
Design Computing and Cognition DCC’16. J.S. Gero (ed),
pp. 401-420. © Springer 2016

401

A Self-Organizing Map Based Approach to Adaptive

System Formation

Dizhou Lu and Yan Jin
University of Southern California, USA

Multi-agent systems are considered to be potential solutions to complex tasks. Cel-

lular self-organizing (CSO) multi-agent systems have been proposed that take a

field-based approach to regulate agent behaviors. One difficulty in designing CSO

systems is to generate rules to map given tasks to agent behaviors. This paper pro-

poses an approach for adaptive system formation based on a field analysis and self-

organizing map (SOM) algorithm. The tasks are captured as multiple task fields.

The relationship among the agents is translated into a social field. Each agent has

multiple function modes corresponding to the task fields. SOM and a function mode

selection algorithm are devised to match the social field of the system with the task

fields. Computer simulations have demonstrated the effectiveness of this approach

and its potential in designing CSO systems for solving system formation tasks.

Introduction

When changes in the task requirement and operation environment occur, a

system often needs to change its formation (e.g., form/shape, size, or struc-

ture) in order to stay functional. For example, a sophisticated rescue robotic

system must be able to change its shape when the space on the path varies

with the harsh and unpredictable environment. Space and deep sea explora-

tions are also examples of such variable environments. In most, if not all,

engineered systems, the physical components are designed for only limited

and predetermined purposes and operation ranges, beyond which the system

behaviors are not predictable.

 Multi-agent systems are potential solutions to complex tasks. The flexi-

ble relationships among the agents provide the system adaptability to deal

with changing functional requirements and operation conditions. In order to

guide a multi-agent system to fulfill a task, the global task information needs

 D. Lu and Y. Jin

402

to be encoded into local rules for agents to follow. The adaptability of the

system depends on the encoding process and the range of applicability of

the local rules. Most of current approaches encode the task information into

agent behaviors. In order to generate suitable rules for given tasks, designers

must either specify rules based on their knowledge, or provide algorithms

like genetic algorithm to optimize the parameterized rules. In both cases,

external supervision is needed, limiting the system adaptability.

 Our previous field based behavior regulation approach to cellular self-

organizing (CSO) systems [1][2] separates the task encoding process from

the system model design process by translating the tasks and environment

information into a task field, and the agents operate in the task field by mov-

ing from the “higher place” to the “lower place” in the field. The current

approach, however, has several limitations, making it difficult to deal with

system formation problems. First, in the earlier field based approach [1],

each agent operates independently based on its own sensed field infor-

mation. The system formation is largely an emergent result. Although the

emergence offers adaptability, the lack of explicit relations between the

agents makes it hard to generate a specific formation, such as a tube or a

ring, when the task demands it. Second, in the later dynamic social structur-

ing approach [3] agents form local social structures based on the predefined

social rules. Although the introduction of social rules has made it possible

to generate local forms and increase the global productivity, the coding of

rules can be domain and designer dependent. Third, the approaches to CSO

systems developed thus far generally lack learning capability, making it dif-

ficult to deal with complex system formation problems where changes need

to be learned by the agents during the process of operation.

 In this paper, a self-organizing map (SOM) based approach is proposed

for CSO system design. The goal here is to apply unsupervised learning and

build a system model which is compatible with the task fields generated by

the field based behavior regulation. Each agent in the system is treated as a

neuron in a SOM, with the ability to sense the environment and communi-

cate with other agents. Tasks are represented as multiple task fields external

to the system, and the cooperation among the agents is represented as the

social field of the system. The system has the ability to organize itself to

fulfill system formation tasks via matching its social field with the external

task fields. In the rest of this paper, recent research related to multi-agent

systems, field-based regulation, and shape formation is reviewed in Section

2 together with a short introduction to self-organizing map. The adaptive

system formation problem and the framework of our approach are intro-

duced in Sections 3 and 4, respectively. Three case studies are described in

Section 5 to demonstrate the effectiveness of our approach. Section 6 draws

concluding remarks and points to future research directions.

Self-Organizing Map for Adaptive System Formation 403

Related work

In the past decade, design for adaptability has been popular in the field of

engineering design and more efforts have been made to investigate multi-

agent system design. A multi-agent system consists of multiple robotic

agents that are supposed to work with each other to fulfill global level tasks

based on their local information. The design of multi-agent system is usually

a bottom-to-up process, with a focus on developing a suitable interaction

model of multiple agents. Two types of approaches are commonly used in

building such models.

The structural design approach is initially inspired by social structures

and bio structures in nature. Fukuda and Ueyama [4] compared robotic sys-

tem with social system, and pointed out the importance of system structure

for the intelligence of the system. Kawauchi et al. [5] further proposed the

“CEBOT” with genetic knowledge production algorithm that achieved self-

organization and self-evolution with a “distributed intelligence system”.

Also inspired by social structures, we introduced the concept of field

based behavior regulation, in which agent behaviors are regulated by both

social field and task field [1][2]. The task field is used to represent the task

and the environment for the system. The social field is formed by introduc-

ing social rules in multi-agent systems [3]. This dynamic structure can en-

hance the self-organizing functionality for multi-agent systems using both

general and context-based social rules among the agents in the system.

