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ABSTRACT 
Self-organizing systems have great potential for 

adaptability, but as complex systems, they can also be prone to 
unpredictable behavior, cascading failures, and sensitivity to 
perturbations. Also, designing systems for adaptability may 
introduce overhead that reduces their performance. This paper 
investigates the design tradeoffs between adaptability and 
performance in the context of a box-pushing task. Using a 
genetic algorithm to optimize a parametric behavioral model, we 
are able to test systems optimized under different conditions for 
performance and reliability. It was found that a system optimized 
in the face of random initial conditions and internal perturbations 
was more robust than a system optimized without these 
perturbations, showing a higher overall fitness over diverse 
trials, but it could not take advantage of particular initial 
conditions that would have allowed it to achieve a one-off high 
fitness in a repeatable environment. A system optimized with 
predesigned initial conditions was found to achieve a very high 
fitness, but when it was retested with random initial conditions, 
its performance plummeted, indicating that it was fit to the ideal 
initial conditions but not robust. 

 
Keywords: Self-organizing systems, Genetic algorithm, 
Optimization, Field-based regulation. 

1. INTRODUCTION 
Engineered self-organizing systems are composed of 

elementary autonomous components that can collectively 
achieve a goal with no system-level knowledge or central 
control. An example of a self-organizing system would be a 
swarm of autonomous robots. Typically, the individual robots 
will be small in size and have only simple capabilities, and a 
large number of identical robots will be included in the swarm. 

Self-organization of such systems is becoming an important tool 
in engineering design, due to a market “pull,” and a technology 
“push.” 

The market motivation for self-organizing systems is to 
create adaptable systems. The ability to cope with change – 
whether in functional requirements, environmental conditions, 
or the system itself – is now often ordered as a system 
requirement [1],	[2]. This is especially true of systems that will 
face extreme environmental stressors, such as military 
applications, systems with lifespans so long that they need to 
perform new functions after deployment, or systems operating at 
scales so small that they are difficult to control or repair [3],	[4].  

Self-organizing systems have the potential to display 
adaptability through redundancy, scalability, and impermanent 
connections. Because the components of the system are 
autonomous, there are no long causal chains of system 
functionality that can be broken by the malfunction of a single 
part. If a self-organizing agent breaks down or is removed, 
another identical agent can take its place. Because the systems 
are based on local interactions, there is no shared resource (e.g. 
energy storage or communication bandwidth) that acts as a hard 
limit to the size of the system. Agents can form local teams of 
appropriate sizes, independent of the entire system’s size, to 
adaptably scale the system. The agents’ ability to form and 
disband interactions also allows the system to re-organize to 
better meet changing conditions. 

The technology push stems from miniaturization, ubiquitous 
computing, bio-inspired robotics, and the increasing availability 
of off-the-shelf robots with interactive capabilities. Enabling 
technologies like KiloBots [5] and the open-source “Jasmine” 
robots [6] provide simple robotic agents that can form swarms. 
Unmanned vehicles for the air and sea are also now commercial 
off-the-shelf products, and these can work together like flocks 
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and schools. Another possible substrate for self-organizing 
systems are hybrid biological-mechanical systems that take 
advantage of natural organisms’ size and locomotion but allow 
for algorithmic control. For example, researchers have 
demonstrated digital control over live cockroaches [7] and 
miniature swimming robots made with jellyfish membranes [8]. 

These relatively recent technologies can be incorporated 
into a designer’s toolbox if he/she has a methodology for 
leveraging the interactions among the simple agents to create 
adaptable systems.  

One major difficulty in the design of self-organizing systems 
is their complexity. Complexity is a result of the interactions of 
many components [9]. Complex systems can have great 
functionality, but they are also prone to cascading failures, 
runaway conditions, nonlinear responses to control inputs, and 
sensitivity to perturbations [10]. Generally, engineers try to 
minimize the interactions among the components that they 
design to avoid the problems that come with complexity [11].  

Despite this, self-organizing design allows complexity by 
giving agents the ability to interact with one another and freely 
form relationships. It is then designer’s duty to bring out the good 
qualities of self-organizing systems while mitigating the dangers 
of complex systems. In this paper, we focus on strategies for 
coping with the sensitivity of self-organizing systems to initial 
conditions and perturbations. Using agent-based simulation for 
analysis and genetic optimization, we generate optimized 
behavior models for self-organizing agents. By tuning the 
optimization algorithm in different ways (e.g. to search for 
robust systems), we can investigate the performance costs that 
come with optimizing for adaptability. 

In this paper, we explore a self-organizing system whose 
purpose is to push a box toward a goal. It is an expansion of our 
previous work given in [12],	 [13]. In those papers, the agents 
were given the ability to broadcast the conditions in their local 
vicinity, so that the agents could coordinate to move the box. The 
agents would individually find their chosen locations for the box 
and move it from there. Then, when all agents had taken a place, 
they would push it toward the desired locations. The process 
would repeat until the system was successful or the time limit ran 
out. At a system level, it looked like a synchronized alternation 
between formation and pushing. 

