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Abstract  

It is often hard for a reinforcement learning (RL) agent to utilize previous 

experience to solve new similar but more complex tasks. In this research, 

we combine the transfer learning with reinforcement learning and investi-

gate how the hyper-parameters of both transfer learning and reinforcement 

learning impact the learning effectiveness and task performance in the con-

text of autonomous robotic collision avoidance. A deep reinforcement learn-

ing algorithm was first implemented for a robot to learn, from its experience, 

how to avoid randomly generated single obstacles. After that the effect of 

transfer of previously learned experience was studied by introducing two 

important concepts, transfer belief—i.e., how much a robot should believe 

in its previous experience—and transfer period—i.e., how long the previous 

experience should be applied in the new context. The proposed approach has 

been tested for collision avoidance problems by altering transfer period. It 

is shown that transfer learnings on average had ~50% speed increase at 

~30% competence levels, and there exists an optimal transfer period where 

the variance is the lowest and learning speed is the fastest. 

1 Introduction 

Collision avoidance is a common research topic in many industrial fields. In 

the area of robotics, research has been focused on issues related to how ve-

hicle robots avoid obstacles as well as each other (Shiomi et al, 2014) and 

how assembly robots avoid interferences among its own arms or with those 

of others (Hourtash et al, 2016). In transportation. Self-driving cars must be 

able to avoid obstacles and other vehicles in various situations (Mukhtar et 
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al, 2015). In the shipping industry, collision avoidance can be highly diffi-

cult, when water areas are congested, due to the large ship inertia causing 

immovability (Goerlandt & Kujala, 2014). Airplane collision avoidance 

(Zou, 2016) and even the collision with debris in space (Casanova et al, 

2014) have become issues due to the increasing level of congestion.  

Approaches to solving collision avoidance problems can be divided into 

two large categories, one is vehicle control system (Machado et al, 2016), 

relying on traditional control theories and intelligent systems approach, and 

the other traffic system development. The recent progress in machine learn-

ing, especially deep learning (LeCun et al, 2015), has opened the ways to 

developing systems that can learn from humans’ operation experiences 

through supervised deep learning and from machines’ own experiences 

through reinforcement learning. The reinforcement learning approach al-

lows an agent to learn from its experience. By interacting with the environ-

ment, the agent learns to select actions at any state to maximize the total 

reward. In case of deep learning, e.g., Alpha-Go (Chen, 2016), the agent 

learns from the experience of human experts and apply the learned skills to 

solving the problems in the same domain of the experts. 

One common observation about the current machine learning systems, 

including AlphaGo, is that they can only function within the narrow domain 

of the tasks that they are trained to work for. This observation manifests the 

limited level of “intelligence” of the current systems.  

In his seminal paper, March (1991) examined the organizational learning 

in humans and presented various features of, and relationships between, the 

essences of human organization learning: exploration of new possibilities 

and exploitation of old certainties. Allocating resources to these two capa-

bilities represents the adaptiveness of the human organization. Based on this 

insight, a machine’s intelligence can be considered as composed of the ma-

chine’s capabilities of exploration, exploitation, and its ability to regulate 

the “resource” allocation between the two. This basic idea has been imple-

mented in our research at two different layers. First, the reinforcement learn-

ing itself is based on the exploration-exploitation of the learned knowledge 

(i.e., the agent’s current neural network) and the random choices. Second, 

the transfer learning allows the agent to exploit the previously learned expe-

rience (i.e., an expert’s neural network obtained from the previous task con-

text) and explore the new task context through learning and exploration. The 

long-term goal of this research is to develop an integrated transfer reinforce-

ment learning technique that allows agents to learn from multiple task do-

mains and exploit the learned knowledge in new task contexts for more ef-

fective learning and better task performance.  

In this paper we focus on the robotic collision avoidance problem and 

investigate how transfer learning (Pan and Yang, 2010), in addition to deep 
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reinforcement learning, can be applied to allow agents to exploit and explore 

across task contexts. In the following, Section 2 provides a critical review 

of the relevant work in collision avoidance and machine learning and points 

out the gap in the literature. Section 3 describes our proposed approach of 

transfer reinforcement learning in detail. Computer simulation-based case 

studies are presented in Section 4 with the results being discussed in Section 

5. Section 6 draws the conclusions and points to future research directions. 

2 Related Work 

Collision avoidance problems have always attracted the attention of re-

searchers in various fields: artificial intelligence, control theory, robotics, 

multi-agent system, etc. The traditional practice to achieve real-time obsta-

cle avoidance was to create an artificial potential field (Khatib, 1986). 

