
 1 Copyright © 2014 by ASME

Proceedings of the ASME 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2014
August 17-20, 2014, Buffalo, New York, USA

DRAFT PAPER – DETC2014-34659

TOWARD A DESIGN ONTOLOGY FOR SELF-ORGANIZING SYSTEMS

James Humann

IMPACT Laboratory
Dept. of Aerospace & Mechanical Engineering

University of Southern California
Los Angeles, California 90089-1453

humann@usc.edu

Yan Jin*

IMPACT Laboratory
Dept. of Aerospace & Mechanical Engineering

University of Southern California
Los Angeles, California 90089-1453
yjin@usc.edu (*Corresponding author)

ABSTRACT
Many designers have demonstrated self-organizing systems

of simple agents performing useful collective tasks such as

shape formation or foraging. These systems draw inspiration

from biology, engineering, economics and other diverse

research areas. The great diversity of approaches has led to a

large body of applications and simulations. The lack of unity

among different approaches, however, leads to challenges in

system integration, knowledge transfer, and modeling. With a

shared vocabulary, designers could create a common

conceptualization of the self-organizing systems design process

and more easily share discoveries across application domains.

To this end, we propose an ontology that covers the design and

deployment of self-organizing systems with an emphasis on

function, form, and behavior at the agent, group, and system

levels of analysis, with particular emphasis on the behavioral

design of agents.

INTRODUCTION
The theory of design of self-organizing (SO) systems is

still in its nascent stages. Many designers are interested in the

function, behavior, and form of such systems, but do not have a

large bank of analogous systems to refer to when mapping

between behavior and form, or between local and global levels

of system behavior. Although various SO systems have been

demonstrated, most researchers have taken an ad hoc approach

to their design, demonstrating specific successes but not general

methodologies [1]. Ontologies are useful tools for organizing a

domain of knowledge. With a regimented ontology of the SO

system design process, various successful systems can be

categorized, and their important self-organizing mechanisms

can be documented for possible adoption for other, similar

functions.

An ontology is a knowledge structure applied to a domain

of interest. Ontologies define formal languages, easing

information transfer and clarifying semantics. They are

abstract, detailing only the important (to specific users) details

of a domain, and should be “explicit,” giving a precise

definition of the concepts and relationships contained within

the ontology [2]. Ontologies are often used for consistency in

knowledge transfer between cooperating entities, whether they

be humans [3] or computer agents [4].

In our research, as an attempt to organize lessons learned

by diverse studies on the use of self-organization, with a

particular emphasis on the use of self-organization as a tool in

engineering design, we are developing ontology for designing

self-organizing systems. This paper reports our initial step in

building a FBS (function, behavior and structure) based

ontology in the self-organizing systems context. This ontology

draws a distinction with the traditional design process by

focusing on the three levels of system architecture and defining

the key characteristics of function, behavior and structure at

these levels. By enumerating the key concepts in the self-

organizing system design process, we are able to identify the

mappings between certain concepts where most the design

work takes place, regardless of the system’s application domain

or the designer’s field of expertise. A case study on the design

of a self-organizing foraging system using the mappings

described in the ontology is presented along with example

applications of the terminology to self-organizing systems from

the literature.

RELATED WORK
Researchers are currently making a similar effort in the

biological sciences, and their work can inform our own due to

similarities that self-organizing systems show to biological

systems, and because their goals of knowledge capture and

 2 Copyright © 2014 by ASME

transfer are similar to our own. In this section we present a brief

review covering a small portion of the research on artificial SO

systems that drives this work, inspiration from parallel efforts

in the biological sciences, and an introduction of existing

ontologies of engineering knowledge and their use in design.

Artificial Self-Organizing Systems
SO systems have the potential to display the adaptability of

natural systems while performing useful engineering functions.

Generally, they are composed of many interacting agents or

robots. Their lack of fixed connections allows for architectural

flexibility, and their redundancy at the agent level makes them

resilient to partial system failures. The adaptability comes at a

cost though, as these systems are not as easily controlled or

efficient as monolithically engineered systems [1]. In highly

regimented and repetitive tasks, the designer will probably not

choose to trade off efficiency for adaptability, but in other more

complex tasks, it may be advantageous, or even necessary.

Self-organization has been demonstrated as an effective

mechanism for robots to collectively gather pucks on a field

into a central location with no need for communication with

one another or an a priori determination of the gathering point

[5]. Werfel and Nagpal use self-organizing robots to assemble

simple shapes with special bricks [6], and Shen [7] has

designed a robot made of self-organizing modules capable of

reconfiguration and locomotion. Other artificial SO systems

that have been proposed or simulated include micro-scale

construction [8], shape formation [9], and self-assembling

origami [10]

In our previous work, we focused on the design, modeling,

and simulation of Cellular Self-Organizing Systems, where the

word cellular refers to the fact that these systems are built

bottom-up from simple components that do not have great

functionality of their own. We have analyzed these systems for

their ability to form and reconfigure into shapes [11], organize

to cooperatively forage or push objects toward goals [12], [13],

and display fast changes in system-level behavior through

parameter changes in agent behavioral models [14].

