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ABSTRACT 
Many designers have demonstrated self-organizing systems 

of simple agents performing useful collective tasks such as 

shape formation or foraging. These systems draw inspiration 

from biology, engineering, economics and other diverse 

research areas. The great diversity of approaches has led to a 

large body of applications and simulations. The lack of unity 

among different approaches, however, leads to challenges in 

system integration, knowledge transfer, and modeling. With a 

shared vocabulary, designers could create a common 

conceptualization of the self-organizing systems design process 

and more easily share discoveries across application domains. 

To this end, we propose an ontology that covers the design and 

deployment of self-organizing systems with an emphasis on 

function, form, and behavior at the agent, group, and system 

levels of analysis, with particular emphasis on the behavioral 

design of agents.  

INTRODUCTION 
The theory of design of self-organizing (SO) systems is 

still in its nascent stages. Many designers are interested in the 

function, behavior, and form of such systems, but do not have a 

large bank of analogous systems to refer to when mapping 

between behavior and form, or between local and global levels 

of system behavior. Although various SO systems have been 

demonstrated, most researchers have taken an ad hoc approach 

to their design, demonstrating specific successes but not general 

methodologies [1]. Ontologies are useful tools for organizing a 

domain of knowledge. With a regimented ontology of the SO 

system design process, various successful systems can be 

categorized, and their important self-organizing mechanisms 

can be documented for possible adoption for other, similar 

functions.  

An ontology is a knowledge structure applied to a domain 

of interest. Ontologies define formal languages, easing 

information transfer and clarifying semantics. They are 

abstract, detailing only the important (to specific users) details 

of a domain, and should be “explicit,” giving a precise 

definition of the concepts and relationships contained within 

the ontology [2]. Ontologies are often used for consistency in 

knowledge transfer between cooperating entities, whether they 

be humans [3] or computer agents [4]. 

In our research, as an attempt to organize lessons learned 

by diverse studies on the use of self-organization, with a 

particular emphasis on the use of self-organization as a tool in 

engineering design, we are developing ontology for designing 

self-organizing systems. This paper reports our initial step in 

building a FBS (function, behavior and structure) based 

ontology in the self-organizing systems context. This ontology 

draws a distinction with the traditional design process by 

focusing on the three levels of system architecture and defining 

the key characteristics of function, behavior and structure at 

these levels. By enumerating the key concepts in the self-

organizing system design process, we are able to identify the 

mappings between certain concepts where most the design 

work takes place, regardless of the system’s application domain 

or the designer’s field of expertise. A case study on the design 

of a self-organizing foraging system using the mappings 

described in the ontology is presented along with example 

applications of the terminology to self-organizing systems from 

the literature.  

RELATED WORK 
Researchers are currently making a similar effort in the 

biological sciences, and their work can inform our own due to 

similarities that self-organizing systems show to biological 

systems, and because their goals of knowledge capture and 
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transfer are similar to our own. In this section we present a brief 

review covering a small portion of the research on artificial SO 

systems that drives this work, inspiration from parallel efforts 

in the biological sciences, and an introduction of existing 

ontologies of engineering knowledge and their use in design.  

Artificial Self-Organizing Systems 
SO systems have the potential to display the adaptability of 

natural systems while performing useful engineering functions. 

Generally, they are composed of many interacting agents or 

robots. Their lack of fixed connections allows for architectural 

flexibility, and their redundancy at the agent level makes them 

resilient to partial system failures. The adaptability comes at a 

cost though, as these systems are not as easily controlled or 

efficient as monolithically engineered systems [1]. In highly 

regimented and repetitive tasks, the designer will probably not 

choose to trade off efficiency for adaptability, but in other more 

complex tasks, it may be advantageous, or even necessary.  