Fahimi (2008) proposed harmonic potential functions and the panel method 

to address multi-robot obstacle avoidance problem in the presence of both 

static and dynamic obstacles. Mastellone et al. (2008) designed a controller 

for collision avoidance based on Lyapunov-type approach and demonstrated 

the robustness of the system when the communication between robots was 

unreliable. Keller et al. (2016) designed a path planner for unmanned aircraft 

systems to provide surveillance by combining graph search and B-spline 

parametric curve construction, which could successfully navigate around 

obstacles and provide sufficient coverage. Tang and Kumar (2015) proposed 

the OMP+CHOP algorithm for a centralized multi-robot system, which was 

shown to be safe and complete, but at the cost of optimality.   

For collision avoidance algorithms to be more adaptive and flexible in 

real world complex environment, learning capabilities of a multi-agent sys-

tem have been developed. In recent years, deep learning has achieved tre-

mendous success in various areas such as image recognition (Krizhevsky et 

al., 2012), speech recognition (Hinton et al., 2012), automatic game playing 

(Mnih et al., 2013), self-driving (Bojarski et al., 2016) and so on. Deep 

learning algorithms can extract high-level features by utilizing deep neural 

networks, such as convolutional neural networks (CNNs) (Krizhevsky et al., 

2012), multi-layer perceptrons and recurrent neural networks (RNNs) 

(LeCun, 2015). Scaling up deep learning algorithms is able to discover high-

level features in a complex task. Dean et al. (2012) constructed a very large 

system which was able to train 1 billion parameters using 16000 CPU cores. 

Coates et al. (2013) scaled to networks with over 11 billion parameters using 

a cluster of GPU servers.  
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Mnih et al. (2013) introduced deep learning algorithm using experience 

replay and CNNs to learn a Q function, tha can play various Atari 2600 

games better than human players. Experience replay allows an learning 

agent to randomly sample batches from past experiences to update Q values, 

thus breaking the correlations between consecutive frames. By combining 

supervised learning and reinforcement learning, a group at DeepMind has 

further proven that their deep learning algorithm can outperform a world 

champion in the most challenging classic game Go (Silver et. al., 2016). 

Schaul et al. (2016) further developed a prioritized experience replay frame-

work to sample more important transitions and learn more efficiently.  

Chen (2016) developed a decentralized multi-agent collision avoidance 

algorithm based on deep reinforcement learning. Two agents were simulated 

to navigate toward their own goal positions and learn a value network which 

encodes the expected time to goal, and the solution was then generalized in 

multi-agent scenarios. Deep learning algorithms have been successful in 

achieving end-to-end learning. Dieleman and Schrauwen (2014) applied 

feature learning directly to raw audio signals by training convolutional neu-

ral networks. The results showed that the system learns automatically fre-

quency decompositions and feature representations from raw audio. 

Self-driving is a promising field that heavily relies on the advances in 

deep learning. Since self-driving cars always require a great deal of expen-

sive and complex hardware, Yu et al. (2016) implemented a deep Q-learning 

algorithm using dataset (images) from real-time play of the game JavaScript 

Racer. In a recent published paper (Bojarski et al., 2016), a convolutional 

neural network is trained to map steering commands directly from raw pix-

els from camera input. This end-to-end learning approach is challenging in 

that it requires huge number of inputs and the advantage is that it releases 

the reliance on the designer’s prior domain knowledge. 

Transfer learning refers to utilizing knowledge gained from source tasks 

to solve a target task. In a reinforcement learning context, transfer learning 

can potentially speed up the learning agent to learn a new but related task 

(i.e., target task) by learning source tasks first. Tayler and Stone (2007) in-

troduced a transfer algorithm called rule transfer, which summarizes source 

task policy, modifies the decision list and generates a policy for the target 

task. Rule learning is well understood and human readable. The agent ben-

efits from the decision list initially and continues to refine its policy through 

target task training. It was shown that rule transfer can significantly improve 

learning in robot soccer using learned policy from a grid-world task.  