Design of SO systems is difficult because the designer only

has direct control over the agents, and the higher level

functionality emerges from agent interactions. The focus of the

design is more about endowing the agents with fundamental

capabilities and creating a rich search space of emergent

behavior, from which a suitable behavior will be found [15].

Also, the analysis of SO systems can be extremely complex,

even if its constituent agents are quite simple due to the

massive interconnections among agents [16].

Ontology in the Biological Sciences
 Over 16,000 new species are described in the biology

literature annually [17], overwhelming the ability of any single

researcher to comprehend them all. These data are often

recorded in terms with definitions that may vary between

countries, or even between research groups. Biologists are

increasingly turning to the use of ontologies to categorize

important aspects of the species being described for sharing

with other researchers and future data mining [3]. One example

is the anatomical ontology of the genus Hymenoptera (ants,

wasps, bees, etc.) that gives distributed researchers a language

to describe their subjects in a such a way that everyone agrees

on the interpretation [18]. This also allows comparisons

between different research groups, and between living and

extinct species of insects. Although not mentioned, from an

engineering perspective it is interesting to note that such

structural ontologies could also enable the “design” of new,

hypothetical hybrid insects, since they are a store of knowledge

about insect parts and rules for composing them.

The Gene Ontology Consortium [19] is an ambitious plan

to record knowledge about the location and structure of genes

on the DNA strands of various organisms, the biochemical

processes that these genes govern, and the ultimate effect of

these processes on the higher-level needs of the organism.

These three aspects of DNA were chosen with the intention of

identifying the role of proteins in model organisms and thus

inferring its role if found in others [20]. This knowledge of the

relationships between structure and higher-level functions is

also necessary in an ontology of artificial self-organizing

systems.

Ontology in Engineering Design
Engineering design is fundamentally an exercise in

information processing. Thus, having the information structured

in ontological form can be very valuable to the process. Various

researchers have proposed ontologies for concepts important to

engineers. Gero has proposed an ontology of artifacts described

by their function, behavior, and structure [21], which can be

used to describe the various states and transformations of the

design process [22]. The Functional Basis [23] is a detailed

exploration of the definition of function, trying to identify a

“minimal set” of terms for engineers to use during functional

design, to ensure common levels of specificity between

different designers. With common decompositions of function,

and design repositories of successfully engineered structures

that fulfill those functions, automated search can be used to

generate structural designs for engineering functions [24], [25].

If the same engineering terms are used to describe natural

systems, these knowledge stores can even be used as aids to

generate design concepts by analogy to biological systems [26].

A DESIGN ONTOLOGY FOR SO SYSTEMS
Function, behavior, and structure (FBS) are often used to

classify engineered systems. Gero’s FBS ontology [21] of

artifacts defines function as the purpose of an object, what it is

for. Structure describes the form of the object, what it is.

Behavior describes what the object actually does, and it can be

determined from the structure and application of engineering

analysis. A designer specifies the structure of an artifact, with

the intention that its behavior will fulfill its function. We use

the familiar terms function, behavior, and structure in our

ontology, but with modified definitions given in the following

sections to account for the unique scenario of self-organizing

systems design.

 3 Copyright © 2014 by ASME

The goal of the design process is to specify a product for

an end user. For our work, we define “product” as the output of

the design process, a specified arrangement of self-organizing

agents with defined behavior. The arrangement includes both

the number and initial conditions of the agents. The form and

behavior of the agents are specified during the design, but the

final form and behavior of the product are the result of self-

organizing processes and are only evident at runtime.

Three Levels
Self-organizing systems derive their power from their

ability to self-assemble from primitive components. The

ontology captures this defining characteristic by recognizing

three different levels of system architecture: the overall system

level, the atomic agent level, and an intermediate group level.

 The system level is familiar to engineers. It includes the

product in its entirety. The function at this level is the end

user’s ultimate concern.

 The agent level describes the function and behavior of the

smallest units within the system, such as a robot in a robot

swarm.

 The group level describes an organization of several agents

whose collective behavior accomplishes some function that

an agent could not accomplish individually.

The group level cannot be defined without a decomposition

of the system function. The group’s function does not entirely

fulfill the system’s function, but does fulfill some sub-function

decomposed from the group function. Certain sub-functions

must be fulfilled by other groups or individual agents. A group

(by definition) must contain more than one agent, and should

not include every agent, as this would make it indistinguishable

from the system.

Figure 1: Three architectural levels in self-organizing systems, the

agent, group, and system levels

FBS in Self-Organizing Systems
The product is designed to perform a function or functions.

As in [27], we define “function” as an “intended change

between two scenarios” that is the result of the implementation

of the design. Intent is important to the definition, as products

may produce changes that are unintentional, and these are not

described as the function of the system. Intentions can originate

with customers as requirements, or with the designer as

expectations.