The expansion in this paper is to complete this task without 
the aid of system-wide synchronization. Note that 
synchronization is possible to achieve in self-organizing systems 
(e.g. [14],	 [15]) but is not guaranteed and requires dedicated 
hardware and/or algorithms. Because one objective in designing 
self-organizing systems is to make the hardware as simple as 
possible [16], good performance without the synchronization 
overhead represents a notable improvement. 

In exploring this problem, we identified an interesting 
sensitivity to initial conditions and internal perturbations. This is 
an inherent property of complex systems, and thus a risk in the 
design of self-organizing systems, but it was effectively covered 
up by the system synchronization in the previous work. With a 
new distributed behavior algorithm, we were able to counteract 

these problems in the unsynchronized system as well. Using a 
genetic algorithm for optimization, we were also able to 
determine the performance penalty for systems that were 
designed for robustness vs. systems that were optimized for 
particular initial conditions. Using this approach will allow 
designers to make informed tradeoffs between robustness and 
performance according to their systems’ requirements and 
environmental constraints. 

2. RELATED WORK 
There are several examples of coordinated object-moving 

from the literature and a vast amount of work in the general field 
of self-organizing systems. In this section, we will present some 
relevant examples from these areas and summarize our previous 
work on cellular self-organizing (CSO) systems. 

2.1 Natural Self-Organizing Systems 
Some of the most impressive self-organizing systems are 

found in nature. Here, simple organisms like insects, or larger 
animals following simple rules like birds can display complex 
group behavior. Flocking in birds is well-known, but perhaps the 
most impressive display of aerial coordination is found in 
locusts, whose swarms can reach a size of 1 billion insects [17]. 
Ants are able to find food, recruit fellow workers to harvest the 
food, and concentrate the effort along neat lines, all without a 
central command. They can even cooperate to lift items many 
times the bodyweight of an individual ant [18],	[19]. “Simple” 
termites cooperatively build mounds with differentiated and 
interconnected chambers that are larger than any other free-
standing structures in the animal kingdom, second only to human 
construction [20],	[21].  

2.2 Formation Control Systems 
Many artificial self-organizing systems show nature-

inspired flocking behavior based on the Boids algorithm [22]. 
Useful engineering applications of flocking include studies on 
urban traffic flow [23] and crowd control during evacuations 
[24]. Military forces are also particularly interested in this type 
of analysis and control of large fleets of vehicles [25]. Self-
organization of unmanned aerial vehicles (UAVs) is another 
promising application and research field. Self-organizing 
algorithms have been applied to the control of UAV swarms for 
target detection [26]. Evolutionary optimization of UAV control 
algorithms was used in [27] to enable coordinated navigation and 
obstacle avoidance. 

2.3 Moving, Gathering, and Building Systems 
In addition to formation control, self-organizing algorithms 

have been developed to manipulate objects. Zhang et al [28] used 
a team of 3 robotic fish to move a block toward a goal with a 
72% success rate, with similar results given in [29]. Parra-
Gonzalez et al [30] used a wave front algorithm for robot motion 
planning in the box-pushing problem. Trianni [15] used genetic 
optimization to specify neural network controllers for self-
organizing “s-bots” that had to display synchronization and 
cooperation. Groups of non-communicating robots have been 
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used to gather pucks in the work of [31] and [32]. Werfel [33] 
showed that self-organizing robots can use stores of building 
materials to build pre-specified shapes. 

2.4 Cellular Self-Organizing Systems  
In our previous work on the design of adaptable systems, we 

have focused on simulations of robotic agents with 
unsophisticated hardware. The functionality is an emergent 
property of the interactions among primitive agents, just as 
complex life-forms are built from the interactions among simple 
cells. Thus we use the term Cellular Self-organizing Systems 
(CSO) to describe this work. The first CSO systems were made 
to display reconfiguration between two pre-specified shapes 
[34]. Emergent formations such as flocking and aggregation 
were found with parameter changes in [35]. Simple box-pushing 
through obstacles using field-based regulation was shown in 
[36], followed by a more sophisticated study with 
communicating agents [13]. Optimization of parametric 
behavioral models has been used to develop flocking, 
exploration, foraging, and a protective convoy in [37],	[38]. 

In the studies mentioned in this section, different aspects of 
adaptability have been demonstrated, but as the systems increase 
in complexity, inherent properties of complex systems may pose 
threats to system performance. These tradeoffs have not been 
studied in detail, and they are the focus of the current paper. 

3. THE BOX-PUSHING PROBLEM 
It is possible to achieve desirable system functionality from 

minimalist agents [16]. A motivating case study can be found in 
nature, where the advantage of coordinated object-moving is 
evident in the behavior of foraging ants, which have been 
reported to transport food objects that are heavier than a single 
worker ant by a factor of 5000 (or heavier than the collective 
team of ants by a factor of 50) [39]. By analogy, in the engineered 
world, debris removal, mining, or construction could all be aided 
by cooperating robots. 