Behavior modeling and optimization is another approach to designing

agent interaction model. Our previous work proposed a COARM behavioral

model [2] that specifies agent behavior as the composition of five primitive

behaviors: Cohesion, Avoidance, Alignment, Randomness and Momentum.

A genetic algorithm is used to search for the optimal composition for differ-

ent tasks such as foraging and habitat construction.

Researchers have applied multi-agent systems to solve shape and struc-

ture formation problems. Nagpal et al [6] developed an algorithm for multi-

agent systems to form arbitrary predefined shapes. A compiler is used to

translate global shape information to local agent rules. Bai and Breen [7]

proposed a cell aggregation model to achieve self-organizing shape for-

mation. In this model, an artificial scalar field introduced for cells to move

in the direction of the field gradient. A genetic Programming method is used

to discover the relationship between different field functions and the shapes

formed by the cells. Doursat [8] presented a model using non-random ge-

netic rules to achieve self-assembly and pattern formation. In his approach,

self-assembly and pattern formation are integrated in loops to form complex

 D. Lu and Y. Jin

404

shapes or structures. Werfel [9] proposed a 3-dimensional model to imple-

ment low-level primitives shown in biological system. In his model, the gra-

dient of morphogen field is used to guide modular robots to grow into struc-

tures of desired sizes, and provide them with position information.

De Rosa et al [10] proposed a shape formation algorithm for lattice-ar-

rayed modular robots. In their algorithm, the desired shape is compiled into

a plan which guide the movement, creation and deletion of the void space in

the lattice, transforming the lattice into the desired shape. Tolley and Lipson

[11] presented an approach for stochastic assembly of modular robots. The

modular robots are put in a fluidic tank, and they can self-reconfigure into

different 3-dimentional shapes depending on the fluidic environment.

The current multi-agent system formation approaches mostly involve su-

pervised learning such as genetic programming or compiling that requires

pre-knowledge of the target forms. To deal with the uncertainty in the real

world, unsupervised learning is more preferable since the information about

the environment and the needed formation can be unknown and human in-

terventions to the system are not possible. Self-organizing map is an unsu-

pervised artificial neural network developed by Kohoen [12]. It has been

successfully applied in the areas including image processing and speech

recognition [13][14].

With a high degree of topological order, SOM can be used in multi-agent

systems for structure design through organizing the relationships among the

agents. Although there is little direct research to apply SOM to multi-agent

systems, some work showed how SOM could be used to solve inner-system

relationships and physical pattern matching problems. Kiang et al. [15] ap-

plied SOM as a clustering tool in group technology, where SOM was used

to address the part machine relationships for grouping the parts. Kit [16] et

al. developed the Location Aware Self-Organizing Map to discover visual

features of geographical locations.

One major barrier for applying SOM in multi-agent systems is to map

the codebooks (related to the social field discussed below) to the data space

density (related to the task field discussed below). This problem is repre-

sented as magnification control in vector quantization. Villmann and

Claussen [17] explored different methods to control the magnification in

SOM with regard to the typical SOM learning rules, and summarized them

into three types. Localized learning algorithms introduce local learning rates

and can achieve arbitrary magnification. The other two types of magnifica-

tion learning algorithms are winner-relaxing learning and concave-convex

learning [18][19]. Compared with localized learning, winner-relaxing learn-

ing and concave-convex learning have the advantage of independence on

the data distribution [17].

Self-Organizing Map for Adaptive System Formation 405

The problem: adaptive system formation

In this research, the problem of adaptive system formation is considered as

a kind of design problem, in which a set of task properties or requirements

is given and a system is formed to accomplish the task. The difference be-

tween this problem and the traditional design problems is that the system to

be designed must be able to sense the changing task requirements and envi-

ronments and adaptively form and configure itself in response to the

changes. Therefore the system formation problem in this sense is a meta-

design problem: it is about designing a self-design (i.e., formation or con-

figuration) mechanism.

 Examples of system formation include shape formation [7], structure and

topology self-configuration [20], and more recently programmable matter

[21]. Depending on the tasks, various approaches can be applied to solve

system formation problems. In many robotic applications, sophisticated me-

chanical mechanisms are developed to facilitate dynamic formation of sys-

tems. In an evolutionary approach, a system evolves its formation overtime

through generations of computational evolution. When system performance

measures are difficult to obtain, unsupervised learning approaches can be

effective for systems to attain their needed formations.

 The long term goal of our research is to device mechanisms that can al-

low systems to adapt to changing tasks and environments by changing and

evolving system formation of shapes, structures, and functional components

autonomously without human intervention. As the first step toward this goal,

in this paper, we apply an unsupervised learning approach, self-organizing

map (SOM), to solving shape formation problems.

