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Multi-agent systems are considered to be potential solutions to complex tasks. Cel-

lular self-organizing (CSO) multi-agent systems have been proposed that take a 

field-based approach to regulate agent behaviors. One difficulty in designing CSO 

systems is to generate rules to map given tasks to agent behaviors. This paper pro-

poses an approach for adaptive system formation based on a field analysis and self-

organizing map (SOM) algorithm. The tasks are captured as multiple task fields. 

The relationship among the agents is translated into a social field. Each agent has 

multiple function modes corresponding to the task fields. SOM and a function mode 

selection algorithm are devised to match the social field of the system with the task 

fields. Computer simulations have demonstrated the effectiveness of this approach 

and its potential in designing CSO systems for solving system formation tasks. 

Introduction 

When changes in the task requirement and operation environment occur, a 

system often needs to change its formation (e.g., form/shape, size, or struc-

ture) in order to stay functional. For example, a sophisticated rescue robotic 

system must be able to change its shape when the space on the path varies 

with the harsh and unpredictable environment. Space and deep sea explora-

tions are also examples of such variable environments. In most, if not all, 

engineered systems, the physical components are designed for only limited 

and predetermined purposes and operation ranges, beyond which the system 

behaviors are not predictable.  

 Multi-agent systems are potential solutions to complex tasks. The flexi-

ble relationships among the agents provide the system adaptability to deal 

with changing functional requirements and operation conditions. In order to 

guide a multi-agent system to fulfill a task, the global task information needs 
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to be encoded into local rules for agents to follow. The adaptability of the 

system depends on the encoding process and the range of applicability of 

the local rules. Most of current approaches encode the task information into 

agent behaviors. In order to generate suitable rules for given tasks, designers 

must either specify rules based on their knowledge, or provide algorithms 

like genetic algorithm to optimize the parameterized rules. In both cases, 

external supervision is needed, limiting the system adaptability. 

 Our previous field based behavior regulation approach to cellular self-

organizing (CSO) systems [1][2] separates the task encoding process from 

the system model design process by translating the tasks and environment 

information into a task field, and the agents operate in the task field by mov-

ing from the “higher place” to the “lower place” in the field. The current 

approach, however, has several limitations, making it difficult to deal with 

system formation problems. First, in the earlier field based approach [1], 

each agent operates independently based on its own sensed field infor-

mation. The system formation is largely an emergent result. Although the 

emergence offers adaptability, the lack of explicit relations between the 

agents makes it hard to generate a specific formation, such as a tube or a 

ring, when the task demands it. Second, in the later dynamic social structur-

ing approach [3] agents form local social structures based on the predefined 

social rules. Although the introduction of social rules has made it possible 

to generate local forms and increase the global productivity, the coding of 

rules can be domain and designer dependent. Third, the approaches to CSO 

systems developed thus far generally lack learning capability, making it dif-

ficult to deal with complex system formation problems where changes need 

to be learned by the agents during the process of operation. 

 In this paper, a self-organizing map (SOM) based approach is proposed 

for CSO system design. The goal here is to apply unsupervised learning and 

build a system model which is compatible with the task fields generated by 

the field based behavior regulation. Each agent in the system is treated as a 

neuron in a SOM, with the ability to sense the environment and communi-

cate with other agents. Tasks are represented as multiple task fields external 

to the system, and the cooperation among the agents is represented as the 

social field of the system. The system has the ability to organize itself to 

fulfill system formation tasks via matching its social field with the external 

task fields. In the rest of this paper, recent research related to multi-agent 

systems, field-based regulation, and shape formation is reviewed in Section 

2 together with a short introduction to self-organizing map. The adaptive 

system formation problem and the framework of our approach are intro-

duced in Sections 3 and 4, respectively. Three case studies are described in 

Section 5 to demonstrate the effectiveness of our approach. Section 6 draws 

concluding remarks and points to future research directions. 
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Related work 

In the past decade, design for adaptability has been popular in the field of 

engineering design and more efforts have been made to investigate multi-

agent system design. A multi-agent system consists of multiple robotic 

agents that are supposed to work with each other to fulfill global level tasks 

based on their local information. The design of multi-agent system is usually 

a bottom-to-up process, with a focus on developing a suitable interaction 

model of multiple agents. Two types of approaches are commonly used in 

building such models. 

The structural design approach is initially inspired by social structures 

and bio structures in nature. Fukuda and Ueyama [4] compared robotic sys-

tem with social system, and pointed out the importance of system structure 

for the intelligence of the system. Kawauchi et al. [5] further proposed the 

“CEBOT” with genetic knowledge production algorithm that achieved self-

organization and self-evolution with a “distributed intelligence system”.  