This definition is not unique to self-organizing systems, but

definition of functions at lower levels of decomposition will

require more refinement to account for the peculiarities of SO

systems. For example, in SO systems, behavior that was

unintentional may in fact show emergent effects that are highly

beneficial to the system. In this instance, the designer will

redefine the side effects as functions and seek ways to augment

them. Functions also may not map cleanly to components as

suggested by many prescriptive design methodologies (e.g.

[28], [29]).

Reynolds’ Boids self-organized flocking simulation [30] is

an example of taking a system-level functional requirement to

imitate flocking (the paper was written from a computer

graphics perspective) and decomposing it into centering,

velocity-matching, and collision avoidance at the local level. In

other systems, agent-level functions will not be directly

derivable from the system-level function. Figure 2 gives an

illustration of a system level functional requirement that has

been decomposed into sub-functions at the agent level. Some

can be derived directly from the top-level requirements, while

others must be derived from intermediary group-level

requirements.

Figure 2: A system-level functional requirement mapped to two

agent level functions directly, and to two more through a group

level function

In contrast to what a system should do, “behavior” is

defined as what a system actually does [22]. The concept of

behavior is where the design of self-organizing systems differs

most significantly from the traditional view of design. Since the

agents that form the basis of the system are not inert

components, but are in fact active entities, their behavior is

more dependent on their internal control logic than on the

physical forces surrounding them. In this way, the analysis of

their behavior is more similar to the analysis of a computer

program than of a cantilever beam. Agent behavior consists of

two parts:

 4 Copyright © 2014 by ASME

 The agent capacity is the set of behaviors that an agent is

capable of performing.

 The agent behavioral selection is the internal decision

algorithm determining which behavior from the capacity

an agent performs at a given time.

“Structure” describes what the artifact actually is in a

tangible sense. The structure of an individual agent is fairly

simple to describe with standard engineering blueprints and

bills of materials, but higher-order structures must be treated

differently in our ontology.

Structure may exist at various levels within a self-

organizing system as groups of agents form and disband at

runtime. The global structure of SO systems can be very fluid,

as in a school of fish, or can be more rigid, as in swarms of

cooperative robots [8]. The bridge and raft structures formed by

certain species of ant have been called “living architecture”

[31] due to their ability to re-form and adapt to a dynamic

environment, and are structures found at the group level,

partially fulfilling the system-level goals of foraging and

escaping predators.

Domains
Knowledge about function, behavior and structure is

generated and refined throughout the design process. To

accurately capture and classify this knowledge, it is sometimes

necessary to categorize its source. For our ontology, we use

three domains:

 The expected domain [22] covers design states that the

designer intends or anticipates to be.

 The required domain covers design information that the

customer imposes on the designer. The most important is

the system-level functional requirement, but there may be

others such as constraints on the agent-level structure.

 The simulated domain is where the designer evaluates

computer simulations of design decisions.

The specific inclusion of a simulated domain is a

recognition of SO system engineers’ reliance on computer

simulations. Because of the highly complex interactions among

system components, multi-agent simulations are a near-

necessity in their analysis. These domains are sufficient to

categorize the systems we have reviewed, and more may be

added as future work.

Important Mappings
Throughout the design process, the designer will map the

state of the design between different domains and levels. In this

section, we identify some of the key mappings and define them

from the perspective of SO system design.

Function decomposition is a fundamental process of

engineering design that forms the basis of most prescriptive

design methodologies [29], [32]. It is the decomposition of a

function into sub-functions that will fulfill the top-level

function. This decomposition is usually done to transform a

large intractable problem into a series of smaller, more

manageable problems. In SO systems, system-level functions

rarely map cleanly to sub-functions. It may be necessary to

design for emergent system-level functions, and use a

combination of agent-level and group-level functions in the

decomposition.

Capacity fulfillment is a mapping from agent functions to

agent behavioral capabilities. The output of this mapping is an

agent design with the necessary behavioral repertoire to fulfill

the required and expected agent functions. This is not the

specification of the actual behavior of the agent, only its

minimum necessary capabilities. For example, in Trianni’s

work on a cooperative lifting task [33], the basic capacity of

attaching to the object to be lifted was included in the design of

the agents, while the interactive mechanisms for cooperative

lifting were left for later design.

Local-to-global analysis is the mapping from agent

behavior to social and system behavior, and is one of the main

challenges for understanding self-organizing systems. Agent

behaviors cause the formations of groups, and the interactions

of groups and individual agents give rise to the system-level

behavior. The system and group-level structures and behaviors

can in turn effect the agent behavior, resulting in many complex

feedback loops that are difficult to comprehend using standard

mathematical analysis, so we suggest multi-agent simulation to

perform this necessary mapping [34].

The synthesis process of mapping an agent’s capacity to its

structure is a straightforward traditional design process (which

is not to say that it is trivial, just that it is a problem that

engineers have traditionally excelled in). For example, if an

agent’s capacity is to move in any direction on a plane, it must

be equipped with actuators that are capable of driving and

steering the agent. If an agent’s capacity is to react to other

agents, it must have the hardware to sense the presence of other

agents.