Fig.1 A proposed system formation approach

Task field landscape
(e.g., position, strength, function)

Task Fields

Generating Task
Field

Sensing Sensing

Agent relations
(e.g., 2-D lattice)

Generating Formation

Social Fields

Mismatch

Task Environment
(Tasks, Env. Constraints)

Social Environment
(Agents)

Agent action

Information

Legend:

Self-Organizing
Map Approach

Mapping

 D. Lu and Y. Jin

406

 The adaptive system formation framework is developed based on our

previous work on cellular self-organizing (CSO) systems [1][2][3]. As

shown in Figure 1, in this framework, task requirements together with envi-

ronmental constraints are transformed into one or multiple task fields by the

agents. At the same time, the agents sense each other and generate a system

formation that is supposed to match the task fields. A SOM algorithm is

introduced to do the mapping and update the system formation based on the

mismatch. The following section provides details of this approach.

A SOM based system model

System and Agents

Following the two dimensional SOM modeling convention, a system Sys is

defined by 𝑘 × 𝑘 agents that form a lattice network topology.

Definition 1 (System): 𝑆𝑦𝑠 = [
𝐴𝑔𝑒𝑛𝑡 (1,1) ⋯ 𝐴𝑔𝑒𝑛𝑡 (1, 𝑘)

⋮ ⋱ ⋮
𝐴𝑔𝑒𝑛𝑡 (𝑘, 1) ⋯ 𝐴𝑔𝑒𝑛𝑡 (𝑘, 𝑘)

]

where 𝐴𝑔𝑒𝑛𝑡 (𝑎, 𝑏): Agent positioned in (a, b) in the network.

In the two-dimension model, the task fields are represented in a standard

2-D space (𝑥, 𝑦), 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1, which is also called working

space. The system formation in this case is against this space. Therefore,

each agent, in addition to the network position (a, b), holds an attribute of

position in the task field: (𝑥, 𝑦). Furthermore, in order to differentiate be-

tween different task fields that demand different agent functions, we intro-

duce another agent attribute called function-mode: f, which can take an in-

teger value to indicate a specific function mode of the agent. Therefore, we

have three more agent attributes in addition to (a, b): 𝐴𝑔𝑒𝑛𝑡 (𝑎, 𝑏; 𝑥, 𝑦; 𝑓).

Task field

In the CSO framework, tasks together with environmental situations are rep-

resented as “task fields” in which agents seek and move to attractors [1]. In

this research, the distribution of “attractors” represents the tasks require-

ments. The attractors can be singular or can be evenly distributed over an

area. We introduce the concept of “task field strength” to capture the attrac-

tors. Since there can be multiple tasks involved in a single application, each

task should have its own “task field strength distribution.” In the special case

of two-dimensional task field space, the field strength distributions of two

Self-Organizing Map for Adaptive System Formation 407

tasks can be “parallel” meaning that the two tasks can be performed concur-

rently or “sequential” meaning only one can be performed at a time. We

have the following task definitions.

Definition 2 (Task Field Strength Distribution):

 𝑇𝐹𝑖(𝑥, 𝑦) = 𝑡𝐹𝐿𝐷(𝐸𝑛𝑣, 𝑡𝑎𝑠𝑘𝑖)

where 𝐸𝑛𝑣 is the environment for the system to perform 𝑡𝑎𝑠𝑘𝑖 , and

𝑡𝐹𝐿𝐷 is a task field formation operator for generating the field

strength distribution of the task.

In case of multiple task fields, the overall task field strength at a given

time and position in the field depends on whether the tasks are parallel or

sequential. For example, an agent can have the tasks of moving towards a

target, and moving away from an obstacle at the same time. Then the overall

task field strength distribution can be calculated as:

𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) = ∑𝜔𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)

where 𝜔𝑖 is the weight function for task field i.

On the other hand, an agent can have the tasks of searching for food, and

carrying food back to the nest. However, the agent can address only one of

the two tasks at a time. In such case, the overall task field can be represented

by the following equation:

𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) = {
𝑇𝐹1(𝑥, 𝑦), 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 1

𝑇𝐹2(𝑥, 𝑦), 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 2
⋮

 In most cases, both of the above two methods are needed to add all task

fields together. Thus in a more general form, the overall task field can be

represented combining definition 2 and definition 3.

Definition 3 (Overall Task Field Strength Distribution):

𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) =

[

 ∑𝜔1𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)

∑𝜔2𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)

⋮

∑ 𝜔𝑚𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)]

= [

𝜔11 𝜔12 … 𝜔1𝑛

𝜔21 𝜔22 … 𝜔2𝑛

⋮ ⋮ ⋱ ⋮
𝜔𝑚1 𝜔𝑚2 … 𝜔𝑚𝑛

] [

𝑇𝐹1

𝑇𝐹2

⋮
𝑇𝐹𝑛

]

 where n is the number of all the tasks for the system, and m is the number

of the function modes for each agent.

 D. Lu and Y. Jin

408

Social field

Solving the adaptive system formation problem with a CSO systems ap-

proach requires the agents in the system to work together to update their

formation in response to the needs and changes of the tasks. As shown in

Figure 1, a specific system formation in our approach is manifested by its

corresponding social field. Similar to the task field, a social field can be

characterized by its “social field strength” and “social field strength distri-

bution” over the task field space (𝑥, 𝑦), 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1. As Fig-

ure 1 indicates, the mapping between the social field and the task fields pro-

vides guidance for the agents of the system to adjust their formation in order

to finally achieve minimum mismatch with the task fields.