Also inspired by social structures, we introduced the concept of field 

based behavior regulation, in which agent behaviors are regulated by both 

social field and task field [1][2]. The task field is used to represent the task 

and the environment for the system. The social field is formed by introduc-

ing social rules in multi-agent systems [3]. This dynamic structure can en-

hance the self-organizing functionality for multi-agent systems using both 

general and context-based social rules among the agents in the system.  

Behavior modeling and optimization is another approach to designing 

agent interaction model. Our previous work proposed a COARM behavioral 

model [2] that specifies agent behavior as the composition of five primitive 

behaviors: Cohesion, Avoidance, Alignment, Randomness and Momentum. 

A genetic algorithm is used to search for the optimal composition for differ-

ent tasks such as foraging and habitat construction. 

Researchers have applied multi-agent systems to solve shape and struc-

ture formation problems. Nagpal et al [6] developed an algorithm for multi-

agent systems to form arbitrary predefined shapes. A compiler is used to 

translate global shape information to local agent rules. Bai and Breen [7] 

proposed a cell aggregation model to achieve self-organizing shape for-

mation. In this model, an artificial scalar field introduced for cells to move 

in the direction of the field gradient. A genetic Programming method is used 

to discover the relationship between different field functions and the shapes 

formed by the cells. Doursat [8] presented a model using non-random ge-

netic rules to achieve self-assembly and pattern formation. In his approach, 

self-assembly and pattern formation are integrated in loops to form complex 
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shapes or structures. Werfel [9] proposed a 3-dimensional model to imple-

ment low-level primitives shown in biological system. In his model, the gra-

dient of morphogen field is used to guide modular robots to grow into struc-

tures of desired sizes, and provide them with position information. 

De Rosa et al [10] proposed a shape formation algorithm for lattice-ar-

rayed modular robots. In their algorithm, the desired shape is compiled into 

a plan which guide the movement, creation and deletion of the void space in 

the lattice, transforming the lattice into the desired shape. Tolley and Lipson 

[11] presented an approach for stochastic assembly of modular robots. The 

modular robots are put in a fluidic tank, and they can self-reconfigure into 

different 3-dimentional shapes depending on the fluidic environment.   

The current multi-agent system formation approaches mostly involve su-

pervised learning such as genetic programming or compiling that requires 

pre-knowledge of the target forms. To deal with the uncertainty in the real 

world, unsupervised learning is more preferable since the information about 

the environment and the needed formation can be unknown and human in-

terventions to the system are not possible. Self-organizing map is an unsu-

pervised artificial neural network developed by Kohoen [12]. It has been 

successfully applied in the areas including image processing and speech 

recognition [13][14]. 

With a high degree of topological order, SOM can be used in multi-agent 

systems for structure design through organizing the relationships among the 

agents. Although there is little direct research to apply SOM to multi-agent 

systems, some work showed how SOM could be used to solve inner-system 

relationships and physical pattern matching problems. Kiang et al. [15] ap-

plied SOM as a clustering tool in group technology, where SOM was used 

to address the part machine relationships for grouping the parts. Kit [16] et 

al. developed the Location Aware Self-Organizing Map to discover visual 

features of geographical locations.  

One major barrier for applying SOM in multi-agent systems is to map 

the codebooks (related to the social field discussed below) to the data space 

density (related to the task field discussed below). This problem is repre-

sented as magnification control in vector quantization. Villmann and 

Claussen [17] explored different methods to control the magnification in 

SOM with regard to the typical SOM learning rules, and summarized them 

into three types. Localized learning algorithms introduce local learning rates 

and can achieve arbitrary magnification. The other two types of magnifica-

tion learning algorithms are winner-relaxing learning and concave-convex 

learning [18][19]. Compared with localized learning, winner-relaxing learn-

ing and concave-convex learning have the advantage of independence on 

the data distribution [17]. 
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The problem: adaptive system formation 

In this research, the problem of adaptive system formation is considered as 

a kind of design problem, in which a set of task properties or requirements 

is given and a system is formed to accomplish the task. The difference be-

tween this problem and the traditional design problems is that the system to 

be designed must be able to sense the changing task requirements and envi-

ronments and adaptively form and configure itself in response to the 

changes. Therefore the system formation problem in this sense is a meta-

design problem: it is about designing a self-design (i.e., formation or con-

figuration) mechanism. 

 Examples of system formation include shape formation [7], structure and 

topology self-configuration [20], and more recently programmable matter 

[21]. Depending on the tasks, various approaches can be applied to solve 

system formation problems. In many robotic applications, sophisticated me-

chanical mechanisms are developed to facilitate dynamic formation of sys-

tems. In an evolutionary approach, a system evolves its formation overtime 

through generations of computational evolution. When system performance 

measures are difficult to obtain, unsupervised learning approaches can be 

effective for systems to attain their needed formations.  

