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Abstract 
Scalability is a great advantage for systems that face uncertain demand. Scalable systems can be increased 

in size at a reasonable cost to meet increasing demand, or they can be reduced in size to minimize ongoing 
costs in the face of falling demand. Self-organization is often hailed as a strategy for creating scalable systems, 
as they have low integration costs and no communication bandwidth limit from a central controller. This paper 
investigates the scalability of a self-organizing foraging system. The results show that there are fitness 
penalties associated with scaling a system up or down from the size they had been optimized for, and these 
penalties are higher for scaling up rather than down. However, if the agents’ behavioral parameters can be 
adjusted as the system size changes, their system-level fitness increases linearly with their size. 
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1. Introduction 

1.1. Scalability 

Dynamic allocation of resources is an important strategy in uncertain environments. Scalable systems 
can change in size to meet changing requirements [1], growing when they face greater demand, and 
shrinking to meet falling demand with fewer resources. A rigid system that is not scalable may incur costs 
if it is undersized or oversized. These costs include the excessive costs of building a system’s capabilities 
beyond their demanded performance, ongoing maintenance of a larger system, or opportunity cost of not 
capitalizing on higher than expected demand. This places enormous pressure on the system’s engineer to 
design the system’s capacity so that it is just right, but this may not be a realistic expectation for complex 
environments or long-lifespan systems. 

1.2. Self-organizing systems 

Self-organization is one strategy for designing systems that can scale to their required capacity at run 
time. A self-organizing system is made of a group of interacting autonomous agents that are not subject to 
any central controller. Integration costs in self-organizing systems are low, so adding capacity is only limited 
by the cost of the hardware. Their distributed nature also eliminates a possible upper limit on system size 
that could be a constraint of a central controller. An inspiration from the natural realm, locust swarms, can 
grow in size up to 109 insects [2] yet still fly as a cohesive flock without any single locust leading or 
coordinating the swarm. Two complementary forces have recently increased the importance and visibility 
of self-organized architectures: a market pull (from customers requiring adaptability, scalability, and 
resilience in systems), and a technology push (from enabling technologies such as miniaturized robots, bio-
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inspired robotics, and the internet of things) [3]. 
Self-organizing systems rely on local communication and sensing, so their control schemes have 

inherent potential for scalability. A centralized controller would have to read and synthesize all of the data 
available from lower-level sensors [4]. As the size of the system increases, so do the demands on the 
central controller until it is pushed beyond its capacity, which would cause it to crash or at best delay its 
outputs or ignore some information. In self-organizing systems, agents form dynamic local networks that 
are relatively stable in size and may be loosely linked to one another. As long as the agents are properly 
designed to analyze the data available to them locally, more can be added to the system without stressing 
a system-wide bandwidth limitation. Despite the local frame of action, the interactions among agents can 
spread information system-wide and enable complex system-level behavior [5]. Thus scalability is often 
hailed as a promising feature of self-organizing systems [5], [6], but naively scaling systems without 
understanding the possible pitfalls may lead to system failures [7], [8]. 

1.3. Related work 

Ross et al. give a formal, domain-independent definition of scalability as a specific type of changeability, 
among other “ilities” such as adaptability and modifiability [1]. In [5], [9] it was shown that large scalable 
vehicle networks could be formed from peer-to-peer communication. This network could disseminate safety 
and traffic information orders of magnitude further than the peer-to-peer transmission range without relying 
on or being limited by any third-party infrastructure.  

Self-organization has been suggested as a strategy for scalable formation control for pedestrians and 
vehicles [10], [11]. In fact, the Boids algorithm, a famous self-organized flocking algorithm became popular 
initially because it was so computationally efficient in its ability to display computer-generated flocks of birds 
[12]. Self-organized foraging in robotic systems has been demonstrated in [7], [13] where groups of robots 
gathered pucks and boxes into a central location without directly communicating. 

This paper is also the continuation of a series on Cellular Self-Organizing Systems (CSO), so called 
because each agent in the system is rather simple, but by working together the agents can display complex 
behavior, like the cells in a human body. CSO research has demonstrated reconfigurability through 
information sharing [14], field-based control for searching and swarm formation [15], [16], and applications 
in exploration, box-pushing, and protective tasks [17], [18].  The two complementary goals of CSO research 
are to understand self-organization in natural systems, and to apply this knowledge to the design of 
engineered resilient systems [19]. 