Fernandez and Veloso (2006) proposed two algorithms to address the 

challenges of policy reuse in a reinforcement learning agent. The major 

components include an exploration strategy and a similarity function to es-

timate the similarity between past policies and new ones. The PRQ-learning 
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algorithm probabilistically bias an exploration learning process by using a 

policy library. In the second algorithm called PLPR, the policy library is 

created when learning new policies and reusing past policies.   

Torrey (2006) introduced the induction logic programming for analyzing 

previous experience of source task and transferred rules for when to take 

actions. Through an advice-taking algorithm, the target task learner could 

benefit from outside imperfect guidance. A system AI
2
 (Advice via Induc-

tion and Instruction) for transfer learning in reinforcement learning was 

built, which creates relational transfer advice using inductive logic pro-

gramming. 

In transfer learning within deep neural networks, a base network on a base 

dataset and task is first trained, and the learned features are then transferred 

to the target network to be trained on a target dataset and task, commonly 

by copying the first n layers of the base network to the first n layers of the 

target network. A task-driven deep transfer learning framework for image 

classification was designed (Ding et al., 2016), where the features and clas-

sifiers are obtained at the same time. Parisotto et al. (2016) proposed a trans-

fer reinforcement learning approach (Actor-Mimic) to mimic expert deci-

sions for multi-task learning, which adopts the concept of policy distillation 

(Hinton et al, 2015). 

To date there has been little literature aiming to combine deep reinforce-

ment learning and transfer learning to solve robotic collision avoidance 

problems, because (1) it is difficult to directly learn from raw pixel or dis-

tance sensory inputs, and (2) it requires large amount of training data, which 

is not easy to generate in real life. This research aims to close the gap be-

tween real world collision avoidance and deep learning by proposing a com-

bined transfer & reinforcement learning approach to learn a new task more 

efficiently.  

3 A Transfer & Reinforcement Learning Approach 

Before moving into details of the mechanism for collision avoidance, we 

first introduce the basic idea and our overall goal of research on integrated 

machine learning for developing intelligent systems. 

Reinforcement learning has the advantage of learning from the agent’s 

own experience and the agent learns to choose actions at any state to max-

imize the total rewards by interacting with the environment. Although rein-

forcement learning allows agents to acquire collision avoidance skills (Ma-

taric, 1998; Fujii et al, 1998; Frommberger, 2008), one challenge is that it 

requires a large amount of training data, which is usually hard to obtain in 
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real life considering the cost of building physical systems and conducting 

experiments.  

On the other hand, recent progress in self-driving car research (Bojarski, 

2016; Ohn-Bar & Trivedi, 2016) and deep learning, e.g., Alpha-Go (Chen, 

2016; Churchland & Sejnowski, 2016; Wang et al, 2016), have demon-

strated that the experience of human “experts” represents a highly valuable 

source of intelligence and can be learned by machines through deep learn-

ing. However, in many situations, the access to human expertise data can be 

very limited, since it is difficult, if not impossible, to acquire human expe-

rience data in all possible situations. How to effectively and efficiently com-

bine human expertise with machine self-learning remains to be a challenge. 

In this research, we consider that a machine’s “intelligence” is dependent 

on three fundamental capabilities:  

• First, it must be able to “exploit” the existing knowledge or expertise to 

the maximum extent so that all the known situations can be dealt with. 

This capability corresponds to transfer learning at a macro scale and deep 

learning mechanisms at a micro scale. 

• Second, the machine must be able to “explore” the unknown territories 

and develop new knowledge or expertise from its own experience. Rein-

forcement learning is a candidate for this capability.  

• Lastly, depending on the level of dynamics of the task domain and envi-

ronment, the machine must be able to “adapt” the ratio of exploitation 

over exploration in order to stay effective. More dynamic or changeable 

domains require more exploration. Human design or meta-level learning 

mechanisms are needed to deal with this issue. 

Our long-term goal is to develop an integrated machine learning technol-

ogy that can (1) learn from multiple experts from diverse domains, (2) apply 

the learned expertise to explore new domains (e.g., requiring multiple do-

main expertise, or more complex), and (3) manage its own learning pro-

cesses (i.e., exploitation and exploration) according to the change in task 

domains. The “domains” can be knowledge domains, such as mechanical 

design, and technical domains, such as robotic (e.g., robot, car, ship) colli-

sion avoidance. Our current focus is on technical domains.  