 The long term goal of our research is to device mechanisms that can al-

low systems to adapt to changing tasks and environments by changing and 

evolving system formation of shapes, structures, and functional components 

autonomously without human intervention. As the first step toward this goal, 

in this paper, we apply an unsupervised learning approach, self-organizing 

map (SOM), to solving shape formation problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 A proposed system formation approach 
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 The adaptive system formation framework is developed based on our 

previous work on cellular self-organizing (CSO) systems [1][2][3]. As 

shown in Figure 1, in this framework, task requirements together with envi-

ronmental constraints are transformed into one or multiple task fields by the 

agents. At the same time, the agents sense each other and generate a system 

formation that is supposed to match the task fields. A SOM algorithm is 

introduced to do the mapping and update the system formation based on the 

mismatch. The following section provides details of this approach. 

A SOM based system model 

System and Agents 

Following the two dimensional SOM modeling convention, a system Sys is 

defined by 𝑘 × 𝑘 agents that form a lattice network topology.  

Definition 1 (System): 𝑆𝑦𝑠 =  [
𝐴𝑔𝑒𝑛𝑡 (1,1) ⋯ 𝐴𝑔𝑒𝑛𝑡 (1, 𝑘)

⋮ ⋱ ⋮
𝐴𝑔𝑒𝑛𝑡 (𝑘, 1) ⋯ 𝐴𝑔𝑒𝑛𝑡 (𝑘, 𝑘)

] 

where  𝐴𝑔𝑒𝑛𝑡 (𝑎, 𝑏): Agent positioned in (a, b) in the network. 

In the two-dimension model, the task fields are represented in a standard 

2-D space (𝑥, 𝑦), 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1, which is also called working 

space. The system formation in this case is against this space. Therefore, 

each agent, in addition to the network position (a, b), holds an attribute of 

position in the task field: (𝑥, 𝑦).  Furthermore, in order to differentiate be-

tween different task fields that demand different agent functions, we intro-

duce another agent attribute called function-mode: f, which can take an in-

teger value to indicate a specific function mode of the agent. Therefore, we 

have three more agent attributes in addition to (a, b): 𝐴𝑔𝑒𝑛𝑡 (𝑎, 𝑏;  𝑥, 𝑦;  𝑓). 

Task field 

In the CSO framework, tasks together with environmental situations are rep-

resented as “task fields” in which agents seek and move to attractors [1]. In 

this research, the distribution of “attractors” represents the tasks require-

ments. The attractors can be singular or can be evenly distributed over an 

area. We introduce the concept of “task field strength” to capture the attrac-

tors. Since there can be multiple tasks involved in a single application, each 

task should have its own “task field strength distribution.” In the special case 

of two-dimensional task field space, the field strength distributions of two 
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tasks can be “parallel” meaning that the two tasks can be performed concur-

rently or “sequential” meaning only one can be performed at a time.  We 

have the following task definitions.  

Definition 2 (Task Field Strength Distribution): 

 𝑇𝐹𝑖(𝑥, 𝑦) = 𝑡𝐹𝐿𝐷(𝐸𝑛𝑣, 𝑡𝑎𝑠𝑘𝑖) 

where 𝐸𝑛𝑣  is the environment for the system to perform 𝑡𝑎𝑠𝑘𝑖 , and 

𝑡𝐹𝐿𝐷 is a task field formation operator for generating the field 

strength distribution of the task. 

In case of multiple task fields, the overall task field strength at a given 

time and position in the field depends on whether the tasks are parallel or 

sequential. For example, an agent can have the tasks of moving towards a 

target, and moving away from an obstacle at the same time. Then the overall 

task field strength distribution can be calculated as: 

𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) =  ∑𝜔𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦) 

where 𝜔𝑖 is the weight function for task field i.  

On the other hand, an agent can have the tasks of searching for food, and 

carrying food back to the nest. However, the agent can address only one of 

the two tasks at a time. In such case, the overall task field can be represented 

by the following equation: 

𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) = {
𝑇𝐹1(𝑥, 𝑦),   𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 1

𝑇𝐹2(𝑥, 𝑦),   𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 2
⋮

 

 In most cases, both of the above two methods are needed to add all task 

fields together. Thus in a more general form, the overall task field can be 

represented combining definition 2 and definition 3.  

