
 1 Copyright © 2016 by ASME

Proceedings of the ASME 2016 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2016
August 21-24, 2016, Charlotte, North Carolina, USA

IDETC2016-60053

ADAPTABILITY TRADEOFFS IN THE DESIGN OF SELF-ORGANIZING SYSTEMS

James Humann
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engr.
University of Southern California
Los Angeles, California 90089

humann@usc.edu

Newsha Khani
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engr.
University of Southern California
Los Angeles, California 90089

niusha.khani@gmail.com

Yan Jin*
IMPACT Laboratory

Dept. of Aerospace & Mechanical Engr.
University of Southern California
Los Angeles, California 90089

yjin@usc.edu
(*corresponding author)

ABSTRACT
Self-organizing systems have great potential for

adaptability, but as complex systems, they can also be prone to
unpredictable behavior, cascading failures, and sensitivity to
perturbations. Also, designing systems for adaptability may
introduce overhead that reduces their performance. This paper
investigates the design tradeoffs between adaptability and
performance in the context of a box-pushing task. Using a
genetic algorithm to optimize a parametric behavioral model, we
are able to test systems optimized under different conditions for
performance and reliability. It was found that a system optimized
in the face of random initial conditions and internal perturbations
was more robust than a system optimized without these
perturbations, showing a higher overall fitness over diverse
trials, but it could not take advantage of particular initial
conditions that would have allowed it to achieve a one-off high
fitness in a repeatable environment. A system optimized with
predesigned initial conditions was found to achieve a very high
fitness, but when it was retested with random initial conditions,
its performance plummeted, indicating that it was fit to the ideal
initial conditions but not robust.

Keywords: Self-organizing systems, Genetic algorithm,
Optimization, Field-based regulation.

1. INTRODUCTION
Engineered self-organizing systems are composed of

elementary autonomous components that can collectively
achieve a goal with no system-level knowledge or central
control. An example of a self-organizing system would be a
swarm of autonomous robots. Typically, the individual robots
will be small in size and have only simple capabilities, and a
large number of identical robots will be included in the swarm.

Self-organization of such systems is becoming an important tool
in engineering design, due to a market “pull,” and a technology
“push.”

The market motivation for self-organizing systems is to
create adaptable systems. The ability to cope with change –
whether in functional requirements, environmental conditions,
or the system itself – is now often ordered as a system
requirement [1],	[2]. This is especially true of systems that will
face extreme environmental stressors, such as military
applications, systems with lifespans so long that they need to
perform new functions after deployment, or systems operating at
scales so small that they are difficult to control or repair [3],	[4].

Self-organizing systems have the potential to display
adaptability through redundancy, scalability, and impermanent
connections. Because the components of the system are
autonomous, there are no long causal chains of system
functionality that can be broken by the malfunction of a single
part. If a self-organizing agent breaks down or is removed,
another identical agent can take its place. Because the systems
are based on local interactions, there is no shared resource (e.g.
energy storage or communication bandwidth) that acts as a hard
limit to the size of the system. Agents can form local teams of
appropriate sizes, independent of the entire system’s size, to
adaptably scale the system. The agents’ ability to form and
disband interactions also allows the system to re-organize to
better meet changing conditions.

The technology push stems from miniaturization, ubiquitous
computing, bio-inspired robotics, and the increasing availability
of off-the-shelf robots with interactive capabilities. Enabling
technologies like KiloBots [5] and the open-source “Jasmine”
robots [6] provide simple robotic agents that can form swarms.
Unmanned vehicles for the air and sea are also now commercial
off-the-shelf products, and these can work together like flocks

 2 Copyright © 2016 by ASME

and schools. Another possible substrate for self-organizing
systems are hybrid biological-mechanical systems that take
advantage of natural organisms’ size and locomotion but allow
for algorithmic control. For example, researchers have
demonstrated digital control over live cockroaches [7] and
miniature swimming robots made with jellyfish membranes [8].

These relatively recent technologies can be incorporated
into a designer’s toolbox if he/she has a methodology for
leveraging the interactions among the simple agents to create
adaptable systems.

One major difficulty in the design of self-organizing systems
is their complexity. Complexity is a result of the interactions of
many components [9]. Complex systems can have great
functionality, but they are also prone to cascading failures,
runaway conditions, nonlinear responses to control inputs, and
sensitivity to perturbations [10]. Generally, engineers try to
minimize the interactions among the components that they
design to avoid the problems that come with complexity [11].

Despite this, self-organizing design allows complexity by
giving agents the ability to interact with one another and freely
form relationships. It is then designer’s duty to bring out the good
qualities of self-organizing systems while mitigating the dangers
of complex systems. In this paper, we focus on strategies for
coping with the sensitivity of self-organizing systems to initial
conditions and perturbations. Using agent-based simulation for
analysis and genetic optimization, we generate optimized
behavior models for self-organizing agents. By tuning the
optimization algorithm in different ways (e.g. to search for
robust systems), we can investigate the performance costs that
come with optimizing for adaptability.

In this paper, we explore a self-organizing system whose
purpose is to push a box toward a goal. It is an expansion of our
previous work given in [12],	 [13]. In those papers, the agents
were given the ability to broadcast the conditions in their local
vicinity, so that the agents could coordinate to move the box. The
agents would individually find their chosen locations for the box
and move it from there. Then, when all agents had taken a place,
they would push it toward the desired locations. The process
would repeat until the system was successful or the time limit ran
out. At a system level, it looked like a synchronized alternation
between formation and pushing.

The expansion in this paper is to complete this task without
the aid of system-wide synchronization. Note that
synchronization is possible to achieve in self-organizing systems
(e.g. [14],	 [15]) but is not guaranteed and requires dedicated
hardware and/or algorithms. Because one objective in designing
self-organizing systems is to make the hardware as simple as
possible [16], good performance without the synchronization
overhead represents a notable improvement.

In exploring this problem, we identified an interesting
sensitivity to initial conditions and internal perturbations. This is
an inherent property of complex systems, and thus a risk in the
design of self-organizing systems, but it was effectively covered
up by the system synchronization in the previous work. With a
new distributed behavior algorithm, we were able to counteract

these problems in the unsynchronized system as well. Using a
genetic algorithm for optimization, we were also able to
determine the performance penalty for systems that were
designed for robustness vs. systems that were optimized for
particular initial conditions. Using this approach will allow
designers to make informed tradeoffs between robustness and
performance according to their systems’ requirements and
environmental constraints.