We argue that behavioral design at the agent level is the

most important process in the design of self-organizing

systems. This is the mapping of a system-level functional

requirement to an agent-level behavioral capacity and selection.

The designer must rely on a combination of traditional

decomposition, analogy, and intuition to map from global

function to local behavior. By choosing to use self-organization,

the designer has intentionally given up some control of the

group-level and system-level dynamics [35]. So we see that the

structure of the agent should follow from the behavior, and the

structure and behavior of the higher levels are outside the

designer’s direct purview. Specifying the behavior at the agent

level is where the designer’s influence is most evident, and

where the design effort should be focused.

Agent Parametric Behavioral Model
In our previous work [13] we introduced a two-field based

parametric behavioral model (PBM) to aid in agent-level

behavioral design. The agent-level behavior that we defined in

this ontology is not physics-based, but is based on the decision

logic of the elementary SO units. This definition is a reflection

of a unique characteristic of the design of SO systems: the self-

 5 Copyright © 2014 by ASME

organizing units are rather simple in hardware, and the most

significant design work is focused on creating behavioral rules

and interaction mechanisms.

This PBM is a reaction to an agent’s sense of (natural or

artificial) fields in its vicinity. A task field [12] includes all the

relevant task objects and goals of an agent’s function, and a

social field controls agents’ interactions with one another. The

distinction between task and social fields is made because it is

social relations that lead to the formation of groups and

structure, whereas task-based rules result in the efficient

fulfillment of functions, which may depend on the prior

formation of group structure.

We call this a parametric behavioral model, because the

initial effort should be focused on creating a behavioral design

space, rather than a point design. Because emergent behavior is

difficult to design without iteration, the design space is

necessary to allow for further trial-and-error or optimization

processes. For example, a very simple agent could have the

capacity to step forward and turn, with parameters governing

the magnitude of the step and turning angle. If the step and

turning angle significantly affect the global function of the

system, then the PBM is a search space, which the designer can

explore by varying the two parameters to find proper system

behavior.

This can be accomplished for general systems if an agent’s

decision algorithm is based on parameters whose allowed

values will always yield a working (though not necessarily

productive) decision algorithm. Properly formulated, a PBM

should always contain a valid decision structure as long as the

input parameters are within the specified range. This separates

the parameters from the decision structure, thus ensuring that

the structure is valid throughout the optimization process.

Notation
As in [22], Function, Behavior, and Structure will be

represented by capital F, B, and S. The organizational levels

will be denoted by a subsequent lowercase s, g, or a, to indicate

whether the concept is at the system, group, or agent level.

Capacity (agent-level only) is represented by Ca. If it is

necessary to indicate the domain of a state in the design

process, the state’s symbol will be enclosed in parentheses with

the necessary information afterwards. The subscripts “sim, req,

and exp” will be used in this paper for simulated, required, and

expected. For an example of the notation used, the behavior of

a group of agents seen in a simulation would be denoted as

(Bg)sim. The system-level function of a product, where the

domain is clear from context or irrelevant, would be denoted as

Fs.

CASE STUDY
In this case study, we present an expansion on the design of

a foraging system from our previous work [13]. We present the

design process as a series of mappings between different states

identified in our ontology, and describe the strategies used and

difficulties encountered while performing these mappings. An

overview of the design process is presented in Figure 3.

Figure 3: Foraging system design process

Foraging
Foraging is the act of finding an important resource and

returning it to a specified location for storage. Social insects

present examples of advanced foraging behavior from the

interactions of simple agents. The study of ants [36], [37] in

particular has given biological inspiration to SO search

methods. Social insects remember and indicate the location of

food by initially searching randomly until they find food, and

then laying down pheromones as they return the food back to

their nest. These are chemical markers that other insects from

their colony can detect, so insects seeking food can sense and

follow the trails left by those who have already successfully

found it, and then reinforce the pheromone trail on their return

trip. Using a similar approach, we attempt to design a system of

agents which can find and retrieve food from a location far

away from the home base.

Assumptions
For practical purposes, self-organizing systems will not be

economically competitive with most other systems unless they

are based on very simple hardware. This simplicity allows for

mass-scale manufacturing, and little economic loss from the

failure of any single unit. This also causes a distribution of

functionality and redundancy throughout the system, which

may be necessary in the design of self-organizing systems

which are to be deployed at very small scales [8], in huge

numbers [38], or in hostile environments [34]. We use the

assumptions of (Ba)req limited sensory radius and (Sa)req simple

hardware found in our previous work on Cellular Self-

Organizing Systems [11], [39]. The result of these assumptions

is that we restrict ourselves to the design of agents who can

only sense each other, environmental objects, and food within a

local radius, and have very little onboard memory. Agents can

sense the direction toward their home base at all times,

simulating the condition of a central location sending out a

strong homing beacon.