Definition 3 (Overall Task Field Strength Distribution): 

𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) =  

[
 
 
 
 
 
 ∑𝜔1𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)

∑𝜔2𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)

⋮

∑ 𝜔𝑚𝑖(𝑥, 𝑦) ∗ 𝑇𝐹𝑖(𝑥, 𝑦)]
 
 
 
 
 
 

=  [

𝜔11 𝜔12 … 𝜔1𝑛

𝜔21 𝜔22 … 𝜔2𝑛

⋮ ⋮ ⋱ ⋮
𝜔𝑚1 𝜔𝑚2 … 𝜔𝑚𝑛

] [

𝑇𝐹1

𝑇𝐹2

⋮
𝑇𝐹𝑛

] 

 where n is the number of all the tasks for the system, and m is the number 

of the function modes for each agent. 
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Social field 

Solving the adaptive system formation problem with a CSO systems ap-

proach requires the agents in the system to work together to update their 

formation in response to the needs and changes of the tasks. As shown in 

Figure 1, a specific system formation in our approach is manifested by its 

corresponding social field.  Similar to the task field, a social field can be 

characterized by its “social field strength” and “social field strength distri-

bution” over the task field space (𝑥, 𝑦), 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1. As Fig-

ure 1 indicates, the mapping between the social field and the task fields pro-

vides guidance for the agents of the system to adjust their formation in order 

to finally achieve minimum mismatch with the task fields. 

Our previous work has shown that social structuring among individual 

agents plays a very important role for self-organizing systems to achieve 

desired performance [3]. In this research, the social structuring is achieved 

in two ways (see Figure 1). First, the “Agent Relations” are predefined be-

tween the agents.  As shown in Definition 1, a 2-dimension lattice network 

topology is employed in this paper for modeling agent relations. Each agent 

(a, b) has 2 to 4 connections depending on whether (a, b) is located in the 

corner, edge or center part of the network. These connections form the 

neighborhood of agents. During the process of system formation and update, 

neighbors influence each other to maintain a desirable formation for given 

tasks. Second, a social field strength operator is introduced for agents to 

assign and evaluate the social field strength at any given position (x, y) in 

the task field space. Based on the SOM algorithm, an ideal system formation 

is the one that has the compatible “social field strength distribution” with 

the given “task field strength distribution.” Mismatch between the two leads 

to agents in the system working with their neighbors to adjust their system 

formation toward better ones. We introduce the following definitions. 

Definition 4 (Social Field Strength Distribution for function model j): 

𝑆𝐹𝑗(𝑥, 𝑦, 𝑡) = 𝑠𝐹𝐿𝐷(𝑆𝑦𝑠, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒 𝑗) 

where 𝑆𝑦𝑠 represents the system network, 𝑠𝐹𝐿𝐷 is a field formation op-

erator which transforms the information from 𝑆𝑦𝑠 to social field 

strength under Function Mode 𝑗 at point (x, y).  

Definition 5 (Overall Social  

             Field Strength Distribution): 

 

where m is the number of all the possible Function Modes of each agent 

in the system. 

𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) =  [

𝑆𝐹1(𝑥, 𝑦)

𝑆𝐹2(𝑥, 𝑦)
⋮

𝑆𝐹𝑚(𝑥, 𝑦)

] 
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Matching social and task fields 

The ideal system formation for a given task j is determined by assessing the 

level of match between task field strength and the social field strength. The 

ideal match is that the two strengths are equal. Otherwise, the system for-

mation can be “under-matched” or “over-matched” for the given task. We 

introduce the following definition: 

Definition 6 (Level of Match for Task j): 

𝑀𝑎𝑡𝑐ℎ𝑗(𝑥, 𝑦) = 𝑆𝐹𝑗(𝑥, 𝑦)/𝑇𝐹𝑗(𝑥, 𝑦) 

where SFj and TFj are the social field strength and task field strength for 

task j at point (x, y). 

Definition 7 (Overall Level of Match): 

𝑀𝑎𝑡𝑐ℎ𝑂𝑣𝑒𝑟𝑎𝑙𝑙(𝑥, 𝑦) = [

𝑀𝑎𝑡𝑐ℎ1(𝑥, 𝑦)

𝑀𝑎𝑡𝑐ℎ2(𝑥, 𝑦)
⋮

𝑀𝑎𝑡𝑐ℎ𝑚(𝑥, 𝑦)

] 

From the above definitions, it can be seen that the best match happens 

when Match (x, y) = 1. When it is “<1”, the system is called “under-

matched” (indicating the system is not capable enough to fulfill the task) 

and when it is “>1” the system is called “over-matched” (the system is 

overly capable for the task, indicating waste of agent resources). 