2. RELATED WORK
There are several examples of coordinated object-moving

from the literature and a vast amount of work in the general field
of self-organizing systems. In this section, we will present some
relevant examples from these areas and summarize our previous
work on cellular self-organizing (CSO) systems.

2.1 Natural Self-Organizing Systems
Some of the most impressive self-organizing systems are

found in nature. Here, simple organisms like insects, or larger
animals following simple rules like birds can display complex
group behavior. Flocking in birds is well-known, but perhaps the
most impressive display of aerial coordination is found in
locusts, whose swarms can reach a size of 1 billion insects [17].
Ants are able to find food, recruit fellow workers to harvest the
food, and concentrate the effort along neat lines, all without a
central command. They can even cooperate to lift items many
times the bodyweight of an individual ant [18],	[19]. “Simple”
termites cooperatively build mounds with differentiated and
interconnected chambers that are larger than any other free-
standing structures in the animal kingdom, second only to human
construction [20],	[21].

2.2 Formation Control Systems
Many artificial self-organizing systems show nature-

inspired flocking behavior based on the Boids algorithm [22].
Useful engineering applications of flocking include studies on
urban traffic flow [23] and crowd control during evacuations
[24]. Military forces are also particularly interested in this type
of analysis and control of large fleets of vehicles [25]. Self-
organization of unmanned aerial vehicles (UAVs) is another
promising application and research field. Self-organizing
algorithms have been applied to the control of UAV swarms for
target detection [26]. Evolutionary optimization of UAV control
algorithms was used in [27] to enable coordinated navigation and
obstacle avoidance.

2.3 Moving, Gathering, and Building Systems
In addition to formation control, self-organizing algorithms

have been developed to manipulate objects. Zhang et al [28] used
a team of 3 robotic fish to move a block toward a goal with a
72% success rate, with similar results given in [29]. Parra-
Gonzalez et al [30] used a wave front algorithm for robot motion
planning in the box-pushing problem. Trianni [15] used genetic
optimization to specify neural network controllers for self-
organizing “s-bots” that had to display synchronization and
cooperation. Groups of non-communicating robots have been

 3 Copyright © 2016 by ASME

used to gather pucks in the work of [31] and [32]. Werfel [33]
showed that self-organizing robots can use stores of building
materials to build pre-specified shapes.

2.4 Cellular Self-Organizing Systems
In our previous work on the design of adaptable systems, we

have focused on simulations of robotic agents with
unsophisticated hardware. The functionality is an emergent
property of the interactions among primitive agents, just as
complex life-forms are built from the interactions among simple
cells. Thus we use the term Cellular Self-organizing Systems
(CSO) to describe this work. The first CSO systems were made
to display reconfiguration between two pre-specified shapes
[34]. Emergent formations such as flocking and aggregation
were found with parameter changes in [35]. Simple box-pushing
through obstacles using field-based regulation was shown in
[36], followed by a more sophisticated study with
communicating agents [13]. Optimization of parametric
behavioral models has been used to develop flocking,
exploration, foraging, and a protective convoy in [37],	[38].

In the studies mentioned in this section, different aspects of
adaptability have been demonstrated, but as the systems increase
in complexity, inherent properties of complex systems may pose
threats to system performance. These tradeoffs have not been
studied in detail, and they are the focus of the current paper.

3. THE BOX-PUSHING PROBLEM
It is possible to achieve desirable system functionality from

minimalist agents [16]. A motivating case study can be found in
nature, where the advantage of coordinated object-moving is
evident in the behavior of foraging ants, which have been
reported to transport food objects that are heavier than a single
worker ant by a factor of 5000 (or heavier than the collective
team of ants by a factor of 50) [39]. By analogy, in the engineered
world, debris removal, mining, or construction could all be aided
by cooperating robots.

The Box-Pushing task belongs to a type of task that is often
described as the “piano mover’s problem” or path planning,
which has been studied in the robotics, artificial intelligence, and
control theory communities [40]. While this problem is often
approached from a mathematics or topological perspective [41],
in the present work, the agents are trying to solve the problem
collectively using local information.

Figure 1 shows the simulated environment for the box-
pushing task. The simulation is run using NetLogo [42], a
popular platform for agent-based simulations.

The brown box is to be pushed to the goal (concentric black
circles) by the agents (green squares). They can push the box to
move and rotate it. The box cannot be pushed through the red
obstacle or the blue walls.

The system is limited by the total distance traveled by agents
(representing battery power or abstract efficiency metrics) before
it turns off. In keeping with our previous work [12], if the
centroid of the box reaches the same x-coordinate as the goal, the
trial is considered a success.

Figure 1: The Box-Pushing Problem

Because the NetLogo simulation software is dimensionless,
we will refer to dimensions as being measured in patch-widths
(pw) throughout this paper. A patch is an elementary square area
of the NetLogo environment. For reference, the agents are 1 pw
large along the diagonal; the box is 5 pw wide; and the starting
distance from the center of the box to the goal is 30 pw.

The simulation rests on a simplified physical model. At
every simulation time-step, the forces from every pushing agent
are summed. Every push carries an equal force, and a vector sum
of 11 pushes will move the box 1 pw in a given direction. The
torque is applied around the centroid of the box, and a push with
a moment arm of 5 pw will rotate the box 1 deg. The translation
and rotation scale linearly with the number of agents pushing and
their moment arms, respectively. If the box is moved into an
agent, that agent is pushed out of the way. If the box or an agent
is moved into walls or obstacles, its motion is halted, but no other
reaction force is simulated. Agents cannot move through the box,
walls, or obstacles.

An agent is assumed to be able to move in any direction in
the horizontal plane. They can broadcast and receive information
using one-to-many signaling, but not direct one-on-one
communication. They can differentiate other agents from the
environment, and discriminate among environmental stimuli.
They can measure distances and directions, and have enough
computing power to perform simple reasoning algorithms. They
have enough data storage to govern state changes. They have a
maximum speed of 3 pw per simulation time-step.

These assumptions are in keeping with our previous work
on CSO systems [35], and they are similar to the definition of a
“minimalist” robot [16]. They are also reasonable with respect to
current swarm robot hardware (e.g. [43],	[44]).

3.1 Key Problem Features
With a large box and simple agents, it is necessary for agents

to work together to move the box. This tight coordination is
difficult to design in a system if it is assumed that agents’
communication is limited. How can this coordination be
achieved by independent agents? What is the minimal
communication required?