 6 Copyright © 2014 by ASME

Function Decomposition
The functional requirement (Fg)req of the foraging system

is to “fetch food.” The Fg of fetching food could be

decomposed into four Fa of “find food, pick up food, carry food

to home, and drop food.” This is how many animals that

stockpile food, or in fact humans, operate, and all of these

functions are within the capability of a single agent. We know,

however, from the study of social insects, that the function of

“find food” can be made much easier if there is corresponding

function of “indicate food location”. The food may be a

relatively large distance away from the home base. This

distance is many times the radius of an agent’s sensory

capabilities, so directing agents between the food and home is

outside of the capabilities of a single agent. This cannot be Fa,

and must be expected at a higher level of Fg. The use of

pheromones is not realistic in a robotic system, but the social

insect can be used as analogy for implementing state change in

the Ba. To achieve the Fg of indicating location, it becomes

necessary for individual agents to change their behavior based

on whether or not they have found food. From the Fg, we then

derive the Fa of indicate state (and corresponding sense state).

Figure 4: Function decomposition in a foraging system

Behavioral Design
The decomposed Fa related to picking up, moving, and

dropping food can be directly mapped to Ca as they would be

in a traditional design process. The Fa derived from Fg

“indicate food location” require social interactions among

agents and, once identified, can also be mapped to Ca. This

capacity fulfillment is shown in Figure 4.

There was an expectation that flocking would be a useful

and efficient way for the agents to explore the field, so social

flocking behaviors such as cohesion (attraction), nonlinear

avoidance, and alignment were also added to the Ca to fulfill

this (Bg)exp. There were also parameters governing the intensity

of an agent’s attraction toward food (when sensed) and home.

These capacities for action combine to become the total

capacity of an agent, and the manner of selection among these

possibilities is the Ba. The Ba is a field-based parametric

behavioral model with 18 parameters to govern the movement

of agents.

The equation for generating the social field is given in (1)

and (2):

 (1)

 (2)

where is the distance from an agent to its neighbor, is the

agent’s current angular heading, is the neighbor’s current

heading, is the maximum step size, is the angle toward

food (if nearby), and is the angle toward home. C, O, A, F,

and H are the behavioral model’s parameters.

C, O, and A each need 4 parameters for four possible

scenarios depending on whether or not the agent has food, and

whether or not its neighbor has food. F and H each required two

parameters for the states of an agent being with or without

food. Finally, there were ‘R’ parameters for random stepping

behavior with our without food. An agent would calculate the

sum of the two field values for all points within its maximum

stepping radius, and move to the point with the highest field

value at each timestep. An agent’s behavior to pick up and drop

food was not parameterized. It was automatically triggered as

an agent moved to a patch of land containing food or its home

base. Every agent applied this behavior in parallel at each

timestep.

Simulation and Optimization
Any particular set of 18 parameters fixes a Ba, which can

be simulated in a NetLogo [40] multi-agent simulation to

produce (Bg)sim and (Bs)sim. For the simulation, a system of 30

agents was placed on a field between their home base and a

food source. At each timestep, every agent would sense its local

neighborhood, and apply the decision algorithm of its Ba. If an

agent found the patch containing food, it would pick up and

carry five units of food. This was repeated for 1000 timesteps,

and a fitness score was used to judge the (Fs)sim at the end of a

simulation run. This fitness score can be calculated from (3).

 (3)

In this equation, the subscript ‘r’ stands for the food returned

home by the final timestep, and the subscript ‘c’ stands for food

that is being carried at the final timestep, but was not returned.

The summation term is carried out over every agent in the

system.

A genetic algorithm (GA) was used to optimize the

parameters of the PBM. Genetic algorithms are partially

stochastic search algorithms that work by mutating and

recombining partial solutions to optimization problems [41].

They work on a population of candidate solutions, and the

probability of selection for recombination or mutation is

proportional to a candidate solution’s fitness. A reformulation

Ba to Ba was iteratively performed by the GA by generating

different candidate solutions (each candidate consisting of a set

of 18 parameters from the PBM), generating (Ba, Bg, Bs)sim

and selecting candidate solutions for recombination based on

the fitness function. This GA was run for 50 generations with a

population of 50 solution candidates. The optimized Ba at the

 7 Copyright © 2014 by ASME

final generation resulted in a system that would make 38 round

trips during 1000 timesteps (returning 190 units of food).

The (Bs)sim that was found did in fact fulfill the function to

fetch food. The strategy employed by the system was to form

lines of agents along the boundary of the arena, which would

funnel the individual gatherers toward the food, as seen in

Figure 5. These lines were necessary, since an agent would

simply get stuck on the boundary and stop foraging if it were

not for the social influences of other agents prodding them to

keep moving. This (Bg)sim was actually a surprising

repurposing of the original flocking behaviors included in the

Ca. The alignment behavior was originally included with the

(Bg)exp of flocking, for efficient group movement. In fact, the

GA evolved a large negative value for the alignment parameter,

causing agents without food to set their heading opposite the

heading of their neighbors. This ensured an unstable condition

when agents would get stuck near one another at the wall. One

would have to turn around and face back away from the wall.