As the first step in the research, we seek to develop an integrated learning 

mechanism that can take advantage of existing steering experience from ei-

ther humans or other robots to learn about actions in new and more complex 

situations. More specifically, we propose a transfer reinforcement learning, 

or TRL for short, approach built on deep reinforcement learning algorithms. 

By combining the experience from the “expert”, the agent can reduce trial 

time and learn about more complex tasks faster. 
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3.1 Deep Reinforcement Learning 

The attempt was made to use reinforcement learning algorithms to train the 

system so that it automatically learns to solve tasks only from sensory inputs 

and a scalar reward signal. However, it was difficult to collect the sufficient 

amount of data as the training input, especially in real life, by only relying 

on sensory inputs. In addition, the state-action space is always continuous 

which makes it impractical to build a look-up Q-table. To overcome the 

curse of dimensionality, deep neural networks are used as functional approx-

imators to replace the Q-table and approximate Q values. 

We began this research by implementing the deep reinforcement learning 

algorithm with experience replay as proposed in (Mnih, 2013). We first con-

sider standard Q-learning (Watkins, 1989) which can be formulated as a tu-

ple of , , , ,S A P R  . S is the state space, which consists of all the agent’s 

possible states in the environment. A is the action space consisting of all the 

possible actions that the agent can take. P is the transition matrix (usually 

unknown in a model-free environment), R is the reward function, and is 

the discount factor. At any given time t, the agent’s goal is to maximize its 

future discounted return
T

t t

t t

t

R r
−





= , where T is the time when the game 

terminates. Like many other reinforcement learning algorithms, the agent 

estimates at each time step the action-value function ( , )Q s a , using Bellman 

equation as an update. Such value iteration algorithms converge to the opti-

mal value function.  

1( , ) max ( , ) ,i i
a

Q s a r Q s a s a+


  = +
 

E                      

In order to adapt to tasks involving infinitely large state/action space 

where building the Q table is impractical, deep Q learning with experience 

replay uses a neural network as a function approximator (Q-network). A Q-

network with weights 
i  can be trained by minimizing the loss function 

( )i iL   at each iteration i, 

2( ) ( ( , ; )i i i iL y Q s a  = − E  

where 1max ( , ; )i i
a

y r Q s a  −


  = +
 

E  is the target Q-network for itera-

tion i. The gradient is calculated by the following: 
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( ), , , ' 1( ) max ( , ; ) ( , ; ) ( , ; )
i ii i s a r s i i i

a
L r Q s a Q s a Q s a     −



   = + − 
  

E  

The deep Q learning algorithm utilizes a technique called experience re-

play where the agents’ experiences, 1( , , , )t t t t te s a r s += , are stored into a 

replay memory, 1 2, ,..., ND e e e=  (N is the capacity of the replay memory). 

Then mini-batches are randomly sampled from D and applied to Q-learning 

updates. The agent selects an action according to the  -greedy policy. 

Various approaches have been addressed to stabilize learning process, 

such as Deep Q network (DQN) (Mnih et al, 2013), double DQN (van Has-

selt et al., 2015) and dueling DQN (Wang et al., 2016b). In this research, 

our base network is built by combining these three approaches. 

3.2 Transfer Reinforcement Learning 

The goal of transfer learning is to transfer “expert” knowledge into a learn-

ing agent (student) for new tasks which are more complex. The expert net-

work is first obtained by training through the source task, and then used for 

initialization in the student’s network for the target task. In order to utilize 

the expert experience more efficiently, a new transfer phase is added to the 

traditional  -greedy policy (Fig. 1), where the agent selects transfer action 

according to the expert network. The transfer action is defined as one of the 

three actions with the top three values of the expert network. This new pol-

icy is called 
T -greedy policy, which is defined as the following: 

(a) Transfer: With probability
1 0 1

tran

t
p

T

 

= − 
 

, the agent selects the 

transfer action—i.e., the action suggested by the expert neural network. 

tranT shown in Fig.1 is the transfer period, during which the agent is 

influenced by the expert network (transfer period is shorter than the ex-

ploration period exp lT , where   is annealed close to 0.1); 
0 is the ini-

tial transfer belief, which measures how much confidence the agent puts 

in the expert knowledge. 

