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ABSTRACT 
In this paper, a genetic algorithm (GA) is used to discover 

interaction rules for a cellular self-organizing (CSO) system. 

The CSO system is a group of autonomous, independent agents 

which do not communicate with one another or any central 

controller. The agents have a local neighborhood of sensing and 

react only to other agents within this neighborhood. Their 

interaction rules are a simple set of direction vectors based on 

flocking rules. The five local interaction rules are assigned 

relative weights, and the agents self organize to display some 

emergent behavior at the system level.  

The engineering challenge is to identify which sets of local 

rules will cause certain desired global behaviors. The global 

required behaviors of the system, such as flocking or 

exploration, are translated into a fitness function that can be 

evaluated at the end of a multi-agent simulation run. The GA 

works by tuning the relative weights of the local interaction 

rules so that the desired global behavior emerges, judged by the 

fitness function. The GA approach is shown to be successful in 

tuning the weights of these interaction rules on simulated CSO 

systems, and, in some cases, the GA actually evolved 

qualitatively different local interaction “strategies” that 

displayed equivalent emergent capabilities. 

INTRODUCTION 
Engineered systems are becoming increasingly complex. 

Current engineering design follows a reductionist approach. 

Reductionism can be defined colloquially as “divide and 

conquer.” A large task is subdivided into several smaller tasks, 

and each of these tasks is completed and optimized somewhat 

independently. This approach is described at length in many 

fundamental and respected design textbooks. It can be seen in 

the function structure diagrams of Systematic Design [1], and 

the Independence Axiom in Axiomatic Design [2]. Many 

informal design methods, often company-specific, also follow 

the top-down reductionist approach. 

The reductionist approach has worked well for many 

applications. It will continue to work well in these areas, and 

this paper does not argue otherwise. However, two of the 

fundamental assumptions in reductionist design are that the 

environment of the product is knowable and static (or possibly 

dynamic within a foreseeable range), and that the functional 

requirements (FR’s) of the system will not change with time. 

Dealing with the complexity inherent in unknowable or 

dynamic environments and requirements presents unique 

challenges to the designer, which may be better solved using an 

alternate design method. 

Self-organizing systems generally are distributed systems 

whose agents have limited capabilities and only local 

knowledge. Also, the overall distinctive behavior of the system 

is emergent; that is, it arises from the interactions of the simple 

agents and cannot be easily inferred from the properties of the 

agents [3][4]. Self-organization is present in a diverse range of 

system types, including physical, biological, and social 

systems. The hierarchical structure of materials can be thought 

of as a self-organization of atoms and molecules. “Hive mind” 

behavior in insects arises from simple agents with local 

interactions [5]. Even human social systems such as freeway 

traffic or evacuation exhibit emergent flocking behavior that 

can be re-created in simulation using self-organizing principles 

[6]. These complex structures and useful behaviors emerge on a 

system level with no central control or global knowledge on the 

local level. 

A CSO (cellular self-organizing) system is an engineered 

system built bottom-up from a distributed group of agents 

known as mechanical cells (mCells). An overview of the CSO 

framework is given in [7], where the authors introduced a 

design DNA (dDNA) that governs the behavior of an individual 
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cell. The designer’s job is then to design the local behavioral 

rules of each cell in order to generate the desired emergent 

global behavior. One strategy suggested for this design work is 

field-based regulatory behavior where meaningful objects in the 

mCells’ environment have “fields” surrounding them that the 

cells can sense and react to [8]. 

This bio-inspired design approach aims to develop 

emergent functionality from the local interactions of mCells. 

The promise of such a distributed self-organizing approach is 

that it can display some of the desired properties found in 

biological self-organizing systems, such as adaptability to 

environmental change, flexibility for changing functional 

requirements, and resilience to system damage. These desirable 

traits will be found in the system, even though the mCell 

hardware is assumed to be simple.  

This simplicity is the foundation of the self-organizing 

approach. An mCell is assumed to have limited communication 

and computational abilities, so that mCells can be manufactured 

cheaply in large batches. The redundant nature of the system 

will provide robustness to damage to several mCells, as long as 

the damaged cells represent only a small portion of the system, 

and the self-organizing nature of the system will allow it to 

adapt to environmental conditions that were not pre-specified 

by the designer. Finally, flexibility will be gained by the ability 

of a designer to change the local rules of an mCell at the 

software level, so that different systems can display different 

emergent functionality, even if they consist of the same 

hardware. 

Like any complex system, CSO systems have certain 

characteristics that make them difficult to design. Since their 

behavior is emergent, it is not always clear what the local rules 

of interaction should be. A designer must develop these rules 

using a combination of intuition, modeling, and what little 

established theory exists. There is a current need for automated 

methods of developing local CSO rules that can expedite and 

formalize this process. 

In this research, we take an evolutionary approach to 

automating the design of a CSO system developed in our 

previous work [9], [10]. A genetic algorithm (GA) is developed 

to evolve self-organizing rules or parameters that govern the 

behavioral interactions among agents and therefore the 

emergent behavior of the system. In the following, we first 

review the related work and then introduce our evolutionary 

approach to CSO system design. After that, the experimental 

results are presented and discussed. This work is still ongoing, 

and the intermediate conclusions and future work are discussed 

in the last section. 

RELATED WORK 
Our research is related to multi-agent systems, especially 

the flocking model of multi-agent systems, self-organizing 

systems, genetic and evolutionary algorithms, and the 

application of GA to the optimization of agent-based systems. 