The Box-Pushing task belongs to a type of task that is often 
described as the “piano mover’s problem” or path planning, 
which has been studied in the robotics, artificial intelligence, and 
control theory communities [40]. While this problem is often 
approached from a mathematics or topological perspective [41], 
in the present work, the agents are trying to solve the problem 
collectively using local information.  

Figure 1 shows the simulated environment for the box-
pushing task. The simulation is run using NetLogo [42], a 
popular platform for agent-based simulations. 

The brown box is to be pushed to the goal (concentric black 
circles) by the agents (green squares). They can push the box to 
move and rotate it. The box cannot be pushed through the red 
obstacle or the blue walls.  

The system is limited by the total distance traveled by agents 
(representing battery power or abstract efficiency metrics) before 
it turns off. In keeping with our previous work [12], if the 
centroid of the box reaches the same x-coordinate as the goal, the 
trial is considered a success.  

Figure 1: The Box-Pushing Problem 

Because the NetLogo simulation software is dimensionless, 
we will refer to dimensions as being measured in patch-widths 
(pw) throughout this paper. A patch is an elementary square area 
of the NetLogo environment. For reference, the agents are 1 pw 
large along the diagonal; the box is 5 pw wide; and the starting 
distance from the center of the box to the goal is 30 pw. 

The simulation rests on a simplified physical model. At 
every simulation time-step, the forces from every pushing agent 
are summed. Every push carries an equal force, and a vector sum 
of 11 pushes will move the box 1 pw in a given direction. The 
torque is applied around the centroid of the box, and a push with 
a moment arm of 5 pw will rotate the box 1 deg. The translation 
and rotation scale linearly with the number of agents pushing and 
their moment arms, respectively. If the box is moved into an 
agent, that agent is pushed out of the way. If the box or an agent 
is moved into walls or obstacles, its motion is halted, but no other 
reaction force is simulated. Agents cannot move through the box, 
walls, or obstacles. 

An agent is assumed to be able to move in any direction in 
the horizontal plane. They can broadcast and receive information 
using one-to-many signaling, but not direct one-on-one 
communication. They can differentiate other agents from the 
environment, and discriminate among environmental stimuli. 
They can measure distances and directions, and have enough 
computing power to perform simple reasoning algorithms. They 
have enough data storage to govern state changes. They have a 
maximum speed of 3 pw per simulation time-step.  

These assumptions are in keeping with our previous work 
on CSO systems [35], and they are similar to the definition of a 
“minimalist” robot [16]. They are also reasonable with respect to 
current swarm robot hardware (e.g. [43],	[44]). 

3.1 Key Problem Features 
With a large box and simple agents, it is necessary for agents 

to work together to move the box. This tight coordination is 
difficult to design in a system if it is assumed that agents’ 
communication is limited. How can this coordination be 
achieved by independent agents? What is the minimal 
communication required? 
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Success in the task is partially stochastic. Agent initial 
conditions and internal perturbations (common in complex and 
self-organizing systems [45]) will affect the system’s behavior. 
How can the system be made more robust to these perturbations? 
And does it lose efficiency by seeking adaptability? 

3.2 Design Methodology 
Several helpful methodologies for the design of self-

organizing systems have been proposed [46],	 [47], but no 
standard exists yet. We use the design methodology shown in 
Figure 2. Because the system-level form is outside of the 
designer’s control, and the agent-level hardware is meant to be 
quite simple, the agent-level behavior is the designer’s key point 
of influence over the system and the focus of our methodology. 
The methodology is similar to other design or systems 
engineering methodologies (e.g. [48],	 [49]) but with several 
distinctive features tailored to self-organizing systems: 
• Agent behavioral design: this is the defining feature of 

self-organizing systems. The system components are not 
inert. They are programmable, and their behavior, not just 
their physical form, can be designed [50]. The behavioral 
capacity is a set of behavioral primitives, and the 
behavioral selection is an algorithm for applying the 
behavioral primitives at a given time. We recommend the 
use of field-based behavioral design for this stage, which 
will be discussed in more detail in Section 4. The output of 
this step is a parametric behavioral model that can be 
simulated and optimized. 

• Simulation/Optimization: the complex dynamics of self-
organizing systems cannot be captured analytically [51]. 
Therefore simulation is included as a mandatory step in the 
design process.  Because we leave detailed design to this 
stage, the simulation can be integrated with optimization 
algorithms for fast optimization of behavioral parameters 
[37]. By encoding the behavioral design with artificial 
DNA, we can optimize it with a genetic algorithm. 

Figure 2: Methodology for the Design of Self-Organizing Systems 

3.3 Potential Failure Modes 
During exploratory work, design of the system was adapted 

from previous studies on flocking self-organizing systems [50],	
[52]–[54]. Agents’ reactions to each other and the box were based 
on attraction and repulsion, which are classical primitives in 
flocking [22]. The agents also simultaneously considered 
attraction to the goal, and repulsion from walls and obstacles. 
These behaviors were parameterized, and the parameters were 
tuned using a genetic algorithm. We will not give details of this 
exploratory behavioral algorithm here, but a visual summary 
with motion trace examples is given in Figure 3. 