 4 Copyright © 2016 by ASME

Success in the task is partially stochastic. Agent initial
conditions and internal perturbations (common in complex and
self-organizing systems [45]) will affect the system’s behavior.
How can the system be made more robust to these perturbations?
And does it lose efficiency by seeking adaptability?

3.2 Design Methodology
Several helpful methodologies for the design of self-

organizing systems have been proposed [46],	 [47], but no
standard exists yet. We use the design methodology shown in
Figure 2. Because the system-level form is outside of the
designer’s control, and the agent-level hardware is meant to be
quite simple, the agent-level behavior is the designer’s key point
of influence over the system and the focus of our methodology.
The methodology is similar to other design or systems
engineering methodologies (e.g. [48],	 [49]) but with several
distinctive features tailored to self-organizing systems:
• Agent behavioral design: this is the defining feature of

self-organizing systems. The system components are not
inert. They are programmable, and their behavior, not just
their physical form, can be designed [50]. The behavioral
capacity is a set of behavioral primitives, and the
behavioral selection is an algorithm for applying the
behavioral primitives at a given time. We recommend the
use of field-based behavioral design for this stage, which
will be discussed in more detail in Section 4. The output of
this step is a parametric behavioral model that can be
simulated and optimized.

• Simulation/Optimization: the complex dynamics of self-
organizing systems cannot be captured analytically [51].
Therefore simulation is included as a mandatory step in the
design process. Because we leave detailed design to this
stage, the simulation can be integrated with optimization
algorithms for fast optimization of behavioral parameters
[37]. By encoding the behavioral design with artificial
DNA, we can optimize it with a genetic algorithm.

Figure 2: Methodology for the Design of Self-Organizing Systems

3.3 Potential Failure Modes
During exploratory work, design of the system was adapted

from previous studies on flocking self-organizing systems [50],	
[52]–[54]. Agents’ reactions to each other and the box were based
on attraction and repulsion, which are classical primitives in
flocking [22]. The agents also simultaneously considered
attraction to the goal, and repulsion from walls and obstacles.
These behaviors were parameterized, and the parameters were
tuned using a genetic algorithm. We will not give details of this
exploratory behavioral algorithm here, but a visual summary
with motion trace examples is given in Figure 3.

Figure 3: (a) task completion with obstacle collision (b) task
completion using walls as guide (c) task failure, pushing box

backwards (d) task failure, jamming box against wall

It can be seen in Figure 3 that the system occasionally
behaved in critically counterproductive ways, pushing the box
backwards or jamming it against a wall. Another behavior, not
shown, was agents’ failure due to abandoning the box and
moving to the goal without it. Even in successful attempts, the
box usually collided with walls or the obstacle.

Note that all the behaviors described here were found in
systems after optimization. Because the GA could only optimize
within the parameter space given to it, it was clear that the
conceptual design of the system needed to be reworked to
minimize failures. The previous work [12] avoided these failures
by synchronization. In that study, agents would choose a location
at the perimeter of the box first. Then, when all agents had found
a suitable location, they would communicate and decide whether
or not to push the box. In the current work, we attempt to create
a new behavior algorithm that can avoid these pitfalls even
without system-wide synchronization. With this goal and
potential failure modes in mind, we present a formal behavioral
model for the box-pushing agents in the next section.

 5 Copyright © 2016 by ASME

4. A SELF-ORGANIZING BOX-PUSHING SYSTEM
No practical design process is as linear as the progression in

Figure 2 indicates [55]. Iterative feedback loops also exist due to
knowledge generation throughout the process. In the case of the
preliminary work mentioned earlier, unsatisfactory results after
optimization and new knowledge of the emergent system pitfalls
led to rework and a new strategy at the behavioral design phase.

We design the agent behaviors using a field-based approach
[36]. A field is a mathematical abstraction of every stimulus that
an agent considers. Smooth field functions allow agents to
follow local gradients toward goals. A task field and social field
are used. The task field (tField) is a response to objects in an
agent’s task and environment, and the social field (sField) arises
from agent-agent interactions. The fields are treated as two
separate concepts, because the sField can be used to dynamically
create task-based structures, while the tField controls where
these structures should be deployed [38].

The stimuli in the task field are the box, walls, goal, and
obstacle. Agents need to consider the desirability of their own
location within the field, and the desirability of the box’s location
within the field.

4.1 Field for Box
The field governing the desirability of the box’s location is

a pure tField, whose function is given here:

 (1)
where V and λ are behavioral design parameters, and d is the
distance to the goal, the center of the obstacle, or the nearest
point on the wall. Because the terms in the field equation decay
exponentially, the influence of any one stimulus can peak at a
point and be negligible elsewhere. This makes it simple to create
a local maximum around the goal, and local minima near the
walls and obstacle. Thus, with proper selection of decay
constants, following an increasing gradient can lead through the
environment, between walls and obstacles, and toward the goal.
One graphical example applied to the simulation environment is
given in Figure 4.

Figure 4: Graphical representation of the field value at every
NetLogo patch. White patches have the highest field values.

Darker shades of red have lower values, and the black patches
represent walls and obstacles.

4.2 Field for Agents
Agents cannot simply follow the field described in equation

(1), as they must be mindful of the box’s location and orientation
within the field as well. The field governing agent movement
should distribute them around the box, so that they can protect it
from collisions and collectively push it toward higher field
values.

The agents use a combined tField and sField to calculate
their own movements:

(2)

where η is the set of the calculating agent’s neighbors; dp and db
are the distance (pw) to an agent or the box, respectively; dbn and
dpn are design parameters representing the nominal distance that
an agent attempts to maintain from the box and other agents,
respectively; and wp and wb are relative weights that an agent
places on maintaining a distance toward its neighbors, or the box,
respectively, if both cannot simultaneously be the nominal
distance.

As shown in Figure 5, the box is divided into 6 zones to
focus the agents’ attention on important interactions and to
minimize interference within the system [13]. For an agent to
determine its neighborhood η, it seeks agents in its own zone,
and if it is on a long side of the box, neighbors in the adjacent
zone. For example, in Figure 5Figure 5, where the red agent is
calculating its move, η would contain all agents on the right side
of the box.

Similar to [37], the equilibrium distances dpn and dbn are used
so that agents remain near the box, but also spread out from one
another. The intention is for agents to maintain a formation
surrounding the box.