Self-organization has been demonstrated as an effective 

mechanism for robots to collectively gather pucks on a field 

into a central location with no need for communication with 

one another or an a priori determination of the gathering point 

[5]. Werfel and Nagpal use self-organizing robots to assemble 

simple shapes with special bricks [6], and Shen [7] has 

designed a robot made of self-organizing modules capable of 

reconfiguration and locomotion. Other artificial SO systems 

that have been proposed or simulated include micro-scale 

construction [8], shape formation [9], and self-assembling 

origami [10] 

In our previous work, we focused on the design, modeling, 

and simulation of Cellular Self-Organizing Systems, where the 

word cellular refers to the fact that these systems are built 

bottom-up from simple components that do not have great 

functionality of their own. We have analyzed these systems for 

their ability to form and reconfigure into shapes [11], organize 

to cooperatively forage or push objects toward goals [12], [13], 

and display fast changes in system-level behavior through 

parameter changes in agent behavioral models [14].  

Design of SO systems is difficult because the designer only 

has direct control over the agents, and the higher level 

functionality emerges from agent interactions. The focus of the 

design is more about endowing the agents with fundamental 

capabilities and creating a rich search space of emergent 

behavior, from which a suitable behavior will be found [15]. 

Also, the analysis of SO systems can be extremely complex, 

even if its constituent agents are quite simple due to the 

massive interconnections among agents [16]. 

 

Ontology in the Biological Sciences 
 Over 16,000 new species are described in the biology 

literature annually [17], overwhelming the ability of any single 

researcher to comprehend them all. These data are often 

recorded in terms with definitions that may vary between 

countries, or even between research groups. Biologists are 

increasingly turning to the use of ontologies to categorize 

important aspects of the species being described for sharing 

with other researchers and future data mining [3]. One example 

is the anatomical ontology of the genus Hymenoptera (ants, 

wasps, bees, etc.) that gives distributed researchers a language 

to describe their subjects in a such a way that everyone agrees 

on the interpretation [18]. This also allows comparisons 

between different research groups, and between living and 

extinct species of insects. Although not mentioned, from an 

engineering perspective it is interesting to note that such 

structural ontologies could also enable the “design” of new, 

hypothetical hybrid insects, since they are a store of knowledge 

about insect parts and rules for composing them. 

The Gene Ontology Consortium [19] is an ambitious plan 

to record knowledge about the location and structure of genes 

on the DNA strands of various organisms, the biochemical 

processes that these genes govern, and the ultimate effect of 

these processes on the higher-level needs of the organism. 

These three aspects of DNA were chosen with the intention of 

identifying the role of proteins in model organisms and thus 

inferring its role if found in others [20]. This knowledge of the 

relationships between structure and higher-level functions is 

also necessary in an ontology of artificial self-organizing 

systems.  

Ontology in Engineering Design 
Engineering design is fundamentally an exercise in 

information processing. Thus, having the information structured 

in ontological form can be very valuable to the process. Various 

researchers have proposed ontologies for concepts important to 

engineers. Gero has proposed an ontology of artifacts described 

by their function, behavior, and structure [21], which can be 

used to describe the various states and transformations of the 

design process [22]. The Functional Basis [23] is a detailed 

exploration of the definition of function, trying to identify a 

“minimal set” of terms for engineers to use during functional 

design, to ensure common levels of specificity between 

different designers. With common decompositions of function, 

and design repositories of successfully engineered structures 

that fulfill those functions, automated search can be used to 

generate structural designs for engineering functions [24], [25]. 

If the same engineering terms are used to describe natural 

systems, these knowledge stores can even be used as aids to 

generate design concepts by analogy to biological systems [26]. 

A DESIGN ONTOLOGY FOR SO SYSTEMS 
Function, behavior, and structure (FBS) are often used to 

classify engineered systems. Gero’s FBS ontology [21] of 

artifacts defines function as the purpose of an object, what it is 

for. Structure describes the form of the object, what it is. 