Our previous work has shown that social structuring among individual

agents plays a very important role for self-organizing systems to achieve

desired performance [3]. In this research, the social structuring is achieved

in two ways (see Figure 1). First, the “Agent Relations” are predefined be-

tween the agents. As shown in Definition 1, a 2-dimension lattice network

topology is employed in this paper for modeling agent relations. Each agent

(a, b) has 2 to 4 connections depending on whether (a, b) is located in the

corner, edge or center part of the network. These connections form the

neighborhood of agents. During the process of system formation and update,

neighbors influence each other to maintain a desirable formation for given

tasks. Second, a social field strength operator is introduced for agents to

assign and evaluate the social field strength at any given position (x, y) in

the task field space. Based on the SOM algorithm, an ideal system formation

is the one that has the compatible “social field strength distribution” with

the given “task field strength distribution.” Mismatch between the two leads

to agents in the system working with their neighbors to adjust their system

formation toward better ones. We introduce the following definitions.

Definition 4 (Social Field Strength Distribution for function model j):

𝑆𝐹𝑗(𝑥, 𝑦, 𝑡) = 𝑠𝐹𝐿𝐷(𝑆𝑦𝑠, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 𝑗)

where 𝑆𝑦𝑠 represents the system network, 𝑠𝐹𝐿𝐷 is a field formation op-

erator which transforms the information from 𝑆𝑦𝑠 to social field

strength under Function Mode 𝑗 at point (x, y).

Definition 5 (Overall Social

 Field Strength Distribution):

where m is the number of all the possible Function Modes of each agent

in the system.

𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) = [

𝑆𝐹1(𝑥, 𝑦)

𝑆𝐹2(𝑥, 𝑦)
⋮

𝑆𝐹𝑚(𝑥, 𝑦)

]

Self-Organizing Map for Adaptive System Formation 409

Matching social and task fields

The ideal system formation for a given task j is determined by assessing the

level of match between task field strength and the social field strength. The

ideal match is that the two strengths are equal. Otherwise, the system for-

mation can be “under-matched” or “over-matched” for the given task. We

introduce the following definition:

Definition 6 (Level of Match for Task j):

𝑀𝑎𝑡𝑐ℎ𝑗(𝑥, 𝑦) = 𝑆𝐹𝑗(𝑥, 𝑦)/𝑇𝐹𝑗(𝑥, 𝑦)

where SFj and TFj are the social field strength and task field strength for

task j at point (x, y).

Definition 7 (Overall Level of Match):

𝑀𝑎𝑡𝑐ℎ𝑂𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) = [

𝑀𝑎𝑡𝑐ℎ1(𝑥, 𝑦)

𝑀𝑎𝑡𝑐ℎ2(𝑥, 𝑦)
⋮

𝑀𝑎𝑡𝑐ℎ𝑚(𝑥, 𝑦)

]

From the above definitions, it can be seen that the best match happens

when Match (x, y) = 1. When it is “<1”, the system is called “under-

matched” (indicating the system is not capable enough to fulfill the task)

and when it is “>1” the system is called “over-matched” (the system is

overly capable for the task, indicating waste of agent resources).

SOM based system formation algorithm

The approach proposed in this paper aims to employ an unsupervised learn-

ing to generate system formations based on the social field and task fields,

so that the system does not need to go through iterations to find the param-

eters in structural or behavioral models for convergence. Self-Organizing

Map is one of the most popular unsupervised machine learning algorithms,

and the topology of SOM network shows great potential for achieving adap-

tive system formation. The learning process of our approach includes the

following two steps.

Step 1: Distribution

This step is to update the position in the task space (x, y) of each agent. In

this step, a variant of SOM algorithms is applied, as shown below:

1. Initialization

The system is initialized by deploying the agents into the working space

(i.e., task space). In this paper, it is a 2-D space D2. Each 𝐴𝑔𝑒𝑛𝑡 (𝑎, 𝑏) has

a vector (𝑥, 𝑦, 𝑆𝐹). (𝑎, 𝑏) represents the topological position of the agent in

 D. Lu and Y. Jin

410

the lattice of the SOM. (𝑥, 𝑦) represents the position of the agent in the 2D

working space. (𝑥, 𝑦) is randomly picked during initialization.

SF is the overall social field strength at (𝑥, 𝑦) and is calculated by the

number of agents within the neighborhood of distance c around (𝑎, 𝑏) .

2. Competition

A random point (𝑥𝑝, 𝑦𝑝) is picked up from the working space. The picked

point has a vector (𝑥𝑝, 𝑦𝑝, 𝑇𝐹) . TF is the overall task field strength at

(𝑥𝑝, 𝑦𝑝), which is a vector. All the agents in the system compete against

each other to find the one which is closest to (𝑥𝑝, 𝑦𝑝). The winner is selected

as the Best Matching Agent (BMA), denoted by Agent (𝑢, 𝑣).

3. Cooperation

The BMA then communicates with their neighbors and addresses the

task field along with the neighbors. The “amount” of cooperation depends

on the distance between their positions in the lattice network.