Figure 5: LEFT: the box is divided into 6 zones. The zones

determine which agents work together. RIGHT: The red agent is
calculating its move. Since it is in zone 3, it considers information
from the blue agents, which are in zones 2 and 3; and the green

agents, which are in zone 5

 6 Copyright © 2016 by ASME

4.3 State Changes
The green agents in Figure 5 are opposite the red agent and

govern the red agent’s state change. State changes separate in
time the agent’s formation keeping from box pushing. The
agent’s logic for switching between the two states is simple: at
any timestep, the agent will receive the box field values from its
neighbors on the opposite side of the box (cross_neighbors in the
pseudocode). If the average of these values is higher than the box
field at its own location, it will set its state to pushing. Otherwise,
it will set its state to forming. If there are no cross_neighbors, the
agent will randomly switch states, according to the probability
switch_prob. The following block of pseudo-code describes this
behavioral algorithm:

4.4 Summary of Agent Behavior

At a given simulation timestep, an agent will first sense its
tField, broadcast its tField value, determine its neighbors on its
own side of the box, and determine its cross_neighbors on the
opposite side of the box. It will then possibly change its state. If
it is in the pushing state, it will move toward the box, and if it
reaches the box, it will push. If it is in the forming state, it will
move to the point with the highest field value according to
Equation (2). Agents can move no further than 3 pw in 1
timestep. All agents perform the same behavioral algorithm in
parallel at every timestep.

5. CASE STUDIES
This section describes the goals and methods of this research

effort and presents three sets of case studies. There are two
related questions motivating this research: how can systems be
made more adaptable in the face of perturbations? And what are
the tradeoffs in other measures of system performance when
designing for adaptability?

5.1 GA Setup
A genetic algorithm (GA) is used to optimize the system

parameters. This partially stochastic algorithm was chosen due
to the large search space and nonlinearity of the optimization
problem. It has been shown to be successful in other similar
applications [54],	[58],	[59].

DNA Encoding
The behavioral parameters are encoded as 8-bit binary

numbers. This is the “design DNA” of the system that the GA

can optimize. Table 1 shows the values and mapping functions
that the GA used for determining behavioral parameters.

Table 1: Mapping GA DNA encoding to behavioral parameters

The several exponential mappings were used for parameters that
encode a relative weight. With an exponential mapping,
parameters have a median value of 1, and can increase or
decrease by a factor of 100.

Genetic Operators
The GA used in this research can be described as a Simple

Genetic Algorithm (SGA) [56] with fitness scaling, uniform
crossover, and elitism. An SGA randomly generates a population
of candidate solutions (the binary strings encoding behavioral
parameters) and evaluates them according to a fitness function
(measure of simulated global performance). With fitness scaling,
the raw fitness scores are scaled so that the best candidate has a
score that is a predetermined factor (15, in this study) of the
average score, and all other candidates’ fitness scores are scaled
linearly. This completes the creation of one GA generation.

Using elitism, the top candidate from a generation is cloned
(copied bit-for-bit) to the next generation. To fill the rest of the
next generation, candidates are randomly selected to mate with
one another. The selection probability is proportional to their
scaled fitness. The offspring are created by mating two
candidates. Under uniform crossover (as defined in [57]), a bit is
randomly chosen from either parent to write each bit of the
offspring genome. For all non-clones, every bit also has a
possibility of mutation (flipping a bit from 1 to 0 or vice versa)
according to a predetermined percentage (1%, in this study).

The process is continued for a number of generations, until
highly fit candidates are found. These operators of selection,
crossover, and mutation are meant to generate better and better
candidates in progressive generations.

Fitness Function
The pass/fail nature of the task makes it difficult to derive

figures of merit. In its most basic form, the task is simply to push
the box toward a goal, with no stipulation on how this is to be
done. A wide variety of strategies can be used successfully, and
the success of any one attempt relies partially on random chance.
At the end, the result is either a pass or fail, sorting all systems
into one of only two categories. To aid in differentiation of
systems, more criteria were added to the system performance
metrics: effort, collisions, and reliability.

Effort is the total distance travelled by the agents in the
system. Systems can reduce their effort by, e.g., taking the
shortest possible route between the origin and the goal, and not
backtracking. It is included in the fitness function as a simulation
stopping condition. After the system has expended a pre-

 7 Copyright © 2016 by ASME

determined amount of energy, the simulation is stopped and the
fitness is calculated.

Collisions is the number of times that the box collided with
the walls or obstacles. It is included in the fitness function as a
penalty that reduces the score of a success.

Reliability is tested by allowing the system to complete the
task multiple times before the effort budget is exhausted. After a
success, the task and environment will reset, allowing another
opportunity for the system to complete the task, obtaining a
higher fitness with every subsequent success.

For clarity, in the remainder of this paper, any single attempt
at pushing the box to the goal will be referred to as a sprint. The
set of sprints that occur before the effort budget is expired will
be referred to as a trial. Systems can add to their fitness score
with each successful sprint, but the GA only considers the final
fitness score at the end of a trial.

A trial is ended after the agents have collectively travel
40000 pw. The fitness is calculated according to Equation (3):

(3)

where M is the number of successful sprints in a trial, and xi is
the number of collisions that occur during sprint i. It can be seen
that the collision penalty is 25%.

Finding Optimal Systems
Because the behavior of the system is partially stochastic,

determining the optimal system is not as simple as choosing the
system with the highest fitness value found by the GA. The mean
and variance of the system behavior must also be considered.
Also, different GAs with the same fitness function and search
space can converge to different parameter sets, making
optimality hard to define. In this work, multiple GAs are run to
identify highly fit candidate systems. These systems are then re-
tested for reliability, and the system with the highest 30th
percentile score (out of 100 trials) is chosen as the optimal
candidate. The finalists are determined as follows:

1. 3 GAs are run with random starting populations
• Choose as finalists

i. Best candidate from final generation
ii. 2nd best candidate from final generation

iii. Best candidate overall
2. A “hall of fame” GA is run with the finalist candidates

from the first 3 GA runs used as seeds in the 1st
generation
• Choose 3 finalists similarly

3. All 12 finalists from the first 4 GAs are retested for 100
trials
• Choose as optimal the candidate with highest 30th

percentile fitness

This means that any fitness score reported for an optimized
parameter set can be interpreted as having 70% reliability.

5.2 Baseline: Random Initial Conditions and Stepping
Order
The baseline setup for the system is for the agents to assume

a random initial position on the left side of the box, and for the
simulation to update the agent positions in a random order.