Behavior describes what the object actually does, and it can be 

determined from the structure and application of engineering 

analysis. A designer specifies the structure of an artifact, with 

the intention that its behavior will fulfill its function. We use 

the familiar terms function, behavior, and structure in our 

ontology, but with modified definitions given in the following 

sections to account for the unique scenario of self-organizing 

systems design. 
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The goal of the design process is to specify a product for 

an end user. For our work, we define “product” as the output of 

the design process, a specified arrangement of self-organizing 

agents with defined behavior. The arrangement includes both 

the number and initial conditions of the agents. The form and 

behavior of the agents are specified during the design, but the 

final form and behavior of the product are the result of self-

organizing processes and are only evident at runtime.  

Three Levels 
Self-organizing systems derive their power from their 

ability to self-assemble from primitive components. The 

ontology captures this defining characteristic by recognizing 

three different levels of system architecture: the overall system 

level, the atomic agent level, and an intermediate group level.  

 The system level is familiar to engineers. It includes the 

product in its entirety. The function at this level is the end 

user’s ultimate concern.  

 The agent level describes the function and behavior of the 

smallest units within the system, such as a robot in a robot 

swarm.  

 The group level describes an organization of several agents 

whose collective behavior accomplishes some function that 

an agent could not accomplish individually.  

The group level cannot be defined without a decomposition 

of the system function. The group’s function does not entirely 

fulfill the system’s function, but does fulfill some sub-function 

decomposed from the group function. Certain sub-functions 

must be fulfilled by other groups or individual agents. A group 

(by definition) must contain more than one agent, and should 

not include every agent, as this would make it indistinguishable 

from the system. 

 
Figure 1: Three architectural levels in self-organizing systems, the 

agent, group, and system levels 

FBS in Self-Organizing Systems 
The product is designed to perform a function or functions. 

As in [27], we define “function” as an “intended change 

between two scenarios” that is the result of the implementation 

of the design. Intent is important to the definition, as products 

may produce changes that are unintentional, and these are not 

described as the function of the system. Intentions can originate 

with customers as requirements, or with the designer as 

expectations. 

This definition is not unique to self-organizing systems, but 

definition of functions at lower levels of decomposition will 

require more refinement to account for the peculiarities of SO 

systems. For example, in SO systems, behavior that was 

unintentional may in fact show emergent effects that are highly 

beneficial to the system. In this instance, the designer will 

redefine the side effects as functions and seek ways to augment 

them. Functions also may not map cleanly to components as 

suggested by many prescriptive design methodologies (e.g. 

[28], [29]). 

Reynolds’ Boids self-organized flocking simulation [30] is 

an example of taking a system-level functional requirement to 

imitate flocking (the paper was written from a computer 

graphics perspective) and decomposing it into centering, 

velocity-matching, and collision avoidance at the local level. In 

other systems, agent-level functions will not be directly 

derivable from the system-level function. Figure 2 gives an 

illustration of a system level functional requirement that has 

been decomposed into sub-functions at the agent level. Some 

can be derived directly from the top-level requirements, while 

others must be derived from intermediary group-level 

requirements. 

 
Figure 2: A system-level functional requirement mapped to two 

agent level functions directly, and to two more through a group 

level function 

In contrast to what a system should do, “behavior” is 

defined as what a system actually does [22]. The concept of 

behavior is where the design of self-organizing systems differs 

most significantly from the traditional view of design. Since the 

agents that form the basis of the system are not inert 

components, but are in fact active entities, their behavior is 

more dependent on their internal control logic than on the 

physical forces surrounding them. In this way, the analysis of 

their behavior is more similar to the analysis of a computer 

program than of a cantilever beam. Agent behavior consists of 

two parts:  
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 The agent capacity is the set of behaviors that an agent is 

capable of performing. 

 The agent behavioral selection is the internal decision 

algorithm determining which behavior from the capacity 

an agent performs at a given time. 