(b) Exploration: With probability ( )2 11p p= − , the agent selects a ran-

dom action. 

(c) Exploitation: With probability ( )( )3 11 1p p= − − , the agent selects 

the current best action produced by its own learned knowledge/ network. 
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Fig. 1 Exploration/exploitation with transfer 

3.3 Agent Learning Behavior 

A computer game environment was created to conduct case studies for trans-

fer reinforcement learning for collision avoidance. The game environment 

consists of a learning agent (green), static obstacle (red), and a goal area 

(orange), as shown in Fig. 2. The simpler source task has only a single static 

obstacle whereas the more complex target task always has two obstacles. 

The obstacle is randomly generated at the beginning of each collision avoid-

ance episode.  

 

• The state in the case studies is defined as the pixel values of the game 

window. Fig. 2 shows an example. 

• The action space is composed of seven actions, a1 through a7, as indicated 

in Table 1.  

• The reward function is defined as: 

200 if reach goalposition

900  if hit anyobstacle

1   otherwise

r




= −
−

 

Fig. 3 illustrates the proposed transfer reinforcement learning process. An 

expert network Ne is first obtained by training through the source task, which 

involves a single obstacle. In the target task, the agent follows 
T - greedy 

policy to select actions with probabilities p1, p2, and p3 as described in Sub-

section 3.2. 

1 0 1
tran

t
p

T

 

= − 
 

( )2 11p p= −

( )( )3 11 1p p= − −
0 

 

p 

p1 

p2 

p3 
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Table 1 Agent actions 

Action v    

1a  5 0.35 

2a  5 0.2 

3a  5 0.1 

4a  10 0 

5a  5 -0.1 

6a  5 -0.2 

7a  5 -0.35 

 

Fig. 2 Environment setup 

 
Fig. 3 Agent learning behavior 

1 0 1
tran

t
p

T

 

= − 
 

( )2 11p p= −

Yes No 

Ne 

Nc 

( )( )3 11 1p p= − −
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After receiving a reward rt from the environment, the agent stores the cur-

rent experience et into the experience replay memory. The currently learned 

network Nc is then updated by sampling mini-batches from the experience 

replay, as shown in Fig. 3. 

4 Case studies 

4.1 Collision Avoidance Game System Architecture 

The collision avoidance game system consists of two modules: a visualiza-

tion module (Pygame) and a machine learning module (TensorFlow). The 

visualization module creates graphical display for the system, where it reads 

the current environment state and simulates kinematics and dynamics. After 

taking some action, the agent will receive a reward, based on which a replay 

memory is constructed and sent to the machine learning module. Tensor-

Flow deals with the heavy lifting to sample batches of experience and update 

the network weights, and then sends the updated weights back to the visual-

ization module, as shown in Fig. 4. 

 

 

Fig. 4 Collision avoidance game system architecture 

4.1 Case Parameters 

Two task situations are used for the case studies, namely “Source task – one 

obstacle” and “Target task – two obstacles”, as shown in Fig. 5. As indicated 

in the figure, the source task has a smaller obstacle area and only one obsta-

cle can randomly appear in the obstacle area. The target task situation, how-

ever, has a much wider obstacle area and there are always two obstacles that 

can appear in any random relative positions within the large obstacle area.  

Visualization Module 

P
y
g
am

e 

•Create graphical display 
•Initialize environment 
•Read current state 
•Take an action 
•Receive a reward & observe 
new state 
•Store into replay memory 

Machine Learning Module 

T
en

so
rF

lo
w

 

•Sample mini-batches from re-

ply memory 

•Update network 

Replay Memory 

Updated network weights 
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Fig. 5. Case study task situations 

 

The network structure is the same as the original DQN paper (Mnih et al, 

2013) with an array of 84*84 pixels input and an output of 7 actions. All our 

case studies were trained using Adam optimizer with a learning rate of 

0.001. The discount factor   is 0.99. The agent follows either  -greedy 

policy in the source task or 
T -greedy policy in the target task with   an-

nealed from 1.0 to 0.1 over the first 1 million frames, with 1 frame = 1 state. 