This scenario was chosen to include several sources of
randomness, and to compare to the previous work in [38].
Several questions guided this case study: Can an unsynchronized
field-based system be as reliable as a logic-based system with
synchronization? What are the performance advantages and
disadvantages of each approach?

Optimized System
Table (2) shows the optimized parameter set found in the

baseline scenario.
Table 2: Optimized parameter set found in the baseline scenario

In 100 trials, this system had a 30th percentile fitness of

1565.9. Its minimum, mean, and maximum fitness scores were
0, 1572.7, and 1901.3, respectively.

Comparison to Previous Work
Compared with the previous work [13], the unsynchronized

system was found to be quite competitive, and more efficient
from an energy viewpoint. It was, however, more prone to
collisions. Figure 6 shows three trends as a function of the
system’s energy budget: the raw success rate of the current work,
the success rate if sprints with collisions are not counted, and the
success rate of the previous work (where collisions never
occurred in 100 trials). The x-axis of “Agent Travel Limit”
indicates how much energy (measure in patch-width (pw)) is
allowed for the agents to use during each simulation. When the
allowed energy is low, the agents can succeed only a few times
out of the total number of trials.

It can be seen from Figure 6 that the unsynchronized system
could complete the task much more reliably with a small energy
budget, but it was prone to collisions. At higher energy levels,
the synchronized system had more collision-free successes. This
is because the synchronized system expended a lot of energy to
create formations around the box, and because it showed a lot of
backtracking and oscillations in box motion. In the synchronized
system, agents could move to an entirely new location around
the box during every pushing sequence. In the unsynchronized
system, when agents found a location around the box, they
tended to stay in the vicinity, minimizing formation-keeping
movement. Also, there were fewer oscillations and less
backtracking, so the box was pushed to the goal more quickly.

 8 Copyright © 2016 by ASME

Figure 6: Success rate as a function of energy budget, comparing

the optimized, unsynchronized system with the synchronized
system

RNG Seed Attached to Candidates
Our next optimization removed the randomness from the

simulation by allowing candidate solutions to fix their random
number generator (RNG) seed. To do this, the parameter sets
were appended with 8 more bits to encode the RNG seed, and
this seed was passed to NetLogo at the beginning of a trial.

This seed controls the three sources of randomness within
the simulation:

1. Random initial positions
2. Random stepping order of agents
3. Random switching between states if switch_prob is

not 0 or 100%

The random stepping order is an artifact created by the
simulation software. As a serial-processing machine, the
computer can only emulate the parallel actions of SO systems by
updating the system state in small intervals, and agent states must
be updated one at a time to check for collisions and interference.
Nonetheless, this simulation artifact does emulate some of the
internal perturbations of distributed hardware systems such as
unequal agent speeds, missed communication, interference, and
unsynchronized update times.

By encoding the RNG seed with the parameters, initial
positions and stepping orders can be maintained in clones and
offspring of highly fit candidates. They are still generated based
on the RNG seed (i.e. not specifically designed), but for any
given seed they are repeatable.

Intuitively, this could lead to one of two scenarios:
1. An RNG seed is found that enables advantageous

initial positions and stepping orders for a large swath
of candidates.

2. Or a coevolved pairing of the RNG seed with
parameter values is found that gives high fitness, even
though individually the parameter values or the RNG
seed may not be generally helpful.

Note: NetLogo uses the Mersenne Twister RNG, as developed
by Matsumoto and Nishimura [60], and implemented in Java
code by Luke [61].

The random initial positions represent a designer’s
uncertainty about the system state at deployment. Many self-
organizing systems are envisioned to be deployed in
environments were precise control is impossible [4],	[62],	[63].
Then the questions can be: How can a GA optimize in the face
of random initial conditions and internal perturbations? What is
the performance penalty caused by the use of random initial
positions?

These questions have implications in design tradeoffs and
optimization approaches. If the designer has to pay a high
premium for precise control over the system’s initial condition,
then it may be wise to forgo that precision if the system is robust
to changing initial conditions.

Optimized System
This system evolved to a small equilibrium distance with the

box of 2.53 pw. A distance of 1 pw is necessary to avoid colliding
with the box. It was generally quick to surround the box, and
pushed it toward the goal with minimal stalling or collisions.
With its evolved RNG seed of 210000, it was able to achieve a
fitness of 2228.4 with 25 complete sprints.

The repeatable initial conditions resulted in a fitness score
higher than any found in the tests of the system with random
initial conditions. The baseline optimized candidate had a
maximum fitness of 1901.3. The candidate with attached RNG
seed had a maximum fitness of 2228.4. This indicates that there
is at least a 17.2% performance penalty due to random initial
conditions and perturbations, if the designer is only concerned
with a best-case scenario (a maximax optimization).

Table 3: Optimized parameter set for RNG seed added scenario

Retesting without Optimized RNG Seed
This performance mentioned above was highly dependent

on the RNG seed, however. To investigate this, a retest was
performed without the evolved RNG seed (a random new seed
was generated for each trial). This parameter set was prone to the
same errors as other systems, occasionally jamming the box
against a wall or pushing it backwards away from the goal,
indicating that it was not robust to changing initial conditions.
The particular evolved RNG seed had just prevented the system
from displaying this error within the time limit. The lack of
robustness gave it a mean performance of 1312.5. Compared to
the baseline mean, 1572.3, there was a 16.5% performance
penalty due to lack of robustness to an uncertain environment.

 9 Copyright © 2016 by ASME

Ideal Initial Conditions
Because successful systems tended to surround the box and

signal when it was approaching a wall or obstacle, the task
completion could be aided by intentional arrangement of agents
in positions surrounding the box. One advantageous initial
formation has agents on all four sides, regularly spaced, with
more agents on the left than the right (because they need to push
toward the right). This designed scenario is the focus of the final
case study.

The obvious advantage here is that the designer can set
initial conditions that are conducive to system functionality,
rather than making the system assemble itself. The possible
downsides are again related to cost and robustness. This precise
control may come at a high price if the system is deployed in
remote or harsh environments. Also, if the system behaviors are
designed for ideal initial conditions, they may fail in off-nominal
cases. As is often the case in design, a cost/benefit decision must
be made. These research questions aim to explore the
cost/benefit tradeoffs:

• What performance gains are achievable by prescribed
initial conditions?

• How severe is the loss in performance when a system
optimized for ideal initial conditions is deployed in an
off-nominal configuration?