 

“Structure” describes what the artifact actually is in a 

tangible sense. The structure of an individual agent is fairly 

simple to describe with standard engineering blueprints and 

bills of materials, but higher-order structures must be treated 

differently in our ontology.  

Structure may exist at various levels within a self-

organizing system as groups of agents form and disband at 

runtime. The global structure of SO systems can be very fluid, 

as in a school of fish, or can be more rigid, as in swarms of 

cooperative robots [8]. The bridge and raft structures formed by 

certain species of ant have been called “living architecture” 

[31] due to their ability to re-form and adapt to a dynamic 

environment, and are structures found at the group level, 

partially fulfilling the system-level goals of foraging and 

escaping predators.  

Domains 
Knowledge about function, behavior and structure is 

generated and refined throughout the design process. To 

accurately capture and classify this knowledge, it is sometimes 

necessary to categorize its source. For our ontology, we use 

three domains: 

 The expected domain [22] covers design states that the 

designer intends or anticipates to be. 

 The required domain covers design information that the 

customer imposes on the designer. The most important is 

the system-level functional requirement, but there may be 

others such as constraints on the agent-level structure.  

 The simulated domain is where the designer evaluates 

computer simulations of design decisions. 

The specific inclusion of a simulated domain is a 

recognition of SO system engineers’ reliance on computer 

simulations. Because of the highly complex interactions among 

system components, multi-agent simulations are a near-

necessity in their analysis. These domains are sufficient to 

categorize the systems we have reviewed, and more may be 

added as future work. 

Important Mappings 
Throughout the design process, the designer will map the 

state of the design between different domains and levels. In this 

section, we identify some of the key mappings and define them 

from the perspective of SO system design.  

Function decomposition is a fundamental process of 

engineering design that forms the basis of most prescriptive 

design methodologies [29], [32]. It is the decomposition of a 

function into sub-functions that will fulfill the top-level 

function. This decomposition is usually done to transform a 

large intractable problem into a series of smaller, more 

manageable problems. In SO systems, system-level functions 

rarely map cleanly to sub-functions. It may be necessary to 

design for emergent system-level functions, and use a 

combination of agent-level and group-level functions in the 

decomposition.  

Capacity fulfillment is a mapping from agent functions to 

agent behavioral capabilities. The output of this mapping is an 

agent design with the necessary behavioral repertoire to fulfill 

the required and expected agent functions. This is not the 

specification of the actual behavior of the agent, only its 

minimum necessary capabilities.  For example, in Trianni’s 

work on a cooperative lifting task [33], the basic capacity of 

attaching to the object to be lifted was included in the design of 

the agents, while the interactive mechanisms for cooperative 

lifting were left for later design. 

Local-to-global analysis is the mapping from agent 

behavior to social and system behavior, and is one of the main 

challenges for understanding self-organizing systems. Agent 

behaviors cause the formations of groups, and the interactions 

of groups and individual agents give rise to the system-level 

behavior. The system and group-level structures and behaviors 

can in turn effect the agent behavior, resulting in many complex 

feedback loops that are difficult to comprehend using standard 

mathematical analysis, so we suggest multi-agent simulation to 

perform this necessary mapping [34].  

The synthesis process of mapping an agent’s capacity to its 

structure is a straightforward traditional design process (which 

is not to say that it is trivial, just that it is a problem that 

engineers have traditionally excelled in). For example, if an 

agent’s capacity is to move in any direction on a plane, it must 

be equipped with actuators that are capable of driving and 

steering the agent. If an agent’s capacity is to react to other 

agents, it must have the hardware to sense the presence of other 

agents. 

We argue that behavioral design at the agent level is the 

most important process in the design of self-organizing 

systems. This is the mapping of a system-level functional 

requirement to an agent-level behavioral capacity and selection. 