The replay memory consists of 50, 000 recent frames, and 50, 000 episodes 

were trained in total, with 1 episode = 1 game play. The transfer period could 

be the first 150k, 300k, 700k, or 1 million frames. The choice of hyper-

parameters is summarized in Table 1. 

Table 1 Hyper-parameters 

 
Source task 

One-obstacle 

Target task 

Two-obstacle 

Replay memory size 50,000 50,000 

Mini-batch size 32 32 

Discount factor 0.99 0.99 

Learning rate   0.001 0.001 

Total training episodes 50,000 50,000 

  1→ 0.1 1→ 0.1 

Annealing frames 1 million 1 million 

Transfer period (frames) N/A 150k/300k/700k/1m 

Initial transfer belief N/A 0.9 

  

Goal area 

obstacle area 
  

Goal area 

obstacle area 

Source task – one obstacle Target task – two obstacles 
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5 Results and Discussion 

After an expert network is obtained by training through the source task with 

single obstacle, the agent is then given a more complex target task, which 

has two obstacles and a larger obstacle field. The results of learning effi-

ciency and effectiveness are shown in Figs. 6, 7 & 8. All the curves in Fig. 

6 are the average of 10 learning performances by running 10 random seeds. 

The curves are also smoothed using exponential smoothing with the dump-

ing factor set to 0.9. In all three figures, the unit of the x-axis is the number 

of 100 episodes. Each episode is defined as the period from agent starting 

movement to arriving at the goal, as shown in Fig. 5.  

The colors in the figures indicate different lengths of the transfer period, 

which is measured in number of frames. For example, the blue line in Fig. 

6 shows the performance of transfer learning with transfer period = 300K 

frames. Roughly, 1 million frames = 115 (x100) episodes. The two red col-

ored baseline cases, discussed below, do not use 
T -greedy decision policy. 

The y-axis of Figs. 6 & 7 is the total reward value. Since the reward 

function is set to heavily penalize the collision with the obstacle and very 

small positive values are for reaching the goal, the final value of the total 

reward is close to zero. In Figure 8, the y-axis shows the standard deviation 

of multiple learning runs at different number of episodes, measured as total 

reward value.  

5.1 Baseline Cases 

For the purpose of comparison, we established two baseline cases. The first 

baseline case is for an agent to learn about the “target task – two obstacles” 

by “bootstrap”—i.e., the neural network is randomly initialized. The dark 

red lines shown in Figs. 6 & 7 indicate the learning performance of this 

baseline case. As the figures show, starting from scratch requires more time 

for the agent to learn about the task. Especially, it takes much longer training 

for the agent to become capable of dealing with the two-obstacle collision 

avoidance. 

Another baseline case is “copy expert”—i.e., the weights of the expert 

network learned from the source task are copied into the learning agent as 

the initial neural network for the “target task.” After initialization, the agent 

starts its regular reinforcement learning: the copied expert network weights 

are updated by following the  -greedy policy (i.e.,  starts from 1 and an-

nealed to 0.1) to select actions. The red line shown in Figs. 6 & 7 indicates 

the learning performance of this baseline case.  
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5.2 Learning Speed 

Baseline case bootstrap: As shown by the dark-red line in Fig. 6, without 

any input from the expert knowledge, it takes much longer for the agents to 

learn about the target task. Huge lag appears until around 11K frames point. 

However, it catches up very fast after that point. The final learning effec-

tiveness within the 50K frames range is inferior. 

Baseline case copy expert: In this case, as shown of the red color in 

Fig.6, the starting point for the learning agent is a complete copy of the ex-

pert network. Since immediately after the learning process starts, the “expert 

network” will be updated by following  -greedy policy, the “expert super-

vision” does not really exist. As a result of copy-expert, the learning picks 

up faster than bootstrap case with almost the constant speed. We believe 

that the difference in learning speed between these two baseline cases indi-

cates the level of similarity of the source task and target task domain. A 

detailed discussion of the similarities between source and target task do-

mains will be presented in a separate publication (Liu and Jin, 2018). 

 
Fig. 6 Average learning performance of each transfer period 

 

Transfer reinforcement learning (TRL) cases with varying transfer 

period: Our primary simulation runs of TRL processes have revealed that 

the transfer period plays a key role in affecting learning speed. Fig. 6 illus-

trates the learning performance of varying transfer period from 150K, 300K, 

700K, to 1M frames with yellow, blue, green and pink colors, respectively. 