Optimized System
The best candidate found had a fitness of 6500, much higher

than any other systems mentioned in this paper. It achieved this
by successfully completing 65 sprints without colliding with any
walls or obstacles. The candidates evolved in this scenario not
only had high fitness, but also were remarkably reliable. Figure
7 shows the initial formation, and a wire trace of 5 sprints from
this candidate. Table 4 shows the optimized parameter values.

Table 4: Optimized parameter set for ideal initial coniditons
scenario

All 100 subsequent trials of the optimized candidate

displayed the same behavior as in Figure 7. There were no
collisions with the wall or obstacle. The only notable variation
from sprint to sprint was whether the system would go above or
below the obstacle.

The system achieved such high fitness by maintaining a very
tight formation around the box. Its dbn value (governing the
equilibrium distance from the box) was 1.0, the lowest possible
value in the parameter range. The formation surrounding the box
and the state-switching strategy reliably caused agents to move
the box to the goal, and the tight equilibrium distance minimized
the distance that agents would travel, allowing them to use their
energy budget for more sprints.

Figure 7: (LEFT) Initial designed formation (RIGHT) Behavior of

optimized system. A wire trace is shown of 5 sprints, with a
different color for each sprint.

Retesting without Ideal Initial Positions
The optimized parameter set was highly dependent on the

initial conditions. In a re-test of the optimized system (N = 100)
with the random initial positions of the baseline scenario, the
average fitness was 0.004323, with only 54% of trials resulting
in any successful sprints. The best trial resulted in a fitness of
0.1784. Agents did a poor job of distributing themselves around
the box, often grouping together on only 1 or 2 sides and
collectively jamming the box into a wall. Even during successful
sprints, the high number of collisions often brought the fitness
score down into the thousandths or lower.

6. FINDINGS AND IMPLICATIONS
In this section, we revisit this paper’s research questions in

light of the data generated from the case studies.
Can a field-based unsynchronized system be as reliable as a

logic-based system with synchronization?
The answer is a qualified “yes”. In the case where ideal

initial positions can be prescribed, the unsynchronized system in
this paper is more reliable than the synchronized system of the
previous work. Even in the baseline case, the unsynchronized
system was very reliable with small energy budgets, and was
close to 100% reliable at higher energy budgets.

What are the performance advantages and disadvantages of
each approach?

The synchronized system was always free from collisions
with the walls and obstacles, but the baseline system was prone
to collisions, which could be a major problem, depending on the
application. This weakness could be mitigated by better control
of initial conditions, or it may be possible to use the same
parameter ranges with a new optimization that has a higher
fitness penalty for collisions to find systems that are less prone
to collisions.

What is the performance loss caused by random initial
positions and perturbations? And is there a performance penalty
if the system is optimized for robustness to initial conditions?

 10 Copyright © 2016 by ASME

The RNG-encoded optimization produced a system with
high fitness. However, when the same candidate was re-tested
without its optimized RNG seed, its maximum fitness out of 100
trials was 14.7% lower, and its mean fitness was 41.1% lower,
indicating substantial performance drops due to randomness and
perturbations.

The RNG-encoded optimized candidate had a fitness 17.2%
higher than any trial of the optimized baseline system, so the
performance penalty from optimizing for robustness is that the
GA is restricted from seeking unique cases that cause high
fitness. This would be interpreted as a performance penalty in a
maximax optimization.

From an optimization standpoint, this also serves as a
warning to include sufficient randomness in the optimization
algorithm if there is uncertainty in the environment, because the
optimized parameter set was uniquely suited to the optimized
RNG seed, but was not robust to changing conditions.

What performance gains are achievable by prescribed
initial conditions?

There is a significant performance gain when the designer is
allowed to pre-specify initial conditions. The optimized system
with agents surrounding the box in the beginning completed 65
sprints with no collisions in 1 trial, for a fitness of 6500, and it
reliably repeated this performance 100 times in further testing.
Compare this to the optimized baseline system, which achieved
a maximum fitness of 1901.7 in 100 trials, and was prone to
collisions in almost 10% of its sprints.

How severe is the loss in performance when a system
optimized for ideal initial conditions is deployed in an off-
nominal configuration?

The tradeoff to the performance gain from ideal initial
conditions is that systems optimized with these conditions have
critically degraded performance when deployed in environments
with random initial conditions, indicating that they are brittle, or
non-robust. As evidence, when re-testing the optimized
candidate from the ideal initial conditions scenario with random
initial conditions, it failed to complete a single sprint in 54% of
its trials, and it was so prone to collisions that it never reached a
fitness score above 0.1784 (22 collisions).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we described a design process for engineering

a self-organizing box-pushing system, whose agents have basic
hardware and are not capable of system-wide synchronization.
Agent behavior relied on state switching between forming and
pushing, with the pushing governed by agents’ positions within
a tField, and the forming governed by a combined sField and
tField. Using agent-based simulation and a GA, we were able to
explore the tradeoffs that designers of self-organizing systems
must make between performance and adaptability. We found that
if a system is optimized for robustness, by allowing it to evolve
in the GA in the face of random initial conditions and
perturbations, it will display this robustness in future testing, but
its maximum values may be attenuated. We also found that great
performance gains can come from control over the system’s

initial conditions, but that a system optimized with ideal initial
conditions risks catastrophic failure if deployed in uncertain
environments due to its lack of robustness.

Limitations
The quantitative findings presented here rest on the

assumption that the GA was able to find the optimal parameter
set for every scenario and behavior encoding. As with any
heuristic search algorithm, this cannot be guaranteed. Given the
huge search space, it would be impossible to perform an
exhaustive search to prove optimality, but these are the best
candidates that could be found within the time and computing
power constraints that we faced.

The simulation physics could be made more realistic. The
physical model is still first-order, with forces corresponding
directly to movements. A more realistic model would have forces
creating accelerations, which would complicate the dynamics of
the system, and would require a more sophisticated model of
friction. The collision detection is also not foolproof. This is due
to NetLogo’s assumptions, which models all moving entities as
points with a surrounding circle. This can only approximately
represent the rectangular box, and a large number of small circles
is used in this simulation to “fill in” the box.

Future Work
The major arc of this research is to develop a methodology

for conceptual modeling of self-organizing systems. How to
form the parametric behavioral models in this and our previous
work is an open question, but this work is an attempt to
understand some of the tradeoffs that a designer has to face.
Present work in our laboratory also has the goal of transferring
the behavioral algorithms listed here onto physical robots, for
testing on real hardware rather than solely in simulation.