The designer must rely on a combination of traditional 

decomposition, analogy, and intuition to map from global 

function to local behavior. By choosing to use self-organization, 

the designer has intentionally given up some control of the 

group-level and system-level dynamics [35]. So we see that the 

structure of the agent should follow from the behavior, and the 

structure and behavior of the higher levels are outside the 

designer’s direct purview. Specifying the behavior at the agent 

level is where the designer’s influence is most evident, and 

where the design effort should be focused.  

Agent Parametric Behavioral Model 
In our previous work [13] we introduced a two-field based 

parametric behavioral model (PBM) to aid in agent-level 

behavioral design. The agent-level behavior that we defined in 

this ontology is not physics-based, but is based on the decision 

logic of the elementary SO units. This definition is a reflection 

of a unique characteristic of the design of SO systems: the self-
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organizing units are rather simple in hardware, and the most 

significant design work is focused on creating behavioral rules 

and interaction mechanisms.   

This PBM is a reaction to an agent’s sense of (natural or 

artificial) fields in its vicinity. A task field [12] includes all the 

relevant task objects and goals of an agent’s function, and a 

social field controls agents’ interactions with one another. The 

distinction between task and social fields is made because it is 

social relations that lead to the formation of groups and 

structure, whereas task-based rules result in the efficient 

fulfillment of functions, which may depend on the prior 

formation of group structure.  

We call this a parametric behavioral model, because the 

initial effort should be focused on creating a behavioral design 

space, rather than a point design. Because emergent behavior is 

difficult to design without iteration, the design space is 

necessary to allow for further trial-and-error or optimization 

processes. For example, a very simple agent could have the 

capacity to step forward and turn, with parameters governing 

the magnitude of the step and turning angle. If the step and 

turning angle significantly affect the global function of the 

system, then the PBM is a search space, which the designer can 

explore by varying the two parameters to find proper system 

behavior.  

This can be accomplished for general systems if an agent’s 

decision algorithm is based on parameters whose allowed 

values will always yield a working (though not necessarily 

productive) decision algorithm. Properly formulated, a PBM 

should always contain a valid decision structure as long as the 

input parameters are within the specified range. This separates 

the parameters from the decision structure, thus ensuring that 

the structure is valid throughout the optimization process. 

Notation 
As in [22], Function, Behavior, and Structure will be 

represented by capital F, B, and S. The organizational levels 

will be denoted by a subsequent lowercase s, g, or a, to indicate 

whether the concept is at the system, group, or agent level. 

Capacity (agent-level only) is represented by Ca. If it is 

necessary to indicate the domain of a state in the design 

process, the state’s symbol will be enclosed in parentheses with 

the necessary information afterwards. The subscripts “sim, req, 

and exp” will be used in this paper for simulated, required, and 

expected. For an example of the notation used, the behavior of 

a group of agents seen in a simulation would be denoted as 

(Bg)sim. The system-level function of a product, where the 

domain is clear from context or irrelevant, would be denoted as 

Fs.  

CASE STUDY 
In this case study, we present an expansion on the design of 

a foraging system from our previous work [13]. We present the 

design process as a series of mappings between different states 

identified in our ontology, and describe the strategies used and 

difficulties encountered while performing these mappings. An 

overview of the design process is presented in Figure 3. 

 
Figure 3: Foraging system design process 

Foraging 
Foraging is the act of finding an important resource and 

returning it to a specified location for storage. Social insects 

present examples of advanced foraging behavior from the 

interactions of simple agents. The study of ants [36], [37] in 

particular has given biological inspiration to SO search 

methods. Social insects remember and indicate the location of 

food by initially searching randomly until they find food, and 

then laying down pheromones as they return the food back to 

their nest. These are chemical markers that other insects from 

their colony can detect, so insects seeking food can sense and 

follow the trails left by those who have already successfully 

found it, and then reinforce the pheromone trail on their return 

trip. Using a similar approach, we attempt to design a system of 

agents which can find and retrieve food from a location far 

away from the home base.  