 
Figure 3: (a) task completion with obstacle collision (b) task 
completion using walls as guide (c) task failure, pushing box 

backwards (d) task failure, jamming box against wall 

It can be seen in Figure 3 that the system occasionally 
behaved in critically counterproductive ways, pushing the box 
backwards or jamming it against a wall. Another behavior, not 
shown, was agents’ failure due to abandoning the box and 
moving to the goal without it. Even in successful attempts, the 
box usually collided with walls or the obstacle.  

Note that all the behaviors described here were found in 
systems after optimization. Because the GA could only optimize 
within the parameter space given to it, it was clear that the 
conceptual design of the system needed to be reworked to 
minimize failures. The previous work [12] avoided these failures 
by synchronization. In that study, agents would choose a location 
at the perimeter of the box first. Then, when all agents had found 
a suitable location, they would communicate and decide whether 
or not to push the box. In the current work, we attempt to create 
a new behavior algorithm that can avoid these pitfalls even 
without system-wide synchronization. With this goal and 
potential failure modes in mind, we present a formal behavioral 
model for the box-pushing agents in the next section. 
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4. A SELF-ORGANIZING BOX-PUSHING SYSTEM 
No practical design process is as linear as the progression in 

Figure 2 indicates [55]. Iterative feedback loops also exist due to 
knowledge generation throughout the process. In the case of the 
preliminary work mentioned earlier, unsatisfactory results after 
optimization and new knowledge of the emergent system pitfalls 
led to rework and a new strategy at the behavioral design phase. 

We design the agent behaviors using a field-based approach 
[36]. A field is a mathematical abstraction of every stimulus that 
an agent considers. Smooth field functions allow agents to 
follow local gradients toward goals. A task field and social field 
are used. The task field (tField) is a response to objects in an 
agent’s task and environment, and the social field (sField) arises 
from agent-agent interactions. The fields are treated as two 
separate concepts, because the sField can be used to dynamically 
create task-based structures, while the tField controls where 
these structures should be deployed [38]. 

The stimuli in the task field are the box, walls, goal, and 
obstacle. Agents need to consider the desirability of their own 
location within the field, and the desirability of the box’s location 
within the field.  

4.1 Field for Box 
The field governing the desirability of the box’s location is 

a pure tField, whose function is given here: 

 (1) 
where V and λ are behavioral design parameters, and d is the 
distance to the goal, the center of the obstacle, or the nearest 
point on the wall. Because the terms in the field equation decay 
exponentially, the influence of any one stimulus can peak at a 
point and be negligible elsewhere. This makes it simple to create 
a local maximum around the goal, and local minima near the 
walls and obstacle. Thus, with proper selection of decay 
constants, following an increasing gradient can lead through the 
environment, between walls and obstacles, and toward the goal. 
One graphical example applied to the simulation environment is 
given in Figure 4. 

 
Figure 4: Graphical representation of the field value at every 
NetLogo patch. White patches have the highest field values. 

Darker shades of red have lower values, and the black patches 
represent walls and obstacles. 

4.2 Field for Agents 
Agents cannot simply follow the field described in equation 

(1), as they must be mindful of the box’s location and orientation 
within the field as well. The field governing agent movement 
should distribute them around the box, so that they can protect it 
from collisions and collectively push it toward higher field 
values. 

The agents use a combined tField and sField to calculate 
their own movements: 

 

(2) 

where η is the set of the calculating agent’s neighbors; dp and db 
are the distance (pw) to an agent or the box, respectively; dbn and 
dpn are design parameters representing the nominal distance that 
an agent attempts to maintain from the box and other agents, 
respectively; and wp and wb are relative weights that an agent 
places on maintaining a distance toward its neighbors, or the box, 
respectively, if both cannot simultaneously be the nominal 
distance.  

As shown in Figure 5, the box is divided into 6 zones to 
focus the agents’ attention on important interactions and to 
minimize interference within the system [13]. For an agent to 
determine its neighborhood η, it seeks agents in its own zone, 
and if it is on a long side of the box, neighbors in the adjacent 
zone. For example, in Figure 5Figure 5, where the red agent is 
calculating its move, η would contain all agents on the right side 
of the box.  

Similar to [37], the equilibrium distances dpn and dbn are used 
so that agents remain near the box, but also spread out from one 
another. The intention is for agents to maintain a formation 
surrounding the box. 