1.4. Agent-based modeling and genetic algorithms 

In [20], [21],  we introduced a methodology for the design of self-organizing systems. The methodology 
relies heavily on the use of agent-based modelling for system analysis, and genetic algorithms for 
optimization. Agent-based modelling treats elements of the system as autonomous actors with sensing, 
reasoning, and decision-making capabilities. The interactions of the agents can be simulated and tested on 
a computer to study emergent properties of the system. This approach allows the engineer to focus on a 
small-scale problem: accurately defining agent behavior. The larger-scale problem, determining the 
complex results of agent interactions, is left to the computer. Genetic algorithms (GA) have been used in 
previous work [22], [23] on the design of multi-agent systems because they are efficient algorithms for 
optimizing in large, complex, and noisy search spaces. Briefly, a genetic algorithm operates on a population 
of potential solutions (agent behavior settings) by scoring them with a fitness functions, and improving them 
in successive generations [24], [25]. 

Combining the two approaches allows a designer to focus on the conceptual design of the agent 
behavior. As long as it is parameterized, creating a class of systems, the genetic algorithm can search for 
an optimal point solution by repeatedly invoking the multi-agent simulation software. 

1.5. The foraging task 

In a foraging system, agents must find a resource and transport it back to a base Location. One of the 
most famous examples is found in nature: the food foraging behavior of ants [26], [27]. Ants begin searching 
for food around their nest individually. When one by chance finds food, it lays down a specific pheromone 
(chemical scent) as it carries the food back to the nest. Other ants then randomly find the pheromone trail, 
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follow it to the food source, and lay down even more pheromones in the same location, causing a positive 
feedback loop of increasing pheromone concentration. Eventually, the whole colony is recruited to exploit 
the food source, forming an efficient straight line between the food and the nest. This ant behavior is actually 
so adept at solving search problems that is has been abstracted into an optimization algorithm, knows as 
Ant Colony Optimization [28]. 

In this paper, the foraging behavior of ants serves as an inspiration for the design of an artificial self-
organized foraging system. In practical applications, the basic pattern could be seen in a system that finds 
and gathers waste in a clean-up task, a search and rescue system, or a system that harvests crops.  

2. Experimental setup 

2.1. Foraging task and simulation 

Figure 1 shows the initial setup of the simulated foraging task in NetLogo [29]. The food is marked in 
green, and the home base is marked in red. The objective is to maximize the amount of food returned to 
home within a time limit. Agents can sense food and other agents within 3 pw (pw is the width of a “patch” 
in the simulation world; the size of a patch can be seen in the blocks forming the home base). When an 
agent moves onto a patch that contains food, it extracts 5 units of food and changes its own color to green, 
signifying to other agents that it has found food. If it carries food back to the home base, it deposits the food 
and changes its color back to brown. This stored food then counts toward the system’s fitness score. Agents 
maintain no memory of the food location, and must find it anew every time they leave the home base. They 
can only sense it when it is within their 3 pw detection radius. Agents can, however, sense the direction 
toward home at all times.  

2.2. Agent behavioral model 

The agents in this system have 2 states: carrying food, or not carrying food. They have 18 state-based 
behavioral parameters, summarized in Table 1. 

Figure 1: Initial configuration of a 1-row foraging simulation. The red circle indicates the detection range of an agent. 
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Table 1: Foraging behavioral parameters 

Notionally, cohesion is an agent’s desire to move toward its neighbors; avoidance is its desire to move 
away from its neighbors; alignment is its desire to match speed and direction with its neighbors; the 
randomness desire changes at each time step; home is the desire to move toward the home base; and 
food is the desire to move toward sensed food. These desires are all considered simultaneously, and a 
weighted average of the stimuli is used by the agent to decide on its next step. 

To aid in this decision process, field-based behavior regulation [19], [22] is used. Field-based regulation 
treats all stimuli as sources or sinks in a mathematical field. In this paper, agents consider 2 fields, a task 
field of stimuli in the environment and task, and a social field of other agents. This separation is used to aid 
the designer, as the social field can create system structure while the task field deploys it in space. Agents 
calculate the field value at every reachable point in their immediate vicinity and step to the point with the 
highest field value. The field equations are given as: 

 

(1) 

(2) 

where η is the set of N agents in the calculating agent’s radius of detection; r i is the distance from a point 
to the agent’s neighbor; 𝜙 is the point’s angle away from the agent’s current heading; θ is the neighbor’s 
current heading relative to the agent; smax is the agent’s maximum step size; f is the angle toward food; h 
is the angle toward home; and C, O, A, F, and H are state-determined parameters as described in Table 1. 
The results of Equations (1) and (2) are added together to calculate the field value of any point.             

2.3. Simulation and optimization 

The 18 behavioural parameters given in Table 1 define a class of systems. Any set of particular 

parameters fixes the behaviour of that system. This allows the GA to search through a space of possible 

systems for optimal behaviour. The GA’s fitness function is given as: 

 

(3) 

where foodr is the food returned by the end of the simulation, and foodc is the food being carried by agents 

(but not yet returned) at the final time step. The summation is carried out over all N agents in the simulation. 