Assumptions 
For practical purposes, self-organizing systems will not be 

economically competitive with most other systems unless they 

are based on very simple hardware. This simplicity allows for 

mass-scale manufacturing, and little economic loss from the 

failure of any single unit. This also causes a distribution of 

functionality and redundancy throughout the system, which 

may be necessary in the design of self-organizing systems 

which are to be deployed at very small scales [8], in huge 

numbers [38], or in hostile environments [34]. We use the 

assumptions of (Ba)req limited sensory radius and (Sa)req simple 

hardware found in our previous work on Cellular Self-

Organizing Systems [11], [39]. The result of these assumptions 

is that we restrict ourselves to the design of agents who can 

only sense each other, environmental objects, and food within a 

local radius, and have very little onboard memory. Agents can 

sense the direction toward their home base at all times, 

simulating the condition of a central location sending out a 

strong homing beacon. 
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Function Decomposition 
The functional requirement (Fg)req of the foraging system 

is to “fetch food.” The Fg of fetching food could be 

decomposed into four Fa of “find food, pick up food, carry food 

to home, and drop food.” This is how many animals that 

stockpile food, or in fact humans, operate, and all of these 

functions are within the capability of a single agent. We know, 

however, from the study of social insects, that the function of 

“find food” can be made much easier if there is corresponding 

function of “indicate food location”. The food may be a 

relatively large distance away from the home base. This 

distance is many times the radius of an agent’s sensory 

capabilities, so directing agents between the food and home is 

outside of the capabilities of a single agent. This cannot be Fa, 

and must be expected at a higher level of Fg. The use of 

pheromones is not realistic in a robotic system, but the social 

insect can be used as analogy for implementing state change in 

the Ba. To achieve the Fg of indicating location, it becomes 

necessary for individual agents to change their behavior based 

on whether or not they have found food. From the Fg, we then 

derive the Fa of indicate state (and corresponding sense state).  

 
Figure 4: Function decomposition in a foraging system 

Behavioral Design 
The decomposed Fa related to picking up, moving, and 

dropping food can be directly mapped to Ca as they would be 

in a traditional design process. The Fa derived from Fg 

“indicate food location” require social interactions among 

agents and, once identified, can also be mapped to Ca. This 

capacity fulfillment is shown in Figure 4.  

There was an expectation that flocking would be a useful 

and efficient way for the agents to explore the field, so social 

flocking behaviors such as cohesion (attraction), nonlinear 

avoidance, and alignment were also added to the Ca to fulfill 

this (Bg)exp. There were also parameters governing the intensity 

of an agent’s attraction toward food (when sensed) and home. 

These capacities for action combine to become the total 

capacity of an agent, and the manner of selection among these 

possibilities is the Ba. The Ba is a field-based parametric 

behavioral model with 18 parameters to govern the movement 

of agents. 

The equation for generating the social field is given in (1) 

and (2): 
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                                         (2) 

where    is the distance from an agent to its neighbor,   is the 

agent’s current angular heading,   is the neighbor’s current 

heading,      is the maximum step size,   is the angle toward 

food (if nearby), and   is the angle toward home. C, O, A, F, 

and H are the behavioral model’s parameters.  

C, O, and A each need 4 parameters for four possible 

scenarios depending on whether or not the agent has food, and 

whether or not its neighbor has food. F and H each required two 

parameters for the states of an agent being with or without 

food. Finally, there were ‘R’ parameters for random stepping 

behavior with our without food. An agent would calculate the 

sum of the two field values for all points within its maximum 

stepping radius, and move to the point with the highest field 

value at each timestep. An agent’s behavior to pick up and drop 

food was not parameterized. It was automatically triggered as 

an agent moved to a patch of land containing food or its home 

base. Every agent applied this behavior in parallel at each 

timestep. 