 
Figure 5: LEFT: the box is divided into 6 zones. The zones 

determine which agents work together. RIGHT: The red agent is 
calculating its move. Since it is in zone 3, it considers information 
from the blue agents, which are in zones 2 and 3; and the green 

agents, which are in zone 5  
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4.3 State Changes 
The green agents in Figure 5 are opposite the red agent and 

govern the red agent’s state change. State changes separate in 
time the agent’s formation keeping from box pushing. The 
agent’s logic for switching between the two states is simple: at 
any timestep, the agent will receive the box field values from its 
neighbors on the opposite side of the box (cross_neighbors in the 
pseudocode). If the average of these values is higher than the box 
field at its own location, it will set its state to pushing. Otherwise, 
it will set its state to forming. If there are no cross_neighbors, the 
agent will randomly switch states, according to the probability 
switch_prob. The following block of pseudo-code describes this 
behavioral algorithm: 

 
4.4 Summary of Agent Behavior 

At a given simulation timestep, an agent will first sense its 
tField, broadcast its tField value, determine its neighbors on its 
own side of the box, and determine its cross_neighbors on the 
opposite side of the box. It will then possibly change its state. If 
it is in the pushing state, it will move toward the box, and if it 
reaches the box, it will push. If it is in the forming state, it will 
move to the point with the highest field value according to 
Equation (2). Agents can move no further than 3 pw in 1 
timestep. All agents perform the same behavioral algorithm in 
parallel at every timestep. 

5. CASE STUDIES 
This section describes the goals and methods of this research 

effort and presents three sets of case studies. There are two 
related questions motivating this research: how can systems be 
made more adaptable in the face of perturbations? And what are 
the tradeoffs in other measures of system performance when 
designing for adaptability? 

5.1 GA Setup 
A genetic algorithm (GA) is used to optimize the system 

parameters. This partially stochastic algorithm was chosen due 
to the large search space and nonlinearity of the optimization 
problem. It has been shown to be successful in other similar 
applications [54],	[58],	[59]. 

DNA Encoding 
The behavioral parameters are encoded as 8-bit binary 

numbers. This is the “design DNA” of the system that the GA 

can optimize. Table 1 shows the values and mapping functions 
that the GA used for determining behavioral parameters. 

Table 1: Mapping GA DNA encoding to behavioral parameters 

 
The several exponential mappings were used for parameters that 
encode a relative weight. With an exponential mapping, 
parameters have a median value of 1, and can increase or 
decrease by a factor of 100. 

Genetic Operators 
The GA used in this research can be described as a Simple 

Genetic Algorithm (SGA) [56] with fitness scaling, uniform 
crossover, and elitism. An SGA randomly generates a population 
of candidate solutions (the binary strings encoding behavioral 
parameters) and evaluates them according to a fitness function 
(measure of simulated global performance). With fitness scaling, 
the raw fitness scores are scaled so that the best candidate has a 
score that is a predetermined factor (15, in this study) of the 
average score, and all other candidates’ fitness scores are scaled 
linearly. This completes the creation of one GA generation. 

Using elitism, the top candidate from a generation is cloned 
(copied bit-for-bit) to the next generation. To fill the rest of the 
next generation, candidates are randomly selected to mate with 
one another. The selection probability is proportional to their 
scaled fitness. The offspring are created by mating two 
candidates. Under uniform crossover (as defined in [57]), a bit is 
randomly chosen from either parent to write each bit of the 
offspring genome. For all non-clones, every bit also has a 
possibility of mutation (flipping a bit from 1 to 0 or vice versa) 
according to a predetermined percentage (1%, in this study).  

The process is continued for a number of generations, until 
highly fit candidates are found. These operators of selection, 
crossover, and mutation are meant to generate better and better 
candidates in progressive generations.  

Fitness Function 
The pass/fail nature of the task makes it difficult to derive 

figures of merit. In its most basic form, the task is simply to push 
the box toward a goal, with no stipulation on how this is to be 
done. A wide variety of strategies can be used successfully, and 
the success of any one attempt relies partially on random chance. 
At the end, the result is either a pass or fail, sorting all systems 
into one of only two categories. To aid in differentiation of 
systems, more criteria were added to the system performance 
metrics: effort, collisions, and reliability. 

Effort is the total distance travelled by the agents in the 
system. Systems can reduce their effort by, e.g., taking the 
shortest possible route between the origin and the goal, and not 
backtracking. It is included in the fitness function as a simulation 
stopping condition. After the system has expended a pre-
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determined amount of energy, the simulation is stopped and the 
fitness is calculated. 

Collisions is the number of times that the box collided with 
the walls or obstacles. It is included in the fitness function as a 
penalty that reduces the score of a success. 

Reliability is tested by allowing the system to complete the 
task multiple times before the effort budget is exhausted. After a 
success, the task and environment will reset, allowing another 
opportunity for the system to complete the task, obtaining a 
higher fitness with every subsequent success. 

For clarity, in the remainder of this paper, any single attempt 
at pushing the box to the goal will be referred to as a sprint. The 
set of sprints that occur before the effort budget is expired will 
be referred to as a trial. Systems can add to their fitness score 
with each successful sprint, but the GA only considers the final 
fitness score at the end of a trial.  

A trial is ended after the agents have collectively travel 
40000 pw. The fitness is calculated according to Equation (3): 

 
(3) 

where M is the number of successful sprints in a trial, and xi is 
the number of collisions that occur during sprint i. It can be seen 
that the collision penalty is 25%. 

