                (15) 
 

where tField represents task field, V and λ are design constants, 
we choose V to be 80 and lambda is 0.1, d represents the distance 
between selected position and the target zone.  

Task field from the walls and obstacles is gradient based and 
is below 0. For position within 1,2 and 3 patch radius of obstacles 
and walls, it is -10, -8 and -6 respectively. In simulation 
environment, positions with higher field values are more 
preferable for agents. During the box movement, agents always 
seek low field position in the box neighborhood and try to push 
the box towards a position with higher field strength value [5,6]. 
At the same time, agents make predictions on preferred torque 
and force of box movement based on task field information and 
its position of box neighborhood. As shown in Figure. 6, red 
agent in box region 3 can obtain task field information from the 
green, blue agents and itself, represented by tFieldgreen, tFieldblue 
and tFieldred. Based on the task field information of nearby 
regions, agents estimate on the direction of preferred torque and 
force of box movement. They will then compare information 
from social field, trust value and make suggested movements. 
For instance, as tFieldgreen is smaller than tFieldred and also 
smaller than tFieldblue, according to our simulation algorithm, 
the preferred torque would be positive (counter-clockwise) and 
preferred force is towards target. Red agent has a tendency to 
move to a green region where it will contribute to preferred 
torque or force. 

 
Figure 6. Illustration of preferred torque and preferred force for 
red agent in box-pushing task 
 

Figure 7 is the pseudo code of how the red agent in box region 
3 in Figure 6 calculates its preferred torque and force. Agents in 
other regions estimate their preferred torque and force following 
similar logic and we will not give details of algorithm for agents 
in other regions here.  

Social field: Social field is an abstraction of relationships 
between agents. Here, social field represents agent’s sense of 
how many agents are in its neighboring regions and their relative 

positions, which has already been illustrated in Figure 5. It will 
be used combined with trust model to calculate expected torque 
and forces illustrated below.  
______________________________________________ 
1. If tFieldgreen <= tFieldred 
2.     If tFieldgreen <= tFieldblue 
3.          Set preferred torque positive 
4.          Set preferred force towards-goal 
5.     Else   
6.         If |tFieldblue – tFieldred| < 2 
7.             Set preferred force away-from-goal 
8.         Else  
9.         Set preferred force away-from-goal 
10.            Set preferred torque positive 
11. Else 
12.    If tFieldblue < tFieldred 
13.         If |tFieldblue–tFieldred | < 2 
14              If tFieldblue < 0 
15.              Set preferred force away-from-goal 
16.         Else 
17.               Set preferred torque positive 
18.               Set preferred force away-from-goal 
___________________________________________________ 
Figure 7. Pseudo code for estimating preferred torque and force 
based on task field information 
 

Trust model: In box-pushing task, agents have two kinds of 
actions. One is to per suggested action from SRBR, move to a 
recommended region in a box neighborhood, the other one is 
performing pushing action after moving to the recommended 
box region. We assume individual agent in box-pushing task are 
able to follow SRBR and successfully move to suggested box 
region, but their pushing behavior is limited by their 
competency. Whenever agents push the box, it is assessed by 
nearby agents as a positive experience and if agents fail to push 
the box, it is deemed a negative experience. Agents assess the 
trustworthiness of other agents by adopting the trust model 
described in section 3 and the dynamic of trust updating process 
of box-pushing case study can be seen in Figure 1.  

If agent j is considered by agent i to be trustworthy, it is 
considered by agent i to be competent enough to make the future 
push effort. And if it is not considered trustworthy, agent i will 
not count agent j in making the future push effort. Once trust 
information is gained, agents make predictions on expected force 
and expected torque (different from preferred torque and force): 
sum of vector forces of all trustworthy agents and sum of torque 
of all trustworthy agents. When the number of agents in a 
specific region is unknown to an agent due to its limited sensing 
ability, agent estimate the number to be rounded sum of all 
agents within sensing range divided by number of observed 
regions. 