        At each time step, every agent will sense its local neighbourhood and apply its behavioural algorithm. 

If an agent finds a patch containing food, it picks up and begins carrying 5 units of food. It carries the food 

to the home base, it drops and food, and the food then counts toward the system’s total fitness. This is 

repeated for 1000 time steps, and the systems are judged at the end according to Equation (3). 

2.4. Scalability assessment 

To test for scalability, behavioral parameters are optimized and tested for each of 1-6 rows of agents. 

Then, keeping the parameters constant, the systems are tested in other scenarios. In this way, each system 

is tested both within and outside of the nominal size for which it was optimized. If increasing size leads to 

improved performance, we can call the system scalable. Because self-organizing systems have low 

integration costs, the majority of the cost of increasing system size comes from the actual agent hardware. 

If the performance of the system increases proportionally to the cost, we can call it linearly scalable. System 

scalability can also be superlinear if the performance increases with the number of agents and the rate of 
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increase also increases. Sublinear systems get diminishing returns from adding agents, and in the worst 

case, their performance may even deteriorate. 

2.5. Extended optimization 

The investigation in this paper requires that an optimal candidate be found for each scenario. In a 

complex system, it is very difficult to objectively determine which solution set is optimal for several reasons. 

The search space is enormous, and the simulations are partially stochastic, so to get statistical confidence, 

many trials would have to be performed. The GA is also partially stochastic, and different GA runs may 

converge to different parameter sets even if they are optimizing within the same search space. So in this 

paper, we do not refer to optimal candidates, but instead optimized candidates.  

A consistent process was used to generate optimized candidates in each scenario, enabling a fair 

comparison of performance across scenarios. The process includes 5 GA runs. The 3 best candidates 

found from each of the first 4 runs are used to seed the 5th. The 15 best candidates (3 from each run) are 

then re-tested for reliability by evaluating their fitness in 100 simulations. The optimized candidate is chosen 

as the one with the highest 30th percentile performance out of these 100 runs.  

3. Results and implications 

NOTE: the results show a distinction between systems optimized for a certain size and systems deployed 
at a certain size. In text, RO-X will denote the size a system is optimized for (where X represents the number 
of agent rows), and an X-row system will refer to the actual number of rows in deployment. For example, 
an RO2 6-row system refers to a system deployed with 6 rows of agents whose behavior was optimized for 
2 rows of agents. 

 

 

 

Figure 2: RO1 6-row system showing jamming  

around home base 
Figure 3: Behavior of RO6 1-row system  

for time steps 500-1000 
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3.1. Scalability of conceptual design 

Figure 3 shows the fitness of the optimized systems for each of 1-6 row systems, after optimizing the 
parameters of Table 1 at each size. This corresponds to the case where the designer can change behavioral 
parameters (i.e. change the detail design while maintaining the conceptual design) as more agents are 
added to the system. As seen in the figure, the system is almost perfectly linearly scalable. The R2 value 
for the linear regression is 0.995. 

3.2. Scalability of detail design 

What can be done if the system operator is not allowed to change behavioral design parameters after 

design or deployment? In such a scenario, a system with parameters optimized for 1 row of agents may be 

scaled to 6 rows, or vice versa. This constraint was explored by taking the optimized parameter sets from 

Section 3.1 and testing them for each of 1-6 rows of agents. Thus they were sometimes tested outside of 

the size range for which they were optimized. The results are summarized in Figure 3. 

It can be seen that systems optimized for small sizes (RO1, RO2, RO3) were unable to effectively scale 

up in size, but the systems optimized for large sizes were able to smoothly scale down in size. This implies 

Figure 4: Results of scalability test, where each curve represents one set of behavioral parameters, tested at each system size  

Figure 5: Optimized fitness for each number of agent rows, showing a linear relationship between performance and system size 
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that there is some directionality in the conceptual design, making it easier to decrease in size than to 

increase if the individual agent behaviour is held constant. At either end, there was a fitness penalty for 

deploying a system at a given size larger or smaller than its optimized size, when compared with a system 

optimized for that size. (Note that due to small deficiencies in the partially stochastic optimization, there 

were several cases where this is not true. The most notable is 2-row systems, where RO1 outperforms 

RO2 by 4.4%. All other cases manifest by a slimmer margin or have the expected system performing the 

best.) Table 2 shows the fitness penalties for cross-testing the extreme ends of the size range. 