SOM based system formation algorithm 

The approach proposed in this paper aims to employ an unsupervised learn-

ing to generate system formations based on the social field and task fields, 

so that the system does not need to go through iterations to find the param-

eters in structural or behavioral models for convergence. Self-Organizing 

Map is one of the most popular unsupervised machine learning algorithms, 

and the topology of SOM network shows great potential for achieving adap-

tive system formation. The learning process of our approach includes the 

following two steps. 

Step 1: Distribution 

This step is to update the position in the task space (x, y) of each agent. In 

this step, a variant of SOM algorithms is applied, as shown below: 

1. Initialization 

The system is initialized by deploying the agents into the working space 

(i.e., task space). In this paper, it is a 2-D space D2. Each 𝐴𝑔𝑒𝑛𝑡 (𝑎, 𝑏)  has 

a vector (𝑥, 𝑦, 𝑆𝐹). (𝑎, 𝑏) represents the topological position of the agent in 
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the lattice of the SOM. (𝑥, 𝑦) represents the position of the agent in the 2D 

working space. (𝑥, 𝑦) is randomly picked during initialization. 

SF is the overall social field strength at (𝑥, 𝑦) and is calculated by the 

number of agents within the neighborhood of distance c around (𝑎, 𝑏) .  

2. Competition 

A random point (𝑥𝑝, 𝑦𝑝) is picked up from the working space. The picked 

point has a vector (𝑥𝑝, 𝑦𝑝, 𝑇𝐹) . TF is the overall task field strength at 

(𝑥𝑝, 𝑦𝑝), which is a vector. All the agents in the system compete against 

each other to find the one which is closest to (𝑥𝑝, 𝑦𝑝). The winner is selected 

as the Best Matching Agent (BMA), denoted by Agent (𝑢, 𝑣). 

3. Cooperation 

The BMA then communicates with their neighbors and addresses the 

task field along with the neighbors. The “amount” of cooperation depends 

on the distance between their positions in the lattice network. 

Definition 8 (Neighborhood Function for Agent (a,b)): 

𝑘(𝑎,𝑏) = 𝑒𝑥𝑝 (−
(𝑢 − 𝑎)2 + (𝑣 − 𝑏)2

2 ∗ 𝑝1
2

) 

where (𝑢, 𝑣) is the position of the BMA in the network, 𝑝1 is a parameter 

which can be adjusted to control the strength of cooperation inside 

the system. 

4. Adaptation 

All agents update their vectors according to their neighborhood function 

and the level of task-social field matching at the picked point (𝑥𝑝, 𝑦𝑝), indi-

cated as learning rate. 

Definition 9 (Learning Rate at (𝑥𝑝, 𝑦𝑝)): 

𝜎(𝑥𝑝, 𝑦𝑝) = 𝑒𝑥𝑝 (−

|𝑆𝐹(𝑥𝑝, 𝑦𝑝)|

|𝑇𝐹(𝑥𝑝, 𝑦𝑝)|

2 ∗ 𝑝2
2

) 

where |𝑆𝐹(𝑥𝑝, 𝑦𝑝)| is the norm of 𝑆𝐹(𝑥𝑝, 𝑦𝑝), |𝑇𝐹(𝑥𝑝, 𝑦𝑝)| is the norm 

of 𝑇𝐹(𝑥𝑝, 𝑦𝑝), and 𝑝2 is a parameter which can be adjusted to in-

fluence of satisfaction has on the distribution of the agents in the 

system. 

Finally, the new position of Agent (a, b) in the working space is deter-

mined by the following equation: 
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(𝑥(𝑎,𝑏), 𝑦(𝑎,𝑏))

=  (𝑥(𝑎,𝑏), 𝑦(𝑎,𝑏)) + 𝑝3 ∗ 𝜅(𝑎,𝑏) ∗ 𝜎(𝑥𝑝, 𝑦𝑝) ∗ ((𝑥𝑝, 𝑦𝑝) − (𝑥(𝑎,𝑏), 𝑦(𝑎,𝑏))) 

where 𝑝3 is a parameter which can be changed to control the rate of learn-

ing for the system. 

Step 2: Differentiation 

Noticing that the function mode of each agent is not changed in the dis-

tribution step, it is updated in the second step, the differentiation step. In this 

step, the function modes of agents are updated based on their level of match-

ing as defined in Definition 6 & 7 according to the Function Mode Selection 

Diagram of Figure 2. In general, an agent chooses the function mode corre-

sponding to the task field that the agent has the best match. 