5.3 Social Rule based Behavior Regulation 
Social rule based behavior regulation makes suggested 

actions for agents based on obtained task field, social field and 
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trust information. Agents first sense task and social filed 
information of nearby agents and itself.  Based on obtained 
information, it makes estimations on direction of preferred 
torque and force. Then agent makes trust decisions (either 
trustworthy or untrustworthy) based on observations of other 
agents. It counts number of perceived competent agents in 
different neighborhood and calculate expected torque and force. 
By comparing expected torque and force with preferred torque 
and force, agents make associated actions: When preferred 
torque and force matches with expected torque and force, agents 
stay at the current position; otherwise, it moves to a region where 
torque or force conflict could be alleviated. Figure 8 below 
shows a pseudo code for SRBR: 
______________________________________________ 
1.Sense task field of neighboring agents and myself  
2. Sense social field of neighboring agents and myself 
3.  Make estimations on preferred torque and force  
4. Apply trust model and measure trustworthiness of agents 
5.  Calculate perceived number of competent agents       
in different regions 
6.  Calculate expected torque and expected force                 
7. If expected torque calculation matches with preferred torque 
8.    If expected force calculation matches with preferred force 
9.       Stay at current position 
10.   Else 
11.      Move to region where force conflict can be alleviated 
12. Else 
13.  If expected force calculation matches with preferred force 
14.     Move to region where torque conflict can be alleviated 
15.  Else 
16.     Move to region where torque or force conflict can be 
alleviated 
______________________________________________ 
 
Figure 8. Pseudo code for Social rule based behavior regulation 
algorithm 

5.4 Simulation Environment Setup 
Figure 9 summarizes the simulation environment setup. 

Independent variables are the input/control variables in the 
simulation. Here, we vary the number of incompetent agents and 
compare how the use of trust model affects system performance 
with respect to without the use of trust model. To explain, when 
agents do not use trust model, they make predictions on expected 
torque and force value based only on observed presence of 
number of agents in nearby region rather than evaluate real 
competency of agents in those regions using trust model. 

There are two dependent variables we use for performance 
measurement: 

Success rate: the percentage of number of runs where agents 
can successfully push the box towards goal without hitting 
obstacles. 

Time duration: the total simulation time steps it takes for 
agents to push the box to target. Time duration is measured in 
ticks in Netlogo, similar to real-time seconds. Only time duration 

of successful runs is incorporated into the time duration 
calculation. 

 
Figure 9. Box-pushing environment setup, independent 
variables vs dependent variables 

6 RESULTS AND DISCUSSIONS 

6.1 Typical Failure Modes 
Figure 10 shows a visual representation of some typical 

failure and undesirable modes of box movement with motion 
trace examples when heterogeneous agents are presented. 
Figures 10 (a) through (d) are the results of running the 
simulation case of 7 incompetent agents and without trust model 
applied. It can be seen that incompetent agents result in sudden, 
excessive momentum, which leads to pushing the box towards 
the red obstacle, as shown in (a). Sometimes incompetent agents 
cause insufficient or excessive rotation torque, resulting in edge 
of the box hitting the red obstacle, as shown in (b). Besides 
failure mode of box-pushing, undesirable box movements are not 
critical but should be reduced, such as tumbled pushing 
trajectory in picture (c) or pushing the box slightly off the target 
in the vertical axis in picture (d).  

 

  
            (a)                      (b) 

  
            (c)                      (d) 
 
Figure 10. (a) failure with excessive pushing momentum (b) 
failure with insufficient/excessive rotation torque (c) undesirable 
tumbled trajectory (d) undesirable ending position of box 
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6.2 Simulation Results 
Applying a trust model should help decrease failure rate and 

optimize the moving trajectory of the box movement given task 
filed, social field information and the social rules applied. Figure 
11 shows the box-pushing trajectory with motion traces of 7 
incompetent agents and with the application of trust model. We 
can see that box movement trajectory is more smooth and the 
box ending position is closer to the target than without trust 
model applied.  

 

 
Figure 11. Visual representation of box movement with motion 
traces for 7 incompetent agents with trust model applied. 
 

 

 
(a) 

 
(b) 

 
Figure 12. Time duration & success rate of box pushing task for 
without & with trust model under different number of 
incompetent agents 

Figure 12 shows the statistical results of the simulation. Each 
simulation is composed of 100 runs and we take the average of 
all simulation results to maintain statistical significance. 

As shown in Figure 12(a), as number of incompetent agents 
gets larger (up to 5), incorporating trust between agents first 
increase the time for accomplishing the task and then decrease 
the time for finishing the task compared to without use of trust 
model and this difference is statistically significant (p < 0.05) 
according to the results of two sample t tests. The might be due 
to the fact that building trust between agent requires a certain 
number of observations. As there are relatively more competent 
agents in these settings compared to 7 incompetents and 9 
incompetent cases, the initial trust building process can be 
chaotic and would have errors in its assessment, which results in 
some loss of system efficiency. This means integration of a trust 
model with SOS does not necessarily increase system efficiency. 
It only increases system efficiency when number of incompetent 
agents reach a threshold value.  