Finding Optimal Systems 
Because the behavior of the system is partially stochastic, 

determining the optimal system is not as simple as choosing the 
system with the highest fitness value found by the GA. The mean 
and variance of the system behavior must also be considered. 
Also, different GAs with the same fitness function and search 
space can converge to different parameter sets, making 
optimality hard to define. In this work, multiple GAs are run to 
identify highly fit candidate systems. These systems are then re-
tested for reliability, and the system with the highest 30th 
percentile score (out of 100 trials) is chosen as the optimal 
candidate. The finalists are determined as follows: 

1. 3 GAs are run with random starting populations 
• Choose as finalists 

i. Best candidate from final generation 
ii. 2nd best candidate from final generation 

iii. Best candidate overall 
2. A “hall of fame” GA is run with the finalist candidates 

from the first 3 GA runs used as seeds in the 1st 
generation 
• Choose 3 finalists similarly 

3. All 12 finalists from the first 4 GAs are retested for 100 
trials 
• Choose as optimal the candidate with highest 30th 

percentile fitness 

This means that any fitness score reported for an optimized 
parameter set can be interpreted as having 70% reliability. 

5.2 Baseline: Random Initial Conditions and Stepping 
Order  
The baseline setup for the system is for the agents to assume 

a random initial position on the left side of the box, and for the 
simulation to update the agent positions in a random order. 

This scenario was chosen to include several sources of 
randomness, and to compare to the previous work in [38]. 
Several questions guided this case study: Can an unsynchronized 
field-based system be as reliable as a logic-based system with 
synchronization? What are the performance advantages and 
disadvantages of each approach?  

Optimized System 
Table (2) shows the optimized parameter set found in the 

baseline scenario.  
Table 2: Optimized parameter set found in the baseline scenario 

 
In 100 trials, this system had a 30th percentile fitness of 

1565.9. Its minimum, mean, and maximum fitness scores were 
0, 1572.7, and 1901.3, respectively. 

Comparison to Previous Work 
Compared with the previous work [13], the unsynchronized 

system was found to be quite competitive, and more efficient 
from an energy viewpoint. It was, however, more prone to 
collisions. Figure 6 shows three trends as a function of the 
system’s energy budget: the raw success rate of the current work, 
the success rate if sprints with collisions are not counted, and the 
success rate of the previous work (where collisions never 
occurred in 100 trials). The x-axis of “Agent Travel Limit” 
indicates how much energy (measure in patch-width (pw)) is 
allowed for the agents to use during each simulation. When the 
allowed energy is low, the agents can succeed only a few times 
out of the total number of trials. 

It can be seen from Figure 6 that the unsynchronized system 
could complete the task much more reliably with a small energy 
budget, but it was prone to collisions. At higher energy levels, 
the synchronized system had more collision-free successes. This 
is because the synchronized system expended a lot of energy to 
create formations around the box, and because it showed a lot of 
backtracking and oscillations in box motion. In the synchronized 
system, agents could move to an entirely new location around 
the box during every pushing sequence. In the unsynchronized 
system, when agents found a location around the box, they 
tended to stay in the vicinity, minimizing formation-keeping 
movement. Also, there were fewer oscillations and less 
backtracking, so the box was pushed to the goal more quickly. 
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Figure 6: Success rate as a function of energy budget, comparing 

the optimized, unsynchronized system with the synchronized 
system 

RNG Seed Attached to Candidates 
Our next optimization removed the randomness from the 

simulation by allowing candidate solutions to fix their random 
number generator (RNG) seed. To do this, the parameter sets 
were appended with 8 more bits to encode the RNG seed, and 
this seed was passed to NetLogo at the beginning of a trial. 

This seed controls the three sources of randomness within 
the simulation: 

1. Random initial positions 
2. Random stepping order of agents 
3. Random switching between states if switch_prob is 

not 0 or 100% 

The random stepping order is an artifact created by the 
simulation software. As a serial-processing machine, the 
computer can only emulate the parallel actions of SO systems by 
updating the system state in small intervals, and agent states must 
be updated one at a time to check for collisions and interference. 
Nonetheless, this simulation artifact does emulate some of the 
internal perturbations of distributed hardware systems such as 
unequal agent speeds, missed communication, interference, and 
unsynchronized update times.  

By encoding the RNG seed with the parameters, initial 
positions and stepping orders can be maintained in clones and 
offspring of highly fit candidates. They are still generated based 
on the RNG seed (i.e. not specifically designed), but for any 
given seed they are repeatable.  

Intuitively, this could lead to one of two scenarios:  
1. An RNG seed is found that enables advantageous 

initial positions and stepping orders for a large swath 
of candidates. 

2. Or a coevolved pairing of the RNG seed with 
parameter values is found that gives high fitness, even 
though individually the parameter values or the RNG 
seed may not be generally helpful. 

Note: NetLogo uses the Mersenne Twister RNG, as developed 
by Matsumoto and Nishimura [60], and implemented in Java 
code by Luke [61].  