Fig.2 Function mode selection diagram example 

For example, as shown in Figure 2, each agent has three different func-

tion modes, with Mode 0 being the default standby mode. When an agent 

updates its function mode, the position of its matching vector determined its 

behavior. If the matching vector goes across the blue boundary, the agent 

switches to Mode 1, so as the green boundary for Mode 2 and red boundary 

for Mode 0. If the match vector does not intersect any boundary, the agent 

stays at its old mode. s0 is a parameter which can be adjusted to control the 

sensitivity for agents to switch function modes. Randomness maybe added 

to the function mode changing rule to increase the adaptability of the system. 

The process introduced above provides an approach to apply SOM to 

solving system formation problems. Using this approach, in a real applica-

tion, the task fields can be manipulated by changing the weight matrix 

ω𝑚∗𝑛, and a detailed agent behavior model should be designed by specify-

ing the parameter 𝑝1, 𝑝2, 𝑝3, the neighborhood distance 𝑐 and the Function 

Mode Selection Diagram. The Following section provides specific case 

studies to show how the process described above can be implemented.  

s0 

1-match 1 

1-match 2 

To Mode 1 

To Mode 2 

To Mode 0 

Stay 
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Case studies 

The self-organizing map algorithm is commonly used to organize high-di-

mensional data and visualize them in low-dimensional maps [16]. The great 

performance of self-organizing map in vector quantization shows the possi-

bility of building unsupervised algorithms using SOM for adaptive system 

formation. Several cases simulating shape formation applications are devel-

oped to validate this possibility. Matlab was used as the platform for the 

simulation to take advantage of its capability in calculating vectors and ma-

trices. Figure 3 shows an example of the simulation result.  

Figure 3 represents the simulation result for shape formation in a 2D 

space. The horizontal axis represents the x 

axis; the vertical axis represents the y axis. 

Task fields (not shown in Fig 3) distrib-

utes in the area of {(x, y)| 0<x<1, 0<y<1}. 

Nodes with different color represent 

agents working under different function 

modes. The links between agents repre-

sent the physical connections between 

agents. The length of the physical connec-

tion can be changed, while the topology of 

the agents is predefined. Depends on dif-

ferent cases, the nodes and links have dif-

ferent specific meaning, which will be 

shown in the case studies below.  

Case 1: Self-organizing tube formation 

Tubes and pipes are used to transfer fluids like air or water. While most 

tubes are pre-made and then installed in their applications, a self-organizing 

formation system will be  more flexible  for  installation and repair.   In this 

 
(a) TF1 Distribution              (b) TF2 Distribution 

Fig.4 Task field distribution 

 
Fig.3 Example of simulation  

results 
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case study, we demonstrate the capability of our approach in using multiple 

non-overlapping uniform discrete task fields. As shown in Figure 4, the 

working space is a 2-D space with boundaries from 0 to 1. 

Task Field 1: Tube Wall Construction Field TF1. TF1 indicates the po-

sitions of the boundary of a tube in 2-D. At the boundary, tube wall is needed 

to isolate the fluid from the environment. TF1 is distributed over the work 

space with the task field strength equals to 1 at green areas in Figure 4(a). 

Task Field 2: Flow Resistance Demand Field. TF2 indicates the re-

sistance needed to control the flow rate at each point. TF2 is distributed over 

the work space with the task field strength of 1 at blue areas in Figure 4(b). 

The specific parameters used in the simulation are shown in Table 1. 

Table 1 System parameters 

Each agent in the system is programmed to have three function modes 

with regard to the two task fields as in Table 2. 

Table 2 Function modes 

 

Results 

The simulation results with varying 

strength of each task field are plotted 

in Figures 6 (a) through (f). Here we 

make the initial task field strength 

fixed as 1, and adjust the weight oper-

ator w for TF1 and TF2 to change the 

corresponding task field strength for 

each simulation. Figure 6 shows sim-

ulation results for different w1, and w2. 

Figure 6(a) shows an initial distribu-

tion of the system: all the agents are 

randomly distributed in Mode 0.  

Size of 

Network 

Simulation 

Steps T 

Parameter 

p1 

Parameter 

p2 

Parameter 

p3 

Neighborhood 

distance c 
Switch 

Threshold r0 

10*10 500 3-0.05 0 1-0.1 0.2 Rand(1,1)/2 

Function 

Mode 
Color 

Size & 

Shape 
Function 

Related 

Task Field 

0 (Default) Red 
Small, 

Circle 

Cause negligible resistance for the 

flow 
None 

1 Green 
Long, 

Block 

Seal the flow with other agents in this 

mode 
TF1 

2 Blue 
Large, 

Circle 
Cause certain resistance for the flow TF2 

 
Fig.5 Function modes 
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Figure 6(b) shows the result of a simulation with both task fields are 

strong (w1=w2=15), which means a thick tube wall and high resistance to 

the flow are needed. The results shows 52 agents are in Mode 2, forming the 

wall, and 42 agents are in Mode 1, creating large resistance inside the tube.  