With enough agents forming a line at the wall, this behavior

ensures that the entire system cannot get stuck.

Figure 5: Initial conditions (left) and emergent behavior (right) of

foraging simulation. The food is at the top-right, and the home

base is at the bottom left. Note: size of agents is enlarged for

presentation.

Reformulation of Ca
The lines at the edge were the optimized foraging strategy

found within the PBM given to the GA, but the use of so many

static agents as barriers is inefficient, because at any given time

there may be only a fraction of the agents actually moving

between food and home. This required a reformulation of a

more fundamental nature, a reformulation of Fg and Fa, and

thus new elements added to Ca.

The primary new element of the agents’ Ca was the

addition of boundary detection capabilities, and the Ba included

a parameterized attraction or repulsion from the boundary. With

this addition, the optimized (Bs)sim did not drastically change.

Lines of agents still formed near the edges, but instead of

forming directly on the edge, they maintained a slight

equilibrium distance, allowing much smoother flow of agents

toward the food. This small addition to Ca resulted in a much

more productive search space for the GA, as the optimized

strategies with boundary detection returned twice as much food

as the strategies without boundary detection, as seen in Figure

6, which tracks the progress of the GA’s optimization across 50

generations.

Figure 6: Performance of top candidate found by GA at each

generation of optimization, for systems with and without

boundary detection

To recap the case study, the original (Fs)req was

decomposed into an Fg of “indicate food location” and Fa

corresponding to flocking and state-signaling and necessary

functionality such as picking up and dropping food. All of these

functions were assigned corresponding behaviors in the Ca,

with a behavioral logic Ba formed to choose among the

behaviors in the Ca. The Ba was formed as a parametric

behavioral model, where the action is the result of stimuli

generated by fields within the agent’s sensory radius. The

parameters were the relative weights of the contributions of

various stimuli in the agent’s field of detection.

These relative weights were tuned by a genetic algorithm

which would repeatedly simulate the Bs of a system of agents

running Ba’s based on different parameter sets. This

optimization was used to repeatedly update the Ba until the

system was able to retrieve 190 units of food within 1000

timesteps. The Fg of “indicate food location” was fulfilled by

very negative value of the parameter governing angular

alignment with neighbors, so that if agent’s got stuck on a wall

close to one another, one would have to turn and move toward

the middle of the field, and thus the food.

The GA efficiently searched within the PBM given to it,

but after analysis of the (Bs)sim, the designer felt that it was

necessary to change the Ca and run a new optimization process

with the resulting PBM. This new PBM included boundary

detection in the Ca. The Fg of indicating food location was still

fulfilled by the Sg of lines of agents at the edges of the arena,

but these lines now maintained a slight distance away from the

edge, allowing faster flow of agents toward the food, and

resulting is (Fs)sim of returning 400 units of food within 1000

timesteps.

 8 Copyright © 2014 by ASME

CONCLUDING REMARKS AND FUTURE WORK
By analyzing example designs from the literature, we have

prescribed a notation for the fundamental elements of design in

terms of function, behavior, and structure at three levels of

system architecture: agent, group, and system. This paper

presents an initial step in our efforts to categorize the states and

processes involved in the design of self-organizing systems. In

future work we will attempt to improve the ontology in two

ways: by expanding the scope to cover more examples of self-

organizing systems and to refine the components into more

detailed levels.

The ontological entity that we explored in most detail was

the agent behavior, Ba. We distinguished between two elements

of agent behavior, the capacity of possible behaviors, and a

mechanism for selecting among these behaviors at any given

time. We have described a parametric behavioral model for

characterizing agent behavior based on fields of influence that

the agent senses in its immediate neighborhood.

Other ontological entities can be the focus of future work

as in-depth models of function and structure in self-organizing

systems could yield important insights if compared to our

model of Ba. The concept of chronology in SO system

deployment should also be discussed in more detail. In our

foraging system, the Ss formed at run-time to accomplish the

Fs, but in other systems, artificial embryogeny [42] for example

the Ss is the self-organized output of the design process, with

structure fixed before deployment. We will explore where

designers choose to allow self-organization with respect to the

system life cycle, and the significance of this chronology on

system performance.

The mapping processes during design, where most of the

design decisions are made, should receive careful scrutiny.

When and how should designers update the Ca if optimization

of Ba is not sufficient? How can function decomposition be

aided if designers have only a vague idea by analogy of how Fg

or Fs can be accomplished? Can a standard set of self-

organizing “recipes” be created that can aid or automate some

of these design steps? All of these questions will guide our

future research.

In our case study on the design of a foraging system, we

provided an example of using a GA to perform the

reformulation of Ba according to its simulated Bs. This

particular optimization algorithm was chosen because of

successful similar applications reported in the literature [39],

[43] and its black-box approach which makes it easy to

integrate with a diverse array of simulations, but there are other

optimization algorithms that should be evaluated to see if they

can more successfully optimize the detail designs of self-

organizing systems.