Definition 8 (Neighborhood Function for Agent (a,b)):

𝑘(𝑎,𝑏) = 𝑒𝑥𝑝 (−
(𝑢 − 𝑎)2 + (𝑣 − 𝑏)2

2 ∗ 𝑝1
2

)

where (𝑢, 𝑣) is the position of the BMA in the network, 𝑝1 is a parameter

which can be adjusted to control the strength of cooperation inside

the system.

4. Adaptation

All agents update their vectors according to their neighborhood function

and the level of task-social field matching at the picked point (𝑥𝑝, 𝑦𝑝), indi-

cated as learning rate.

Definition 9 (Learning Rate at (𝑥𝑝, 𝑦𝑝)):

𝜎(𝑥𝑝, 𝑦𝑝) = 𝑒𝑥𝑝 (−

|𝑆𝐹(𝑥𝑝, 𝑦𝑝)|

|𝑇𝐹(𝑥𝑝, 𝑦𝑝)|

2 ∗ 𝑝2
2

)

where |𝑆𝐹(𝑥𝑝, 𝑦𝑝)| is the norm of 𝑆𝐹(𝑥𝑝, 𝑦𝑝), |𝑇𝐹(𝑥𝑝, 𝑦𝑝)| is the norm

of 𝑇𝐹(𝑥𝑝, 𝑦𝑝), and 𝑝2 is a parameter which can be adjusted to in-

fluence of satisfaction has on the distribution of the agents in the

system.

Finally, the new position of Agent (a, b) in the working space is deter-

mined by the following equation:

Self-Organizing Map for Adaptive System Formation 411

(𝑥(𝑎,𝑏), 𝑦(𝑎,𝑏))

= (𝑥(𝑎,𝑏), 𝑦(𝑎,𝑏)) + 𝑝3 ∗ 𝜅(𝑎,𝑏) ∗ 𝜎(𝑥𝑝, 𝑦𝑝) ∗ ((𝑥𝑝, 𝑦𝑝) − (𝑥(𝑎,𝑏), 𝑦(𝑎,𝑏)))

where 𝑝3 is a parameter which can be changed to control the rate of learn-

ing for the system.

Step 2: Differentiation

Noticing that the function mode of each agent is not changed in the dis-

tribution step, it is updated in the second step, the differentiation step. In this

step, the function modes of agents are updated based on their level of match-

ing as defined in Definition 6 & 7 according to the Function Mode Selection

Diagram of Figure 2. In general, an agent chooses the function mode corre-

sponding to the task field that the agent has the best match.

Fig.2 Function mode selection diagram example

For example, as shown in Figure 2, each agent has three different func-

tion modes, with Mode 0 being the default standby mode. When an agent

updates its function mode, the position of its matching vector determined its

behavior. If the matching vector goes across the blue boundary, the agent

switches to Mode 1, so as the green boundary for Mode 2 and red boundary

for Mode 0. If the match vector does not intersect any boundary, the agent

stays at its old mode. s0 is a parameter which can be adjusted to control the

sensitivity for agents to switch function modes. Randomness maybe added

to the function mode changing rule to increase the adaptability of the system.

The process introduced above provides an approach to apply SOM to

solving system formation problems. Using this approach, in a real applica-

tion, the task fields can be manipulated by changing the weight matrix

ω𝑚∗𝑛, and a detailed agent behavior model should be designed by specify-

ing the parameter 𝑝1, 𝑝2, 𝑝3, the neighborhood distance 𝑐 and the Function

Mode Selection Diagram. The Following section provides specific case

studies to show how the process described above can be implemented.

s0

1-match 1

1-match 2

To Mode 1

To Mode 2

To Mode 0

Stay

 D. Lu and Y. Jin

412

Case studies

The self-organizing map algorithm is commonly used to organize high-di-

mensional data and visualize them in low-dimensional maps [16]. The great

performance of self-organizing map in vector quantization shows the possi-

bility of building unsupervised algorithms using SOM for adaptive system

formation. Several cases simulating shape formation applications are devel-

oped to validate this possibility. Matlab was used as the platform for the

simulation to take advantage of its capability in calculating vectors and ma-

trices. Figure 3 shows an example of the simulation result.

Figure 3 represents the simulation result for shape formation in a 2D

space. The horizontal axis represents the x

axis; the vertical axis represents the y axis.

Task fields (not shown in Fig 3) distrib-

utes in the area of {(x, y)| 0<x<1, 0<y<1}.

Nodes with different color represent

agents working under different function

modes. The links between agents repre-

sent the physical connections between

agents. The length of the physical connec-

tion can be changed, while the topology of

the agents is predefined. Depends on dif-

ferent cases, the nodes and links have dif-

ferent specific meaning, which will be

shown in the case studies below.

Case 1: Self-organizing tube formation

Tubes and pipes are used to transfer fluids like air or water. While most

tubes are pre-made and then installed in their applications, a self-organizing

formation system will be more flexible for installation and repair. In this

(a) TF1 Distribution (b) TF2 Distribution

Fig.4 Task field distribution

Fig.3 Example of simulation

results

Self-Organizing Map for Adaptive System Formation 413

case study, we demonstrate the capability of our approach in using multiple

non-overlapping uniform discrete task fields. As shown in Figure 4, the

working space is a 2-D space with boundaries from 0 to 1.