As shown in Fig. 1, shorter transfer period Ttrans means shorter period of 

Number of Episode (x 100) 

R
e
w

a
rd
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expert supervision—i.e., to use expert network Ne to select actions (also see 

Fig. 3). From a learning speed point of view, the results in Fig. 6 indicate 

that longer transfer periods lead to better learning performance, with the ef-

fect diminishing as it becomes sufficiently long (after 700K frames). When 

the transfer period is getting closer to 1 million frames—i.e., the annealing 

time when  decreases to 0.1—the performance decreases. Comparing with 

the two baseline cases discussed above, the positive impact of expert super-

vision is considerably large, especially until the 200K episodes range. 

 

Fig. 7 Different transfer period (a) 150K frames, (b) 300K frames, (c) 700K 

frames, and (d) 1 million frames 

5.3 Learning Variance 

In addition to learning speed, we identified the variance as an important 

measure of learning performance since in most intelligent engineering sys-

tems, the consistency of learning performance is very much demanded. Fig. 

7 illustrates the learning variance multiple learning runs with different trans-

fer periods of first 150K, 300L, 700K, 1M frames. Each color represents an 

independent trial. Each transfer period has 10 trials in total. The red curves 

are the two baseline cases. The standard deviation of each transfer period 

case before convergence (t from 0 to 200) is shown in Fig. 8. It can be seen 
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that the variances of different transfer periods share a similar pattern: de-

creases at beginning, then increases, and finally decreases again as the learn-

ing converges. The width of the exploration (see Fig. 1) played a role in 

determining such a pattern. 

A careful examination of Fig. 8 indicates that the overall variances are 

larger for both short transfer period case (150K frames) and long transfer 

period case (1M frames), while the 300K-700K transfer period cases appear 

to have less variance for different learning trials, exhibiting more consistent 

learning performance of the system. Further research is needed to investi-

gate this interesting phenomenon.  

 

Fig. 8 Standard deviation plot of various transfer periods 

6 Conclusions and Future Work 

Collision avoidance is a common research topic in various industrial fields. 

Recent progress in machine learning has made it possible to train robots or 

agents to acquire collision avoidance knowledge. Although in the engineer-

ing research community, design is still focused on static and dynamic, me-

chanical and structural systems, future demands on intelligent engineering 

systems call for methods for designing intelligent and learning systems. In 

this research, we approach the problem of collision avoidance from an in-

Number of Episode (x 100) 
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telligent and learning systems perspective.  By considering machine intelli-

gence as the capabilities of exploitation and exploration together with adap-

tation, we developed a transfer reinforcement learning approach that can be 

tuned to exploit past experience of human experts and other robots and ex-

plore the new domain through deep reinforcement learning. Following is a 

summary of our findings. 

• The proposed transfer reinforcement learning approach has been tested 

in a game environment and proved useful to solve similar complex col-

lision avoidance tasks.  

• The transfer period is a crucial component that needs to be adjusted. Our 

transfer learning scheme has two effects: learning speed and variance. 

Compared to the bootstrap case, the copy expert strategy performed bet-

ter. Comparing with bootstrap, the transfer learnings on average had a 

~50% increase at ~25% competence level and ~30% increase at 75% 

competence level. As transfer period increases, the learning speed in-

creases. However, transfer period being too long may slow down the 

learning, but still faster than the baselines.  

• The standard deviation plot shows that variance starts to decrease, and 

then increases, and finally decreases as learning converges. The longer 

transfer period, the earlier variance starts to increase. As learning pro-

ceeds, either short or long transfer period leads to high variance, 

whereas medium transfer period has low variance. 

• There exists an optimal length of transfer period (700K frames) when 

the variance is low, and learning is fast. This optimal transfer period is 

believed to be task-dependent, which is relevant to the inter-task simi-

larity of source and target task.  
 

Our ongoing research investigates task similarities and transfer strategies 

in transfer reinforcement learning (including varying transfer beliefs) and 

exploring multi-robot collision avoidance problems mixed with more com-

plex fixed and moving obstacles. 

 

This paper was based on the work supported by Monohakobi Technology 

Institute (MTI) and Nippon Yusen Kaisha (NYK). The authors are grateful 

to MTI and NYK for their support. 
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