A fully defined ontology for the self-organizing system

design process will allow us to push forward on other research

goals, such as modeling systems of heterogeneous agents,

growing systems, and connected systems. As the behavior of

these systems becomes advanced enough to solve real-world

problems, it can be programmed onto physical robots for study

of the full design process from functional requirements to

physical agents.

REFERENCES
[1] M. Prokopenko, “Design Versus Self-Organization,” in

Advances in Applied Self-Organizing Systems, Springer

London, 2013, p. Ch. 1.

[2] M. Hadzic, P. Wongthongtham, T. Dillon, and E. Chang,

“Introduction to Ontology,” in Ontology-Based Multi-

Agent Systems, Springer Berlin Heidelberg, 2009, pp. 37–

60.

[3] N. Washington and S. Lewis, “Ontologies: Scientific data

sharing made easy,” Nature Education, vol. 1, no. 3,

2008.

[4] Y. Labrou, T. Finin, and Y. Peng, “Agent communication

languages: the current landscape,” IEEE Intelligent

Systems and their Applications, vol. 14, no. 2, pp. 45–52,

1999.

[5] R. Beckers, O. E. Holl, J. L. Deneubourg, Z. Bielefeld,

and D.- Bielefeld, “From local actions to global tasks:

Stigmergy and collective robotics,” in Artificial Life IV,

1994, pp. 181–189.

[6] J. Werfel and R. Nagpal, “Extended stigmergy in

collective construction,” Intelligent Systems, IEEE, vol.

21, no. 2, pp. 20–28, 2006.

[7] W.-M. Shen, B. Salemi, and P. Will, “Hormone-inspired

adaptive communication and distributed control for

CONRO self-reconfigurable robots,” IEEE Transactions

on Robotics and Automation, vol. 18, no. 5, pp. 700 –

712, Oct. 2002.

[8] A. Requicha and D. Arbuckle, “Issues in Self-Repairing

Robotic Self-Assembly,” in Morphogenetic Engineering:

Toward Programmable Complex Systems, 2012, pp. 141–

156.

[9] L. Bai and D. Bree, “Chemotaxis-Inspired Cellular

Primitives for Self-Organizing Shape Formation,” in

Morphogenetic Engineering: Toward Programmable

Complex Systems, 2012, pp. 141–156.

[10] R. Nagpal, “A catalog of biologically-inspired primitives

for engineering self-organization,” in Engineering Self-

Organising Systems, Springer, 2004, pp. 53–62.

[11] G Zouein, C. Chen, and Y. Jin, “Create Adaptive Systems

through ‘DNA’ Guided Cellular Formation,” in Design

Creativity 2010, 2010, p. 149.

[12] C. Chen and Y. Jin, “A Behavior Based Approach to

Cellular Self-Organizing Systems Design,” in

Proceedings of the ASME 2011 International Design

Engineering Technical Conferences & Computers and

Information in Engineering Conference, Washington,

DC, 2011.

[13] J. Humann, Y. Jin, and N. Khani, “Evolutionary

Computational Synthesis of Self-Organizing Systems,”

AI EDAM: Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 2014.

 9 Copyright © 2014 by ASME

[14] W. Chiang and Y. Jin, “Toward a Meta-Model of

Behavioral Interaction for Designing Complex Adaptive

Systems,” in ASME IDETC/CIE 2011, 2011, pp. 1077–

1088.

[15] R. Doursat, H. Sayama, and O. Michel, “Morphogenetic

Engineering: Reconciling Self-Organization and

Architecture,” in Morphogenetic Engineering, R.

Doursat, H. Sayama, and O. Michel, Eds. Springer Berlin

Heidelberg, 2012, pp. 1–24.

[16] B. Edmonds, “Using the experimental method to produce

reliable self-organised systems,” in Engineering Self-

Organising Systems, Springer, 2005, pp. 84–99.

[17] B. Fontaine, K. van Achterberg, M. A. Alonso-Zarazaga,

R. Araujo, M. Asche, H. Aspöck, U. Aspöck, P. Audisio,

B. Aukema, N. Bailly, M. Balsamo, R. A. Bank, C.

Belfiore, W. Bogdanowicz, G. Boxshall, D. Burckhardt,

P. Chylarecki, L. Deharveng, A. Dubois, H. Enghoff, R.

Fochetti, C. Fontaine, O. Gargominy, M. S. G. Lopez, D.

Goujet, M. S. Harvey, K.-G. Heller, P. van Helsdingen,

H. Hoch, Y. De Jong, O. Karsholt, W. Los, W. Magowski,

J. A. Massard, S. J. McInnes, L. F. Mendes, E. Mey, V.

Michelsen, A. Minelli, J. M. N. Nafrıa, E. J. van

Nieukerken, T. Pape, W. De Prins, M. Ramos, C. Ricci,

C. Roselaar, E. Rota, H. Segers, T. Timm, J. van Tol, and

P. Bouchet, “New Species in the Old World: Europe as a

Frontier in Biodiversity Exploration, a Test Bed for 21st

Century Taxonomy,” PLoS ONE, vol. 7, no. 5, p. e36881,

May 2012.