Task Field 1: Tube Wall Construction Field TF1. TF1 indicates the po-

sitions of the boundary of a tube in 2-D. At the boundary, tube wall is needed

to isolate the fluid from the environment. TF1 is distributed over the work

space with the task field strength equals to 1 at green areas in Figure 4(a).

Task Field 2: Flow Resistance Demand Field. TF2 indicates the re-

sistance needed to control the flow rate at each point. TF2 is distributed over

the work space with the task field strength of 1 at blue areas in Figure 4(b).

The specific parameters used in the simulation are shown in Table 1.

Table 1 System parameters

Each agent in the system is programmed to have three function modes

with regard to the two task fields as in Table 2.

Table 2 Function modes

Results

The simulation results with varying

strength of each task field are plotted

in Figures 6 (a) through (f). Here we

make the initial task field strength

fixed as 1, and adjust the weight oper-

ator w for TF1 and TF2 to change the

corresponding task field strength for

each simulation. Figure 6 shows sim-

ulation results for different w1, and w2.

Figure 6(a) shows an initial distribu-

tion of the system: all the agents are

randomly distributed in Mode 0.

Size of

Network

Simulation

Steps T

Parameter

p1

Parameter

p2

Parameter

p3

Neighborhood

distance c
Switch

Threshold r0

10*10 500 3-0.05 0 1-0.1 0.2 Rand(1,1)/2

Function

Mode
Color

Size &

Shape
Function

Related

Task Field

0 (Default) Red
Small,

Circle

Cause negligible resistance for the

flow
None

1 Green
Long,

Block

Seal the flow with other agents in this

mode
TF1

2 Blue
Large,

Circle
Cause certain resistance for the flow TF2

Fig.5 Function modes

 D. Lu and Y. Jin

414

Figure 6(b) shows the result of a simulation with both task fields are

strong (w1=w2=15), which means a thick tube wall and high resistance to

the flow are needed. The results shows 52 agents are in Mode 2, forming the

wall, and 42 agents are in Mode 1, creating large resistance inside the tube.

Figure 6(c) shows the result of a simulation with a medium TF1 (w1=10),

and a large TF2 (w2=15), meaning a medium tube wall and high resistance

are needed. In this simulation, 38 agents are in mode 2, forming a thinner

wall. 44 agents are in Mode 1 inside the tube, which is similar to Figure 6(b).

Fig.6 Self-organizing tube simulation results

Figure 6(b) and Figure 6(d) to Figure 6(f) shows the simulation results

of decreasing TF2 (w2=15, 10, 5, 0 respectively) with the same strong TF1

(w1=15). As can be seen from these figures, when TF2 decreases, fewer

agents inside the tube is in Mode 1 (42, 34, 17, 4 respectively), which means

the resistance inside the tube is decreasing, correctly responding to the

changing task demands.

Case 2: Self-organizing structure formation

The first case study validates that the proposed approach can be used in ap-

plications where task fields are “tiled” to each other. In addition, it showed

that task field strength can be used to control the formation of the system. In

(a) Initial (b) Strong TF1, Strong TF2 (c) Medium TF1, Strong TF2

(d) Strong TF1, No TF2 (e) Strong TF1, Weak TF2 (f) Strong TF1, Medium TF2

Self-Organizing Map for Adaptive System Formation 415

this case study we show that the approach is also applicable for multiple

intersecting task fields.

 The task is for the system to form a multi-member structure, each mem-

ber requires different materials/components for achieving different func-

tions. Two task fields are used to indicate required formation of the structure

as shown in Figure 7.

Task Field 1: Compression Field TF1 shows the expected path for the

weight support of a structure. TF1 is distributed over the work space with

the task field strength equals to 1 at every point.

Task Field 2: Tension Field TF2 shows the expected path for the tension

force which will be loaded on the structure. TF2 is distributed over the work

space with the task field strength equals to 1 at every point.

The same system parameters are used as in Case 1, and each agent in the

system is programmed to have three function modes regarding to the two

task fields as in Table 3.

(a) Compress Field Distribution (b) Tension Field Distribution

Fig.7 Example of task field distribution

Table 3 Function modes

Function

Mode
Color

Connec-

tion
Function

Related

Task Field

0 (Default) Red None Idle and ready to be applied None

1 Green
Compres-

sion force
Support weight (e.g., a beam) TF1

2 Blue
Tension

force

Maintain leveling (e.g., a slab

or beam)
TF2

Results

By changing the task field distribution, we can control the formation of the

structure. The simulation results are shown below in Figure 8. From Figure

8, we can see that the proposed approach can give accurate results to map

 D. Lu and Y. Jin

416

the agent function modes to the task fields. The distribution of green and

blue agents can adequately adapt to the changing arrangement of the task

fields, forming needed structure to fulfill the tasks.