Simulation and Optimization 
Any particular set of 18 parameters fixes a Ba, which can 

be simulated in a NetLogo [40] multi-agent simulation to 

produce (Bg)sim and (Bs)sim. For the simulation, a system of 30 

agents was placed on a field between their home base and a 

food source. At each timestep, every agent would sense its local 

neighborhood, and apply the decision algorithm of its Ba. If an 

agent found the patch containing food, it would pick up and 

carry five units of food. This was repeated for 1000 timesteps, 

and a fitness score was used to judge the (Fs)sim at the end of a 

simulation run. This fitness score can be calculated from (3).  

              
 

 
       

 

   

 (3) 

  

In this equation, the subscript ‘r’ stands for the food returned 

home by the final timestep, and the subscript ‘c’ stands for food 

that is being carried at the final timestep, but was not returned. 

The summation term is carried out over every agent in the 

system. 

A genetic algorithm (GA) was used to optimize the 

parameters of the PBM. Genetic algorithms are partially 

stochastic search algorithms that work by mutating and 

recombining partial solutions to optimization problems [41]. 

They work on a population of candidate solutions, and the 

probability of selection for recombination or mutation is 

proportional to a candidate solution’s fitness. A reformulation 

Ba to Ba was iteratively performed by the GA by generating 

different candidate solutions (each candidate consisting of a set 

of 18 parameters from the PBM), generating (Ba, Bg, Bs)sim 

and selecting candidate solutions for recombination based on 

the fitness function. This GA was run for 50 generations with a 

population of 50 solution candidates. The optimized Ba at the 
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final generation resulted in a system that would make 38 round 

trips during 1000 timesteps (returning 190 units of food). 

The (Bs)sim that was found did in fact fulfill the function to 

fetch food. The strategy employed by the system was to form 

lines of agents along the boundary of the arena, which would 

funnel the individual gatherers toward the food, as seen in 

Figure 5. These lines were necessary, since an agent would 

simply get stuck on the boundary and stop foraging if it were 

not for the social influences of other agents prodding them to 

keep moving. This (Bg)sim was actually a surprising 

repurposing of the original flocking behaviors included in the 

Ca. The alignment behavior was originally included with the 

(Bg)exp of flocking, for efficient group movement. In fact, the 

GA evolved a large negative value for the alignment parameter, 

causing agents without food to set their heading opposite the 

heading of their neighbors. This ensured an unstable condition 

when agents would get stuck near one another at the wall. One 

would have to turn around and face back away from the wall. 

With enough agents forming a line at the wall, this behavior 

ensures that the entire system cannot get stuck.  

 
Figure 5: Initial conditions (left) and emergent behavior (right) of 

foraging simulation. The food is at the top-right, and the home 

base is at the bottom left. Note: size of agents is enlarged for 

presentation. 

Reformulation of Ca 
The lines at the edge were the optimized foraging strategy 

found within the PBM given to the GA, but the use of so many 

static agents as barriers is inefficient, because at any given time 

there may be only a fraction of the agents actually moving 

between food and home. This required a reformulation of a 

more fundamental nature, a reformulation of Fg and Fa, and 

thus new elements added to Ca. 

The primary new element of the agents’ Ca was the 

addition of boundary detection capabilities, and the Ba included 

a parameterized attraction or repulsion from the boundary. With 

this addition, the optimized (Bs)sim did not drastically change. 

Lines of agents still formed near the edges, but instead of 

forming directly on the edge, they maintained a slight 

equilibrium distance, allowing much smoother flow of agents 

toward the food. This small addition to Ca resulted in a much 

more productive search space for the GA, as the optimized 

strategies with boundary detection returned twice as much food 

as the strategies without boundary detection, as seen in Figure 

6, which tracks the progress of the GA’s optimization across 50 

generations. 

 
Figure 6: Performance of top candidate found by GA at each 

generation of optimization, for systems with and without 

boundary detection 

To recap the case study, the original (Fs)req was 

decomposed into an Fg of “indicate food location” and Fa 

corresponding to flocking and state-signaling and necessary 

functionality such as picking up and dropping food. All of these 

functions were assigned corresponding behaviors in the Ca, 

with a behavioral logic Ba formed to choose among the 

behaviors in the Ca. The Ba was formed as a parametric 

behavioral model, where the action is the result of stimuli 

generated by fields within the agent’s sensory radius. The 

parameters were the relative weights of the contributions of 

various stimuli in the agent’s field of detection.  