[18] M. J. Yoder, I. Miko, K. C. Seltmann, M. A. Bertone, and

A. R. Deans, “A gross anatomy ontology for

Hymenoptera,” PLoS One, vol. 5, no. 12, p. e15991,

2010.

[19] The Gene Ontology Consortium, “The Gene Ontology:

enhancements for 2011,” Nucleic Acids Research, vol.

40, no. D1, pp. D559–D564, Nov. 2011.

[20] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H.

Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S.

Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, and A. Kasarskis, “Gene Ontology: tool for the

unification of biology,” Nature Genetics, vol. 25, no. 1,

pp. 25–9, May 2000.

[21] J. S. Gero and M. A. Rosenman, “A conceptual

framework for knowledge-based design research at

Sydney University’s Design Computing Unit,” Artificial

Intelligence in Engineering, vol. 5, no. 2, pp. 65–77,

1990.

[22] J. S. Gero and U. Kannengiesser, “The situated function–

behaviour–structure framework,” Design Studies, vol. 25,

no. 4, pp. 373–391, Jul. 2004.

[23] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and

K. L. Wood, “A functional basis for engineering design:

reconciling and evolving previous efforts,” Research in

engineering Design, vol. 13, no. 2, pp. 65–82, 2002.

[24] A. Chakrabarti, K. Shea, R. Stone, J. Cagan, M.

Campbell, N. V. Hernandez, and K. L. Wood,

“Computer-Based Design Synthesis Research: An

Overview,” Journal of Computing and Information

Science in Engineering, vol. 11, no. 2, p. 021003, 2011.

[25] C. Bryant, R. Stone, D. McAdams, T. Kurtoglu, and M.

Campbell, “Concept generation from the functional basis

of design,” in International Conference on Engineering

Design, ICED, 2005, vol. 5, pp. 15–18.

[26] J. K. S. Nagel and R. B. Stone, “A computational

approach to biologically inspired design,” Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing, vol. 26, no. 02, pp. 161–176, Apr. 2012.

[27] A. Chakrabarti, V. Srinivasan, B. S. C. Ranjan, and U.

Lindemann, “A case for multiple views of function in

design based on a common definition,” Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing, vol. 27, no. 03, pp. 271–279, Jul. 2013.

[28] N. P. Suh, The principles of design. New York: Oxford

University Press, 1990.

[29] G. Pahl, K. Wallace, and L. Blessing, Engineering design

a systematic approach. London: Springer, 2007.

[30] C. W. Reynolds, “Flocks, herds, and schools: A

distributed behavioral model,” in ACM SIGGRAPH ’87

Conference Proceedings, 1987, vol. 25–34.

[31] S. Garnier, T. Murphy, M. Lutz, E. Hurme, S. Leblanc,

and I. D. Couzin, “Stability and Responsiveness in a

Self-Organized Living Architecture,” PLoS Comput Biol,

vol. 9, no. 3, p. e1002984, Mar. 2013.

[32] S. Pugh, Total design. Addison-Wesley, 1990.

[33] V. Trianni, Evolutionary swarm robotics: evolving self-

organising behaviours in groups of autonomous robots.

Berlin: Springer, 2008.

[34] J. Humann and A. M. Madni, “Integrated agent-based

modeling and optimization in complex systems analysis,”

presented at the Conference on Systems Engineering

Research (CSER 2014), Redondo Beach, CA, 2014.

[35] K. Kelly, Out of control : the new biology of machines,

social systems and the economic world. Reading, Mass.:

Addison-Wesley, 1994.

[36] E. Bonabeau, Swarm intelligence: from natural to

artificial isystems. New York: Oxford University Press,

1999.

[37] U. Wilensky, NetLogo Ant Model. Evanston, IL: Center

for Connected Learning and Computer-Based Modeling,

Northwestern University, 1998.

[38] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low

cost scalable robot system for collective behaviors,” in

2012 IEEE International Conference on Robotics and

Automation (ICRA), 2012, pp. 3293 –3298.

[39] J. Humann and Y. Jin, “Evolutionary Design of Cellular

Self-Organizing Systems,” presented at the ASME

IDETC/CIE, Portland, OR, 2013.

[40] U. Wilensky, NetLogo. Evanston, IL: Center for

Connected Learning and Computer-Based Modeling,

Northwestern University, 1998.

[41] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, 1st ed. Addison-

Wesley Professional, 1989.

 10 Copyright © 2014 by ASME

[42] O. Yogev, A. A. Shapiro, and E. K. Antonsson,

“Computational Evolutionary Embryogeny,” IEEE

Transactions on Evolutionary Computation, vol. 14, no.

2, pp. 301–325, Apr. 2010.

[43] F. Stonedahl and U. Wilensky, “Finding Forms of

Flocking: Evolutionary Search in ABM Parameter-

Spaces,” in Proceedings of the MABS workshop at the

Ninth International Conference on Autonomous Agents

and Multi-Agent Systems, 2010.