Fig.8 Simulation results (V=Vertical, H=Horizontal)

Case 3: Smart material formation

The two cases described above have evenly distributed task fields within

the defined geometry boundary. The agents going through the self-organiz-

ing mapping process can mostly form proper shapes and structures to fulfill

the designated tasks. In many other applications, however, the task distribu-

tion may not be even, and certain gradient of change of strength along a

given direction may be needed for certain system formation purpose. Form-

ing smart materials by depositing multiple kinds of materials in different

densities and mixes along given directions and depth is an example of such

applications. Two task fields are used in this case study.

Task Field 1: Thermal Field TF1 has its strength either fixed (1 or 8) or

decreasing along the direction of x (15*(1-x) or 8*(1-x)), shown in Fig. 9.

Task Field 2: Flexibility Field TF2 always has its strength increasing

along the direction of x (15x or 8*x), as shown in Figure 9.

The same system parameters are used as in Case 1, and each agent in the

system is programmed to have three function modes regarding to the two

task fields as in Table 4.

Table 4 Function modes

Function

Mode
Color Connection Function

Related

Task Field

0 (Default) Red None Idle and ready to be applied None

1 Green
Thermal

effect
Resist heat TF1

2 Blue Flexibility Allow bending and torsion TF2

(a) TF1=15 (V), TF2=15 (H) (b) TF1= 15(V), TF2=15(H) (c) TF1=15(V), TF2=15(H)

Self-Organizing Map for Adaptive System Formation 417

Results

In each of the simulation, the two task fields TF1 and TF2 cover the entire

2D working space and are completely overlapped. Figures 10 (a) through

(e) show the system formation results of various combinations of the distri-

butions of TF1 and TF2. From the figures it can be seen that the distribution

of green “heat resistors” and blue “flexiblers” are mostly consistent with the

demands of the two task fields TF1 and TF2, respectively. Because the

working space is only 2-dimentional, it is hard to realize how such distribu-

tion can lead to smart materials. When the working space is 3-D or n-dimen-

sional the physical realization of such distributions becomes imaginable.

 Fig.9 Overlapping task fields simulation results

The comparison of the simulation results demonstrates two important

features of our system:

 The distributions of agents in different functional modes are properly

mapped to the distributions of multiple task fields.

 The number of agents activated in different functional modes is deter-

mined by the varying strengths of multiple task fields.

(a) TF1=15∙(1-x), TF2=15∙x (b) TF1= 8∙(1-x),TF2= 8∙x (c) TF1= 8, TF2= 8∙x

(d) TF1= 1,TF2= 8∙x (e) TF1= 8∙y, TF2= 8∙x
 8∙x

 D. Lu and Y. Jin

418

However, the results also show that even though the task field densities

are varying linearly, the agent distributions are not linear. The distortion of

the results is possibly because of the nonlinearity of SOM, the randomness

of function mode selection, the border effect, and the limited number of

agents. Our future research will address these issues.

Concluding remarks and future work

Solving adaptive system formation problems is essential for developing self-

organizing engineered systems. Many natural systems, including both phys-

ical and biological systems, possess the capability of dynamically evolve or

develop forms, structures and functional components in response to the en-

vironmental changes and survival needs. Taking advantages of the natural

field distributions, such as gravity and morphogen, natural systems can de-

velop, maintain, and change their formations autonomously. The challenge

for developing engineered systems in a similar way as nature is to devise

general and yet powerful mechanisms (i.e., physical agents) and algorithms

that can be applied to solve real engineering problems. Recent progress in

micro robotics as well as drones has offered mechanism opportunities,

whereas challenges remain with seeking proper self-formation algorithms.

 In this paper, a SOM based approach is proposed to design CSO sys-

tems for solving adaptive system formation problems. As an unsupervised

learning algorithm, SOM provides certain level of intelligence and makes

systems more flexible for complex tasks. The core idea behind the proposed

approach is to transform SOM from an artificial neuron network into an

agent network by using field-based behavior regulation. The task fields are

used to capture the task requirements, and the social field represents the sys-

tem formation. The CSO system “redesigns” itself automatically by match-

ing the social field with the task fields. The case studies demonstrated the

ability of the SOM-based approach.

Compared with existing research, our approach shows uniqueness in the

following aspects:

 The information of the tasks is embedded in task fields, external to the

multi-agent system. The structural model and behavior model of our ap-

proach is independent from tasks, which means the same system with

the same configuration can be used to perform different tasks in differ-

ent environments. In case of shape formation, the change of the task

fields will guide the agents self-organize into different shapes.

 Our approach has the capability of dealing with multiple task fields. The

case study results show that agents in the system are able to differentiate

Self-Organizing Map for Adaptive System Formation 419

into different “species” according to their tasks. Differentiation is the

fundamental capability for biological systems to evolve sophisticated

functional organs. Our approach aims toward that direction.

 In our approach, agents do not need to synchronize their coordinates for

gaining global spatial information in order to choose their behaviors.

Instead, the agents are engaged in a parallel mapping process, which

increases the speed of self-organization, but also makes it difficult for

the system to perform formation tasks that requires precision.