Figure 6(c) shows the result of a simulation with a medium TF1 (w1=10), 

and a large TF2 (w2=15), meaning a medium tube wall and high resistance 

are needed. In this simulation, 38 agents are in mode 2, forming a thinner 

wall. 44 agents are in Mode 1 inside the tube, which is similar to Figure 6(b). 

 
 

 
 

Fig.6 Self-organizing tube simulation results 

Figure 6(b) and Figure 6(d) to Figure 6(f) shows the simulation results 

of decreasing TF2 (w2=15, 10, 5, 0 respectively) with the same strong TF1 

(w1=15). As can be seen from these figures, when TF2 decreases, fewer 

agents inside the tube is in Mode 1 (42, 34, 17, 4 respectively), which means 

the resistance inside the tube is decreasing, correctly responding to the 

changing task demands. 

Case 2: Self-organizing structure formation 

The first case study validates that the proposed approach can be used in ap-

plications where task fields are “tiled” to each other. In addition, it showed 

that task field strength can be used to control the formation of the system. In 

(a) Initial (b) Strong TF1, Strong TF2 (c) Medium TF1, Strong TF2 

(d) Strong TF1, No TF2 (e) Strong TF1, Weak TF2 (f) Strong TF1, Medium TF2 
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this case study we show that the approach is also applicable for multiple 

intersecting task fields. 

 The task is for the system to form a multi-member structure, each mem-

ber requires different materials/components for achieving different func-

tions. Two task fields are used to indicate required formation of the structure 

as shown in Figure 7. 

Task Field 1: Compression Field TF1 shows the expected path for the 

weight support of a structure. TF1 is distributed over the work space with 

the task field strength equals to 1 at every point. 

Task Field 2: Tension Field TF2 shows the expected path for the tension 

force which will be loaded on the structure. TF2 is distributed over the work 

space with the task field strength equals to 1 at every point. 

The same system parameters are used as in Case 1, and each agent in the 

system is programmed to have three function modes regarding to the two 

task fields as in Table 3. 

        

(a) Compress Field Distribution      (b) Tension Field Distribution 

Fig.7 Example of task field distribution  

Table 3 Function modes 

Function 

Mode 
Color 

Connec-

tion 
Function 

Related 

Task Field 

0 (Default) Red None Idle and ready to be applied None 

1 Green 
Compres-

sion force 
Support weight (e.g., a beam) TF1 

2 Blue 
Tension 

force 

Maintain leveling (e.g., a slab 

or beam) 
TF2 

 

Results 

By changing the task field distribution, we can control the formation of the 

structure. The simulation results are shown below in Figure 8. From Figure 

8, we can see that the proposed approach can give accurate results to map 
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the agent function modes to the task fields. The distribution of green and 

blue agents can adequately adapt to the changing arrangement of the task 

fields, forming needed structure to fulfill the tasks. 

 

 

Fig.8 Simulation results (V=Vertical, H=Horizontal) 

Case 3: Smart material formation 

The two cases described above have evenly distributed task fields within 

the defined geometry boundary. The agents going through the self-organiz-

ing mapping process can mostly form proper shapes and structures to fulfill 

the designated tasks. In many other applications, however, the task distribu-

tion may not be even, and certain gradient of change of strength along a 

given direction may be needed for certain system formation purpose. Form-

ing smart materials by depositing multiple kinds of materials in different 

densities and mixes along given directions and depth is an example of such 

applications. Two task fields are used in this case study. 

Task Field 1: Thermal Field TF1 has its strength either fixed (1 or 8) or 

decreasing along the direction of x (15*(1-x) or 8*(1-x)), shown in Fig. 9.  

Task Field 2: Flexibility Field TF2 always has its strength increasing 

along the direction of x (15x or 8*x), as shown in Figure 9. 

The same system parameters are used as in Case 1, and each agent in the 

system is programmed to have three function modes regarding to the two 

task fields as in Table 4. 

Table 4 Function modes 

Function 

Mode 
Color Connection Function 

Related 

Task Field 

0 (Default) Red None Idle and ready to be applied None 

1 Green 
Thermal  

effect 
Resist heat TF1 

2 Blue Flexibility Allow bending and torsion TF2 

(a) TF1=15 (V), TF2=15 (H)  (b) TF1= 15(V), TF2=15(H) (c) TF1=15(V), TF2=15(H) 
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Results 

In each of the simulation, the two task fields TF1 and TF2 cover the entire 

2D working space and are completely overlapped. Figures 10 (a) through 

(e) show the system formation results of various combinations of the distri-

butions of TF1 and TF2. From the figures it can be seen that the distribution 

of green “heat resistors” and blue “flexiblers” are mostly consistent with the 

demands of the two task fields TF1 and TF2, respectively. Because the 

working space is only 2-dimentional, it is hard to realize how such distribu-

tion can lead to smart materials. When the working space is 3-D or n-dimen-

sional the physical realization of such distributions becomes imaginable. 