Also, as the number of incompetent agent increase (for both 
without and with the trust model), time for task accomplishment 
first decreases and then increases, which implies incorporating 
some incompetent agents during the box-pushing task might be 
beneficial to the system efficiency as compared to when system 
is with full competent agents. This can be explained by 
characteristics of the box-pushing task: box-pushing task 
requires both cooperation and conflict resolution. Too few agents 
are not able to achieve cooperation in pushing box, while too 
many agents result in too much conflict and is not beneficiary 
either. So, optimal number of competent box-pushing agents 
should be neither too large nor too small. In our case, either 2 
competent agents, 7 incompetent agents or 4 competent agents 5 
incompetent agents is a good number for achieving optimal 
system efficiency. Such findings are also consistent with the 
finding from past literature [5] where moderate social structuring 
is crucial for collaborative box-pushing. Here, social structuring 
means the percentage of time agents are able to follow the social 
rule, which is similar to our simulation setup, where competency 
means percentage of time agents are able to make the push effort 
enforced by social norm.  

In Figure12 (b), we can see that SOS can be very tolerant of 
incompetent agents in terms of success rate. Even there are 5 
incompetent agents, the system can still maintain high success 
rate for both trust model and without trust model situation. This 
proves that SOS has high resiliency [3,4]. We also noticed that 
when the number of incompetent agent increases to 5, the 
success rate drops a little bit. Applying trust model can move the 
success rate back to almost 100%, which is larger than without 
trust model (p < 0.05 according to the results of two sample t 
tests). However, when 7 agents are incapable in the system, the 
success rate drops dramatically to 25%. With trust building 
among agents, system is able to maintain around 75% success 
rate, a large increase than 25% (difference is statistically 
significant, p < 0.05 according to the results of two sample t 
tests). What is also interesting is when incompetent agents are 9, 
the system success rate goes back to high percentage even 
without use of trust model, this can be explained by the fact that 
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pushing forces of all incompetent agents lead to a more balanced 
state of box movement compared to when there are 7 
incompetent agents (individual unbalanced pushing effort of the 
2 competent agents may not be corrected by the rest of 7 
incompetent agents), so success rate remains high in this case. 
Still, Adoption of a trust model can assist agents push the box 
with almost 100% success rate when system is full of 
incompetent agents. 

7 CONCLUSIONS 
When tasks become more complex, self-organizing systems 

can be a useful approach to achieve task goals. From a system 
design perspective, there are two levels of design parameters that 
require careful design attentions, one is individual level (i.e., 
agent level) and the other social level (i.e., system level or 
interaction level). Our previous research has demonstrated that 
for homogeneous self-organizing systems, where all 
participating agents are equally capable and competent, devising 
social structures plays an important role for increased system 
level effectiveness and efficiency [5]. In real world applications, 
however, agent competencies cannot be guaranteed since some 
agents may experience damage for various reasons. The system 
heterogeneity due to the partial loss of competency among agents 
adds another layer of complexity to the design of self-organizing 
systems. In this paper, we presented a trust modeling based 
approach to deal with this issue, which essentially is to add a 
layer of mutual behavior prediction capability to agents. 

While social structuring allows agents to explicitly assume 
their social roles (i.e., system level roles) through shared social 
rules [5], it does not provide any information of the functional 
capability and competence of agents. When the effective 
coordination among agents is demanded by tasks, an agent must 
predict such information based on its own observation. In this 
paper, a beta probabilistic trust model is introduced and applied 
to the box-pushing case study. By setting up the cooperation 
threshold and confidence threshold, an agent can effectively 
make trust decisions (i.e., trust or do not trust another agent being 
able to perform the push action) and coordinate more effectively. 

The simulation results of our proposed trust model based 
approach have led us to some interesting findings: 

 
• Incorporating a trust model into SOS can improve the 

system effectiveness (i.e., success rate) in general. The 
results show that positive effect of adding trust model does 
not depend on the number of incompetent agents. The 
positive impact of trust modeling is especially strong when 
the system performed poorly with 7 incompetent agents. 

• Depending on the number/percentage of incompetent 
agents, the system efficiency (i.e., time duration) first 
decreases then increases. In another word, efficiency of the 
system might suffer when system does not have many 
incompetent agents with trust model applied.  

 
It is worth mentioning that the above findings are now limited 

to the box-pushing type of tasks. For more complex tasks, each 

agent in a system needs to perform multiple and different 
combinations of functions, just as different components in a 
system perform different functions. In such highly 
heterogeneous situations, in order for an agent to effectively self-
organize with others, it will need to establish a complete trust 
profile of other agents through observation. Such a trust profile 
will include competence trust values of a set of functions. 
Furthermore, by moving from observing of single agent’s 
behavior to observing the patterns of multi-agent behaviors, 
more advanced trust calculation can be developed. We plan to 
explore further along these two directions.  
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