 From a SOM algorithm perspective, in comparison with existing density

tracking network algorithms, our approach is a bottom-up one. The im-

plementation of the algorithm is distributed to individual agents rather

than a single computer. By using the field regulation, the system cap-

tures multiple 3-dimensional dataset in 2-dimensional space at the same

time, making the multiple mappings and calculations more efficient.

The long term goal of our research is to devise algorithms that can allow

systems to adapt to changing tasks and environments by changing and

evolving system formation of shapes, structures, and functional components

autonomously without human intervention. To pursue this goal, we will con-

duct more case studies with more close-to-real example problems. In doing

so, we will further enhance our task field modeling scheme and social field

system presentation. Physical implementation is also a future direction.

This paper is based on the work supported in part by the National Sci-

ence Foundation under Grants No. CMMI-0943997 and No. CMMI-

1201107. Any opinions, findings, and conclusions or recommendations ex-

pressed in this paper are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

References

1. Chen, C, Jin, Y (2011) A behavior based approach to cellular self-organizing

systems design, IDETC/CIE 2011, Aug.28-31, 2011, Washington, DC.

2. Humann, J, Khani, N, and Jin, Y (2014) Evolutionary computational synthe-

sis of self-organizing systems, AIEDAM, 28(3) pp. 259-275.

3. Khani, N, Jin, Y (2015) Dynamic structuring in cellular self-organizing sys-

tems, Design Computing and Cognition'14, Springer, pp. 3-20.

4. Fukuda, T, Ueyama, T (1992) Self-organizing cellular robotic system: Com-

parison between social system and robotic system, 1992 IEEE Int’l Bio-

medical Engineering Days, pp. 39-45.

5. Kawauchi, Y, Inaba, M, Fukuda, T (1992), Self-organizing intelligence for

cellular robotic system `CEBOT' with genetic knowledge production algo-

rithm, 1992 IEEE Int’l Conf. on Robotics & Automation, pp.813-18.

 D. Lu and Y. Jin

420

6. Nagpal, R (2006) Self-organizing shape and pattern: From cells to robots,"

IEEE Intelligent Systems, 21(2) pp. 50-53.

7. Bai, L, Eyiyurekli, M, Breen, DE (2008), Self-organizing primitives for au-

tomated shape composition, IEEE Int’l Conf. on Shape Modeling & Appli-
cations, pp.147-154, Stony Brook, NY, 2008

8. Doursat, R., 2008, The self-made puzzle: integrating self-assembly and pat-

tern formation under nonrandom genetic regulation, InterJournal Complex
Systems, 2292

9. Werfel, J (2010), Biologically realistic primitives for engineered morpho-

genesis, Swarm Intelligence, Vol.6234 of the series Lecture Notes in Com-

puter Science, pp 131-142.

10. De Rosa, M, Goldstein, S, Lee, P (2006), Scalable shape sculpting via hole

motion: motion planning in lattice-constrained modular robots, 2006 IEEE

Int’l Conf. on Robotics and Automation, pp.1462-1468.

11. Tolley, MT, Lipson, H (2010), Fluidic manipulation for scalable stochastic

3D assembly of modular robots, 2010 IEEE Int’l Conf. on Robotics and

Automation, pp. 2473-2478.

12. Kohonen, T (1990), The self-organizing map, Proceedings of the IEEE,

78(9) pp. 1464-1480.

13. Galda, H, Murao, H, Tamaki, H (2004), Dermoscopic image segmentation

by a self-organizing map and fuzzy genetic clustering, IEICE Transactions

on Information and Systems, E87-D (9) pp. 2195-2203.

14. Zhang, Y, Tang, Y, Fang, B (2014) Real-time object tracking in video pic-

tures based on self-organizing map and image segmentation," 2014 7th

IEEE Joint Int’l Information Technology & AI Conf., pp. 559-563.

15. Kiang, MY, Kulkarni, UR, and Kar, YT (1995), Self-organizing map net-

work as an interactive clustering tool-an application to group technology,

2nd Workshop on Info. Tech. and Systems (WITS'92), pp.351-74.

16. Kit, D, Kong, Y, Fu, Y (2014) LASOM: Location aware self-organizing

map for discovering similar and unique visual features of geographical lo-

cations, 2014 Int’l Joint Conf. on Neural Networks, pp. 263-270.

17. Villmann, T, and Claussen, JC (2006), Magnification control in self-organ-

izing maps and neural gas, Neural Computation, 18(2) pp. 446-469.

18. Claussen, JC, Villmann, T (2005) Magnification control in winner relaxing

neural gas, Neurocomputing, 63, pp. 125-137.

19. Zheng, Y, Greenleaf, JF (1996) Effect of concave and convex weight ad-

justments on self-organizing maps, IEEE Neural Networks, 7(1) pp.87-96.

20. Ferguson, SM, Lewis, K (2006) Effective development of reconfigurable

systems using linear state-feedback control, AIAA Journal,44(4) pp.868-78.

21. Derakhshandeh, Z, Gmyr, R, Strothmann, T (2015) Leader election and

shape formation with self-organizing programmable matter, 21st Int’l Conf.
on DNA and Molecular Programming, pp.117-132.