The most drastic fitness penalty comes from scaling the RO1 system to a 6-row system. Figure 2 shows 

the end state of this scenario: the agents carrying food crowded around the home base and jammed the 

 

Figure 6: Behavior of RO6 6-row system. The 4th panel shows a motion trace of each agent for 200 time steps. 
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system. The reversed scenario (RO6 1-row) also showed interesting results with a high fitness penalty. The 

strategy chosen by the GA during optimization (for a 6-row system) was for the system to leave a layer of 

agents stuck along the boundary of the field, guiding a circulating inner core to find and retrieve food. This 

behaviour is shown in Figure 6. Contrast that figure with Figure 3, which shows the RO6 1-row system 

attempting to exploit the same strategy, but it leaves too high a fraction of its agents static along the wall. 

With so few agents doing the foraging required to raise its fitness score, it suffers a 62% fitness penalty 

compared to the RO1 system. 

3.3. Scalability of system with boundary detection 

It was shown in [22] that when agents are able to detect and react to the boundary of the field, they can 

flock and move much more smoothly, returning food more efficiently. This adds 2 behavioral parameters to 

the set from Table 1. A similar test was carried out for systems with boundary detection, and the results are 

shown in Figure 7 and Table 4. The results follow the pattern of the previous section but are more extreme. 

There were fitness penalties up to 99% when scaling a system up in size, and milder penalties when 

decreasing system size. The conceptual design was again linearly scalable (R2=0.999). 

4. Discussion 

At the conceptual design level, both sets of experiments showed linear scalability. For systems 

engineers, this means that scalable foraging systems are feasible, as long as there is a way to adjust the 

parameters according to the system size. Since the behavior is primarily dominated by software and 

parameters, this should not incur major cost.  

Table 2: Results of cross-testing systems optimized for large size in small-scale deployment, and vice-versa 

Figure 7: Scalability tests for systems with boundary detection 
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However, the results show that it is difficult to scale a self-organizing system up in size if the behavioral 

parameters cannot be adjusted accordingly. Not only did the RO1 and RO2 systems suffer a relative fitness 

penalty as 5-row and 6-row systems compared to the RO5 and RO6 systems, above a certain size they 

even lose fitness in absolute terms. Looking at the simulation results qualitatively, agent groups cause 

jamming around the food or home base, halting progress early in the simulation run. 

Scaling the RO5 an RO6 systems down in size was seen to be less problematic, although the relative 

fitness penalties were as high as 62%. The problem was that the behaviors and structures selected by the 

GA were quite effective at large sizes, but did not have the critical mass to be effective at small sizes. For 

example, in the RO6 6-row system without boundary detection, a small fraction of the agents could be 

sacrificed along the boundary in order to guide the rest of the agents toward the food, but as a 1-row system 

the number of static agents required for this strategy caused too much relative overhead and seriously 

limited the speed at which the system could find and return food.  

5. Conclusion 

5.1. Summary and conclusions 

With increasing connectivity and miniaturization of robots, there is greater opportunity for engineers to 

design distributed systems with self-organized architectures. The advantages of these systems are 

redundancy, adaptability, mass-production, and possible scalability. Scalability was shown in this paper to 

be dependent on behavior parameters chosen during optimization. Systems optimized for small size 

suffered from jamming at large sizes, and systems optimized for large sizes did not have the resources to 

form large-scale subsystems at small sizes. The methodology, based on agent-based simulation, 

parametric behavioral modeling, and genetic optimization, was shown to effectively uncover these 

strategies and possible pitfalls. The engineer’s responsibility is to leverage this information, knowledge of 

the system’s environment, and use cases to tailor the agents’ behavior to the appropriate size or size range.    

5.2. Limitations and future work 

The results of this paper are specific to the foraging simulations in question. They are meant to serve as 

data points in the study of self-organizing systems, and care must be taken in transferring specific results 

(e.g. fitness penalties) to the design of scalable complex systems in other domains. Nonetheless, the 

qualitative lessons, scalability assessment, and design methodology are generalizable to the design of 

many different self-organizing systems (see [21] for related examples). The simulation/optimization was 

also limited by the computational power available, as an exhaustive search of the 18-paramter space was 

impractical. With increased computational ability, the optimized systems will be closer to the true optimum. 

For future work, we will look into various methods for adapting the behavior of the system to its specific 

size. This raises interesting questions of self-knowledge (how does a distributed system know its own size?) 

and how to distribute behavioral updates (should a central controller broadcast updates, or should they 

spread virally?). There are ongoing efforts to transfer the behavioral models in this research to physical 

robots, instead of just in simulation. Also, the general lessons on self-organization continue to inform our 

ongoing research on groups of autonomous ground, sea, and air vehicles [30], [31]. 

Table 3: Results of cross-testing systems with boundary detection optimized for 
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