The random initial positions represent a designer’s 
uncertainty about the system state at deployment. Many self-
organizing systems are envisioned to be deployed in 
environments were precise control is impossible [4],	[62],	[63]. 
Then the questions can be: How can a GA optimize in the face 
of random initial conditions and internal perturbations? What is 
the performance penalty caused by the use of random initial 
positions? 

These questions have implications in design tradeoffs and 
optimization approaches. If the designer has to pay a high 
premium for precise control over the system’s initial condition, 
then it may be wise to forgo that precision if the system is robust 
to changing initial conditions. 

Optimized System 
This system evolved to a small equilibrium distance with the 

box of 2.53 pw. A distance of 1 pw is necessary to avoid colliding 
with the box. It was generally quick to surround the box, and 
pushed it toward the goal with minimal stalling or collisions. 
With its evolved RNG seed of 210000, it was able to achieve a 
fitness of 2228.4 with 25 complete sprints.  

The repeatable initial conditions resulted in a fitness score 
higher than any found in the tests of the system with random 
initial conditions. The baseline optimized candidate had a 
maximum fitness of 1901.3. The candidate with attached RNG 
seed had a maximum fitness of 2228.4. This indicates that there 
is at least a 17.2% performance penalty due to random initial 
conditions and perturbations, if the designer is only concerned 
with a best-case scenario (a maximax optimization). 

 
Table 3: Optimized parameter set for RNG seed added scenario 

 

Retesting without Optimized RNG Seed 
This performance mentioned above was highly dependent 

on the RNG seed, however. To investigate this, a retest was 
performed without the evolved RNG seed (a random new seed 
was generated for each trial). This parameter set was prone to the 
same errors as other systems, occasionally jamming the box 
against a wall or pushing it backwards away from the goal, 
indicating that it was not robust to changing initial conditions. 
The particular evolved RNG seed had just prevented the system 
from displaying this error within the time limit. The lack of 
robustness gave it a mean performance of 1312.5. Compared to 
the baseline mean, 1572.3, there was a 16.5% performance 
penalty due to lack of robustness to an uncertain environment.  
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Ideal Initial Conditions 
Because successful systems tended to surround the box and 

signal when it was approaching a wall or obstacle, the task 
completion could be aided by intentional arrangement of agents 
in positions surrounding the box. One advantageous initial 
formation has agents on all four sides, regularly spaced, with 
more agents on the left than the right (because they need to push 
toward the right). This designed scenario is the focus of the final 
case study. 

The obvious advantage here is that the designer can set 
initial conditions that are conducive to system functionality, 
rather than making the system assemble itself. The possible 
downsides are again related to cost and robustness. This precise 
control may come at a high price if the system is deployed in 
remote or harsh environments. Also, if the system behaviors are 
designed for ideal initial conditions, they may fail in off-nominal 
cases. As is often the case in design, a cost/benefit decision must 
be made. These research questions aim to explore the 
cost/benefit tradeoffs: 

• What performance gains are achievable by prescribed 
initial conditions?  

• How severe is the loss in performance when a system 
optimized for ideal initial conditions is deployed in an 
off-nominal configuration? 

Optimized System 
The best candidate found had a fitness of 6500, much higher 

than any other systems mentioned in this paper. It achieved this 
by successfully completing 65 sprints without colliding with any 
walls or obstacles. The candidates evolved in this scenario not 
only had high fitness, but also were remarkably reliable. Figure 
7 shows the initial formation, and a wire trace of 5 sprints from 
this candidate. Table 4 shows the optimized parameter values.  

Table 4: Optimized parameter set for ideal initial coniditons 
scenario 

 
All 100 subsequent trials of the optimized candidate 

displayed the same behavior as in Figure 7. There were no 
collisions with the wall or obstacle. The only notable variation 
from sprint to sprint was whether the system would go above or 
below the obstacle. 

The system achieved such high fitness by maintaining a very 
tight formation around the box. Its dbn value (governing the 
equilibrium distance from the box) was 1.0, the lowest possible 
value in the parameter range. The formation surrounding the box 
and the state-switching strategy reliably caused agents to move 
the box to the goal, and the tight equilibrium distance minimized 
the distance that agents would travel, allowing them to use their 
energy budget for more sprints. 

 

 

 
Figure 7: (LEFT) Initial designed formation (RIGHT) Behavior of 

optimized system. A wire trace is shown of 5 sprints, with a 
different color for each sprint. 

Retesting without Ideal Initial Positions 
The optimized parameter set was highly dependent on the 

initial conditions. In a re-test of the optimized system (N = 100) 
with the random initial positions of the baseline scenario, the 
average fitness was 0.004323, with only 54% of trials resulting 
in any successful sprints. The best trial resulted in a fitness of 
0.1784. Agents did a poor job of distributing themselves around 
the box, often grouping together on only 1 or 2 sides and 
collectively jamming the box into a wall. Even during successful 
sprints, the high number of collisions often brought the fitness 
score down into the thousandths or lower. 