REFERENCES
[1] R. Neches and A. M. Madni, “Towards affordably

adaptable and effective systems,” Systems Engineering, p.
n/a–n/a, 2012.

[2] A. B. Urken, A. “Buck” Nimz, and T. M. Schuck,
“Designing evolvable systems in a framework of robust,
resilient and sustainable engineering analysis,” Advanced
Engineering Informatics, vol. 26, no. 3, pp. 553–562, Aug.
2012.

[3] A. Requicha, “Swarms of Self-Organized Nanorobots,” in
Nanorobotics, Springer, 2013, pp. 41–49.

[4] T. Hogg, “Distributed control of microscopic robots in
biomedical applications,” in Advances in applied self-
organizing systems, Springer, 2013, pp. 179–208.

[5] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low
cost scalable robot system for collective behaviors,” in
2012 IEEE International Conference on Robotics and
Automation (ICRA), 2012, pp. 3293 –3298.

[6] S. Kornienko, O. Kornienko, A. Nagarathinam, and P.
Levi, “From real robot swarm to evolutionary multi-robot
organism,” in Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, 2007, pp. 1483–1490.

 11 Copyright © 2016 by ASME

[7] C. J. Sanchez, C.-W. Chiu, Y. Zhou, J. M. Gonzalez, S. B.
Vinson, and H. Liang, “Locomotion control of hybrid
cockroach robots,” Journal of The Royal Society Interface,
vol. 12, no. 105, pp. 20141363–20141363, Mar. 2015.

[8] J. C. Nawroth, H. Lee, A. W. Feinberg, C. M. Ripplinger,
M. L. McCain, A. Grosberg, J. O. Dabiri, and K. K. Parker,
“A tissue-engineered jellyfish with biomimetic
propulsion,” Nature Biotechnology, vol. 30, no. 8, pp.
792–797, 2012.

[9] H. Simon, “The Architecture of Complexity,” Proceedings
of the American Philosophical Society, vol. 106, no. 6, pp.
467–482, 1962.

[10] Y. Bar-Yam, A. Minai, and D. Braha, “Complex
Engineered Systems: A New Paradigm,” in Complex
engineered systems: science meets technology, Berlin ;
New York: Springer, 2006, pp. 23–39.

[11] N. P. Suh, “A Theory of Complexity, Periodicity and the
Design Axioms,” Research in Engineering Design, vol.
11, no. 2, pp. 116–132, Aug. 1999.

[12] N. Khani and Y. Jin, “Dynamic Structuring in Cellular
Self-Organizing Systems,” in Design Computing and
Cognition ’14, J. S. Gero and S. Hanna, Eds. Cham:
Springer International Publishing, 2015, pp. 3–20.

[13] N. Khani, J. Humann, and Y. Jin, “Effect of Social
Structuring in Self-Organizing Systems,” Journal of
Mechanical Design, vol. 138, no. 4, 2016.

[14] S. Camazine, Self-organization in biological systems.
Princeton, N.J.: Princeton University Press, 2001.

[15] V. Trianni, Evolutionary swarm robotics: evolving self-
organising behaviours in groups of autonomous robots.
Berlin: Springer, 2008.

[16] C. Jones and M. J. Matarić, “Adaptive division of labor in
large-scale minimalist multi-robot systems,” in Intelligent
Robots and Systems, 2003.(IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, 2003, vol. 2,
pp. 1969–1974.

[17] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E.
Despland, E. R. Miller, and S. J. Simpson, “From Disorder
to Order in Marching Locusts,” Science, vol. 312, no.
5778, pp. 1402–1406, Jun. 2006.

[18] C. R. Kube and E. Bonabeau, “Cooperative transport by
ants and robots,” Robotics and autonomous systems, vol.
30, no. 1, pp. 85–101, 2000.

[19] E. Bonabeau, Swarm intelligence: from natural to
artificial systems. New York: Oxford University Press,
1999.

[20] E. Bonabeau, G. Theraulaz, J. Deneubourg, N. R. Franks,
O. Rafelsberger, J. Joly, and S. Blanco, “A model for the
emergence of pillars, walls and royal chambers in termite
nests,” Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, vol. 353, no. 1375,
pp. 1561–1576, 1998.

[21] J. Korb, “Termite Mound Architecture, from Function to
Construction,” in Biology of Termites: a Modern
Synthesis, D. E. Bignell, Y. Roisin, and N. Lo, Eds.
Springer Netherlands, 2011, pp. 349–373.

[22] C. W. Reynolds, “Flocks, herds, and schools: A distributed
behavioral model,” in ACM SIGGRAPH ’87 Conference
Proceedings, 1987, vol. 25–34.

[23] A. S. Mikhailov, “From Swarms to Societies: Origins of
Social Organization,” in Principles of Evolution, H.
Meyer-Ortmanns and S. Thurner, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 367–380.

[24] M. Moussaïd, D. Helbing, and G. Theraulaz, “How simple
rules determine pedestrian behavior and crowd disasters,”
PNAS, vol. 108, no. 17, pp. 6884–6888, Apr. 2011.

[25] D. J. Nowak, G. B. Lamont, and G. L. Peterson,
“Emergent architecture in self organized swarm systems
for military applications,” in Proceedings of the 2008
GECCO conference companion on Genetic and
evolutionary computation, New York, NY, USA, 2008, pp.
1913–1920.

[26] P. Dasgupta, “A multiagent swarming system for
distributed automatic target recognition using unmanned
aerial vehicles,” Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 38, no.
3, pp. 549–563, 2008.

[27] F. Ruini and A. Cangelosi, “Extending the Evolutionary
Robotics approach to flying machines: An application to
MAV teams,” Neural Networks, vol. 22, no. 5, pp. 812–
821, 2009.

[28] D. Zhang, L. Wang, and J. Yu, “A Coordination Method
for Multiple Biomimetic Robotic Fish in Underwater
Transport Task,” in American Control Conference, 2007.
ACC’07, 2007, pp. 1870–1875.

[29] Y. Hu, L. Wang, J. Liang, and T. Wang, “Cooperative box-
pushing with multiple autonomous robotic fish in
underwater environment,” IET control theory &
applications, vol. 5, no. 17, pp. 2015–2022, 2011.