These relative weights were tuned by a genetic algorithm 

which would repeatedly simulate the Bs of a system of agents 

running Ba’s based on different parameter sets. This 

optimization was used to repeatedly update the Ba until the 

system was able to retrieve 190 units of food within 1000 

timesteps. The Fg of “indicate food location” was fulfilled by 

very negative value of the parameter governing angular 

alignment with neighbors, so that if agent’s got stuck on a wall 

close to one another, one would have to turn and move toward 

the middle of the field, and thus the food. 

The GA efficiently searched within the PBM given to it, 

but after analysis of the (Bs)sim, the designer felt that it was 

necessary to change the Ca and run a new optimization process 

with the resulting PBM. This new PBM included boundary 

detection in the Ca. The Fg of indicating food location was still 

fulfilled by the Sg of lines of agents at the edges of the arena, 

but these lines now maintained a slight distance away from the 

edge, allowing faster flow of agents toward the food, and 

resulting is (Fs)sim of returning 400 units of food within 1000 

timesteps.  
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CONCLUDING REMARKS AND FUTURE WORK 
By analyzing example designs from the literature, we have 

prescribed a notation for the fundamental elements of design in 

terms of function, behavior, and structure at three levels of 

system architecture: agent, group, and system. This paper 

presents an initial step in our efforts to categorize the states and 

processes involved in the design of self-organizing systems. In 

future work we will attempt to improve the ontology in two 

ways: by expanding the scope to cover more examples of self-

organizing systems and to refine the components into more 

detailed levels.  

The ontological entity that we explored in most detail was 

the agent behavior, Ba. We distinguished between two elements 

of agent behavior, the capacity of possible behaviors, and a 

mechanism for selecting among these behaviors at any given 

time. We have described a parametric behavioral model for 

characterizing agent behavior based on fields of influence that 

the agent senses in its immediate neighborhood.  

Other ontological entities can be the focus of future work 

as in-depth models of function and structure in self-organizing 

systems could yield important insights if compared to our 

model of Ba. The concept of chronology in SO system 

deployment should also be discussed in more detail. In our 

foraging system, the Ss formed at run-time to accomplish the 

Fs, but in other systems, artificial embryogeny [42] for example 

the Ss is the self-organized output of the design process, with 

structure fixed before deployment. We will explore where 

designers choose to allow self-organization with respect to the 

system life cycle, and the significance of this chronology on 

system performance. 

The mapping processes during design, where most of the 

design decisions are made, should receive careful scrutiny. 

When and how should designers update the Ca if optimization 

of Ba is not sufficient? How can function decomposition be 

aided if designers have only a vague idea by analogy of how Fg 

or Fs can be accomplished? Can a standard set of self-

organizing “recipes” be created that can aid or automate some 

of these design steps? All of these questions will guide our 

future research. 

In our case study on the design of a foraging system, we 

provided an example of using a GA to perform the 

reformulation of Ba according to its simulated Bs. This 

particular optimization algorithm was chosen because of 

successful similar applications reported in the literature [39], 

[43] and its black-box approach which makes it easy to 

integrate with a diverse array of simulations, but there are other 

optimization algorithms that should be evaluated to see if they 

can more successfully optimize the detail designs of self-

organizing systems. 

A fully defined ontology for the self-organizing system 

design process will allow us to push forward on other research 

goals, such as modeling systems of heterogeneous agents, 

growing systems, and connected systems. As the behavior of 

these systems becomes advanced enough to solve real-world 

problems, it can be programmed onto physical robots for study 

of the full design process from functional requirements to 

physical agents.   
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