6. FINDINGS AND IMPLICATIONS 
In this section, we revisit this paper’s research questions in 

light of the data generated from the case studies. 
Can a field-based unsynchronized system be as reliable as a 

logic-based system with synchronization?  
The answer is a qualified “yes”. In the case where ideal 

initial positions can be prescribed, the unsynchronized system in 
this paper is more reliable than the synchronized system of the 
previous work. Even in the baseline case, the unsynchronized 
system was very reliable with small energy budgets, and was 
close to 100% reliable at higher energy budgets.  

What are the performance advantages and disadvantages of 
each approach? 

The synchronized system was always free from collisions 
with the walls and obstacles, but the baseline system was prone 
to collisions, which could be a major problem, depending on the 
application. This weakness could be mitigated by better control 
of initial conditions, or it may be possible to use the same 
parameter ranges with a new optimization that has a higher 
fitness penalty for collisions to find systems that are less prone 
to collisions. 

What is the performance loss caused by random initial 
positions and perturbations? And is there a performance penalty 
if the system is optimized for robustness to initial conditions? 
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The RNG-encoded optimization produced a system with 
high fitness. However, when the same candidate was re-tested 
without its optimized RNG seed, its maximum fitness out of 100 
trials was 14.7% lower, and its mean fitness was 41.1% lower, 
indicating substantial performance drops due to randomness and 
perturbations. 

The RNG-encoded optimized candidate had a fitness 17.2% 
higher than any trial of the optimized baseline system, so the 
performance penalty from optimizing for robustness is that the 
GA is restricted from seeking unique cases that cause high 
fitness. This would be interpreted as a performance penalty in a 
maximax optimization.  

From an optimization standpoint, this also serves as a 
warning to include sufficient randomness in the optimization 
algorithm if there is uncertainty in the environment, because the 
optimized parameter set was uniquely suited to the optimized 
RNG seed, but was not robust to changing conditions. 

What performance gains are achievable by prescribed 
initial conditions? 

There is a significant performance gain when the designer is 
allowed to pre-specify initial conditions. The optimized system 
with agents surrounding the box in the beginning completed 65 
sprints with no collisions in 1 trial, for a fitness of 6500, and it 
reliably repeated this performance 100 times in further testing. 
Compare this to the optimized baseline system, which achieved 
a maximum fitness of 1901.7 in 100 trials, and was prone to 
collisions in almost 10% of its sprints.   

How severe is the loss in performance when a system 
optimized for ideal initial conditions is deployed in an off-
nominal configuration?  

The tradeoff to the performance gain from ideal initial 
conditions is that systems optimized with these conditions have 
critically degraded performance when deployed in environments 
with random initial conditions, indicating that they are brittle, or 
non-robust. As evidence, when re-testing the optimized 
candidate from the ideal initial conditions scenario with random 
initial conditions, it failed to complete a single sprint in 54% of 
its trials, and it was so prone to collisions that it never reached a 
fitness score above 0.1784 (22 collisions).  

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we described a design process for engineering 

a self-organizing box-pushing system, whose agents have basic 
hardware and are not capable of system-wide synchronization. 
Agent behavior relied on state switching between forming and 
pushing, with the pushing governed by agents’ positions within 
a tField, and the forming governed by a combined sField and 
tField. Using agent-based simulation and a GA, we were able to 
explore the tradeoffs that designers of self-organizing systems 
must make between performance and adaptability. We found that 
if a system is optimized for robustness, by allowing it to evolve 
in the GA in the face of random initial conditions and 
perturbations, it will display this robustness in future testing, but 
its maximum values may be attenuated. We also found that great 
performance gains can come from control over the system’s 

initial conditions, but that a system optimized with ideal initial 
conditions risks catastrophic failure if deployed in uncertain 
environments due to its lack of robustness.  

Limitations 
The quantitative findings presented here rest on the 

assumption that the GA was able to find the optimal parameter 
set for every scenario and behavior encoding. As with any 
heuristic search algorithm, this cannot be guaranteed. Given the 
huge search space, it would be impossible to perform an 
exhaustive search to prove optimality, but these are the best 
candidates that could be found within the time and computing 
power constraints that we faced. 

The simulation physics could be made more realistic. The 
physical model is still first-order, with forces corresponding 
directly to movements. A more realistic model would have forces 
creating accelerations, which would complicate the dynamics of 
the system, and would require a more sophisticated model of 
friction. The collision detection is also not foolproof. This is due 
to NetLogo’s assumptions, which models all moving entities as 
points with a surrounding circle. This can only approximately 
represent the rectangular box, and a large number of small circles 
is used in this simulation to “fill in” the box. 

Future Work 
The major arc of this research is to develop a methodology 

for conceptual modeling of self-organizing systems. How to 
form the parametric behavioral models in this and our previous 
work is an open question, but this work is an attempt to 
understand some of the tradeoffs that a designer has to face. 
Present work in our laboratory also has the goal of transferring 
the behavioral algorithms listed here onto physical robots, for 
testing on real hardware rather than solely in simulation. 
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