[30] E. F. Parra-González, G. Ramírez-Torres, and G. Toscano-
Pulido, “Motion planning for cooperative multi-robot box-
pushing problem,” in Advances in Artificial Intelligence–
IBERAMIA 2008, Springer, 2008, pp. 382–391.

[31] R. Beckers, O. E. Holl, J. L. Deneubourg, Z. Bielefeld, and
D.- Bielefeld, “From local actions to global tasks:
Stigmergy and collective robotics,” in Artificial Life IV,
1994, pp. 181–189.

[32] Y. Song, J.-H. Kim, and D. Shell, “Self-organized
Clustering of Square Objects by Multiple Robots,” in
Swarm Intelligence, vol. 7461, M. Dorigo, M. Birattari, C.
Blum, A. Christensen, A. Engelbrecht, R. Groß, and T.
Stützle, Eds. Springer Berlin / Heidelberg, 2012, pp. 308–
315.

[33] J. Werfel, “Collective Construction with Robot Swarms,”
in Morphogenetic Engineering: Toward Programmable
Complex Systems, 2012, pp. 115–140.

[34] G. Zouein, C. Chen, and Y. Jin, “Create Adaptive Systems
through ‘DNA’ Guided Cellular Formation,” in Design
Creativity 2010, 2010, p. 149.

[35] W. Chiang and Y. Jin, “Design of Cellular Self-Organizing
Systems,” presented at the IDETC/CIE 2012, Chicago,
Illinois, 2012.

 12 Copyright © 2016 by ASME

[36] Y. Jin and C. Chen, “Cellular self-organizing systems: A
field-based behavior regulation approach,” AI EDAM, vol.
28, no. Special Issue 02, pp. 115–128, May 2014.

[37] J. Humann and A. M. Madni, “Integrated Agent-based
modeling and optimization in complex systems analysis,”
Procedia Computer Science, vol. 28, pp. 818–827, 2014.

[38] J. Humann, Y. Jin, and N. Khani, “Evolutionary
Computational Synthesis of Self-Organizing Systems,” AI
EDAM: Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 2014.

[39] M. W. Moffett, “Cooperative food transport by an Asiatic
ant,” National Geographic Research, vol. 4, no. 3, pp.
386–394, 1988.

[40] S. M. LaValle, Planning algorithms. Cambridge ; New
York: Cambridge University Press, 2006.

[41] J. T. Schwartz and M. Sharir, “On the ‘piano movers’
problem. II. General techniques for computing topological
properties of real algebraic manifolds,” Advances in
Applied Mathematics, vol. 4, no. 3, pp. 298–351, Sep.
1983.

[42] U. Wilensky, NetLogo. Evanston, IL: Center for
Connected Learning and Computer-Based Modeling,
Northwestern University, 1998.

[43] R. Groß, M. Bonani, F. Mondada, and M. Dorigo,
“Autonomous self-assembly in swarm-bots,” Robotics,
IEEE Transactions on, vol. 22, no. 6, pp. 1115–1130,
2006.

[44] J. McLurkin, “Experiment design for large Multi-Robot
systems,” in Robotics: Science and Systems, Workshop on
Good Experimental Methodology in Robotics, Seattle,
WA, USA, 2009.

[45] A. Wagner, Robustness and evolvability in living systems.
Princeton, N.J: Princeton University Press, 2005.

[46] C. Gershenson, “A general methodology for designing
self-organizing systems,” arXiv preprint nlin/0505009,
2005.

[47] T. De Wolf and T. Holvoet, “Towards a methodology for
engineering self-organising emergent systems,” Frontiers
in Artificial Intelligence and Applications, vol. 135, p. 18,
2005.

[48] S. Pugh, Total design. Addison-Wesley, 1990.
[49] M. W. Maier and E. Rechtin, The art of systems

architecting, 3rd ed. Boca Raton: CRC Press, 2009.
[50] J. Humann and Y. Jin, “Evolutionary Design of Cellular

Self-Organizing Systems,” in ASME 2013 International
Design Engineering Technical Conferences and
Computers and Information in Engineering Conference,
2013, pp. V03AT03A046–V03AT03A046.

[51] B. Edmonds, “Using the experimental method to produce
reliable self-organised systems,” in Engineering Self-
Organising Systems, Springer, 2005, pp. 84–99.

[52] J. Schellinck and T. White, “A review of attraction and
repulsion models of aggregation: Methods, findings and a
discussion of model validation,” Ecological Modelling,
vol. 222, no. 11, pp. 1897–1911, 2011.

[53] W. Chiang and Y. Jin, “Toward a Meta-Model of
Behavioral Interaction for Designing Complex Adaptive
Systems,” in ASME IDETC/CIE 2011, 2011, pp. 1077–
1088.

[54] F. Stonedahl and U. Wilensky, “Finding Forms of
Flocking: Evolutionary Search in ABM Parameter-
Spaces,” in Proceedings of the MABS workshop at the
Ninth International Conference on Autonomous Agents
and Multi-Agent Systems, 2010.

[55] J. S. Gero and U. Kannengiesser, “The situated function–
behaviour–structure framework,” Design Studies, vol. 25,
no. 4, pp. 373–391, Jul. 2004.

[56] D. Goldberg, The Design of Innovation, 1st ed. Springer,
2002.

[57] W. M. Spears and V. Anand, A study of crossover
operators in genetic programming. Springer, 1991.

[58] A. Agah and G. A. Bekey, “A genetic algorithm-based
controller for decentralized multi-agent robotic systems,”
in Evolutionary Computation, 1996., Proceedings of IEEE
International Conference on, 1996, pp. 431 –436.

[59] B. Calvez and G. Hutzler, “Automatic Tuning of Agent-
Based Models Using Genetic Algorithms,” in Multi-
Agent-Based Simulation VI, vol. 3891, J. Sichman and L.
Antunes, Eds. Springer Berlin / Heidelberg, 2006, pp. 41–
57.

[60] M. Matsumoto and T. Nishimura, “Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-
random number generator,” ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 8,
no. 1, pp. 3–30, 1998.

[61] S. Luke, “The ECJ Owner’s Manual,” Department of
Computer Science, George Mason University, zeroth
edition, 2010.

[62] B. Birge, “Applying Biomimetic Algorithms for Extra-
Terrestrial Habitat Generation,” Aug. 2012.

[63] M. Mamei and F. Zambonelli, “Theory and practice of
field-based motion coordination in multiagent systems,”
Applied Artificial Intelligence, vol. 20, no. 2–4, pp. 305–
326, 2006.