 
 

 
 

 Fig.9 Overlapping task fields simulation results 

The comparison of the simulation results demonstrates two important 

features of our system: 

 The distributions of agents in different functional modes are properly 

mapped to the distributions of multiple task fields.  

 The number of agents activated in different functional modes is deter-

mined by the varying strengths of multiple task fields. 

(a) TF1=15∙(1-x), TF2=15∙x (b) TF1= 8∙(1-x),TF2= 8∙x (c) TF1= 8, TF2= 8∙x 

(d) TF1= 1,TF2= 8∙x (e) TF1= 8∙y, TF2= 8∙x 
 8∙x 
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However, the results also show that even though the task field densities 

are varying linearly, the agent distributions are not linear. The distortion of 

the results is possibly because of the nonlinearity of SOM, the randomness 

of function mode selection, the border effect, and the limited number of 

agents. Our future research will address these issues. 

Concluding remarks and future work 

Solving adaptive system formation problems is essential for developing self-

organizing engineered systems. Many natural systems, including both phys-

ical and biological systems, possess the capability of dynamically evolve or 

develop forms, structures and functional components in response to the en-

vironmental changes and survival needs. Taking advantages of the natural 

field distributions, such as gravity and morphogen, natural systems can de-

velop, maintain, and change their formations autonomously. The challenge 

for developing engineered systems in a similar way as nature is to devise 

general and yet powerful mechanisms (i.e., physical agents) and algorithms 

that can be applied to solve real engineering problems. Recent progress in 

micro robotics as well as drones has offered mechanism opportunities, 

whereas challenges remain with seeking proper self-formation algorithms.  

 In this paper, a SOM based approach is proposed to design CSO sys-

tems for solving adaptive system formation problems. As an unsupervised 

learning algorithm, SOM provides certain level of intelligence and makes 

systems more flexible for complex tasks. The core idea behind the proposed 

approach is to transform SOM from an artificial neuron network into an 

agent network by using field-based behavior regulation. The task fields are 

used to capture the task requirements, and the social field represents the sys-

tem formation. The CSO system “redesigns” itself automatically by match-

ing the social field with the task fields. The case studies demonstrated the 

ability of the SOM-based approach.  

Compared with existing research, our approach shows uniqueness in the 

following aspects: 

 The information of the tasks is embedded in task fields, external to the 

multi-agent system. The structural model and behavior model of our ap-

proach is independent from tasks, which means the same system with 

the same configuration can be used to perform different tasks in differ-

ent environments. In case of shape formation, the change of the task 

fields will guide the agents self-organize into different shapes. 

 Our approach has the capability of dealing with multiple task fields. The 

case study results show that agents in the system are able to differentiate 
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into different “species” according to their tasks. Differentiation is the 

fundamental capability for biological systems to evolve sophisticated 

functional organs. Our approach aims toward that direction. 

 In our approach, agents do not need to synchronize their coordinates for 

gaining global spatial information in order to choose their behaviors. 

Instead, the agents are engaged in a parallel mapping process, which 

increases the speed of self-organization, but also makes it difficult for 

the system to perform formation tasks that requires precision. 

 From a SOM algorithm perspective, in comparison with existing density 

tracking network algorithms, our approach is a bottom-up one. The im-

plementation of the algorithm is distributed to individual agents rather 

than a single computer. By using the field regulation, the system cap-

tures multiple 3-dimensional dataset in 2-dimensional space at the same 

time, making the multiple mappings and calculations more efficient. 

The long term goal of our research is to devise algorithms that can allow 

systems to adapt to changing tasks and environments by changing and 

evolving system formation of shapes, structures, and functional components 

autonomously without human intervention. To pursue this goal, we will con-

duct more case studies with more close-to-real example problems. In doing 

so, we will further enhance our task field modeling scheme and social field 

system presentation. Physical implementation is also a future direction.  

This paper is based on the work supported in part by the National Sci-

ence Foundation under Grants No. CMMI-0943997 and No. CMMI-

1201107. Any opinions, findings, and conclusions or recommendations ex-

pressed in this paper are those of the authors and do not necessarily reflect 

the views of the National Science Foundation. 
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