Multi-Agent Simulations 
Multi-agent simulations (MAS) are built to model 

phenomena that cannot be captured by simple mathematical 

formulas. There is no direct mapping from the parameters used 

to initialize an MAS to the resulting global behavior. Therefore, 

the only way to determine the results of a model is to actually 

run the model. In the case of complicated simulations, running 

the simulation could take a significant amount of computing 

time, and for a designer, the amount of design time required is 

the time per simulation multiplied by the number of simulations 

that must be run before suitable emergent behavior is found. If 

a system relies on more than a few parameters, and the proper 

combinations are found in small isolated portions of the search 

space, it becomes necessary for a designer to use some sort of 

efficient, automated search method [11].  

Flocking 
Reynolds [12] is credited with creating the first simple 

flocking algorithm. His motivation was to reduce the amount of 

time necessary for a computer animator to prescribe every path 

for every bird in a flock. Instead, he relied on independent 

agents, following a combination of three simple rules: 

1. Collision Avoidance 

2. Velocity Matching 

3. Centering 

where “Centering” is an agent’s desire to stay near the center of 

the flock. From these simple local behaviors, an emergent 

behavior instantly recognizable as flocking could be animated 

with relative ease. 

Artificial Self-Organizing Systems 
While many researchers have studied self-organization in 

order to glean insight into biology or mathematics, some have 

purposefully integrated self-organizing principles into 

mechanical (or simulated) systems. Beckers et al. [13] created a 

system of several independent robots without communication 

that were able to gather pucks into a single pile. This approach 

was later expanded in [14] to require clustering in the center of 

the field, and using square objects. Werfel and Nagpal [15] 

have simulated a robotic construction crew which can build 

block structures. Zoein et al. [7] demonstrated a CSO systems 

which was capable of reorganizing its shape so that it could 

maneuver through or around various obstacles. Chiang [16] 

used variants of the flocking approach to demonstrate various 

emergent system behaviors such as spreading, clustering, 

searching and surrounding. Chen and Jin [8] demonstrated a 

simulated swarm of agents whose local interaction could be 

harnessed to push a box toward a goal while avoiding obstacles. 

Thus far, these systems have shown limited but promising 

capability, and improvement is difficult because of the indirect 

link between local actions and global behavior. 

Genetic Algorithms 
A genetic algorithm [17] is a stochastic optimization 

algorithm that uses DNA, natural selection, and evolution as a 

useful metaphor for efficient optimization. GA’s are well-suited 

to explore discontinuous optimization search spaces. Because a 
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GA acts on a population of candidate solutions, and not just a 

single point, they have an ability to explore possibly remote 

areas of a search space in parallel while avoiding local maxima. 

A GA works by generating an initial field of candidate 

solutions, or genomes. These genomes are typically binary 

strings. The genomes are mapped to specific arguments of a 

fitness function, and the fitness function evaluates each 

candidate’s worth. Candidates with high fitness are more likely 

to be mated with other candidates, so that their offspring, 

composed of genes from both parents, survive to the next 

generation. Mutations can be introduced during the algorithm 

by randomly flipping a bit in a genome. This process is 

repeated for a set number of generations or until a candidate 

with suitable fitness is identified. 

There are many different specific implementations of GA, 

each with its own strengths and weaknesses. Some hew closely 

to the Darwinian inspiration of the original algorithms, while 

others take liberties with the form of the genome, the number of 

parents involved in reproduction, cloning, etc. The important 

elements found in almost all GA’s are selection (fitness), 

recombination (mating), and mutation. 

Machine Learning for Tuning of Complex System 
Parameters 

Many complex systems have been studied and optimized 

using genetic algorithms or other optimization methods. The 

methods used include GA, its close relative genetic 

programming (GP), linear programming and more.  

Evolving complex systems using AI presents several 

challenges to the researcher. The architecture underlying most 

multi-agent simulation platforms is partly stochastic, even if 

there are no specific random parameters programmed into the 

simulation. This stochasticity can arise from random initial 

agent placements, stepping orders or initial conditions. The 

indirect global-to-local mapping makes it difficult to assign 

rewards for specific actions in reinforcement-based learning 

[18]. Also, the global behavior that one wishes to capture may 

be transient, emergent, or difficult to measure quantitatively 

[19].  Despite these difficulties, there has been a large amount 

of success in recent years in discovering desirable emergent 

behavior using optimization techniques. 

Wilensky [20] specifically explored flocking behavior and 

how to evolve it using a GA. He successfully evolved flying-v 

behavior in a flock of simulated birds by allowing the GA to 

control the birds’ cone of vision. 

Ant foraging is a popular MAS that several researchers 

have attempted to optimize. Calvez and Hutzler [11] introduce 

an approach they call Adaptive Dichotomic Optimization. This 

approach uses parallel sampling and search space discretization 

to efficiently explore the search space of local behavior 

parameters in an ant foraging simulation. Cole [21] used a GA 

to optimize an ant colony for the shortest transit time across the 

colony by turning on and off various interaction rules and 

adjusting colony size.  

GP has been used to implement firefly synchronization and 

ant foraging algorithms [22]. This work developed a string of 

functional primitives that had been used in previous algorithms 

to produce synchronization in simulated firefly illumination.  

Miller [23] used GA to evolve parameters for a highly 

nonlinear model of world population dynamics known as 

World3. Here he demonstrated the use of GA for not only 

optimization of the final state, but also for sensitivity analysis. 

In order to study the sensitivity analysis, the fitness function for 

maximizing world population was modified by penalizing large 

changes from a set of baseline parameters. Thus only the 

parameters that provided the highest return for least amount of 

change survived the modified fitness function. 

Crutchfield et al. [24] used GA to evolve rules for cellular 

automata to perform the “majority classification” task. The 

point of the task is for the cellular automata to converge to a 

steady state of all 1’s if the initial condition is majority 1’s, or 

all 0’s if the initial condition is majority 0’s. The first 

generations of the GA created simple rules that expanded 

groups of contiguous 1’s or 0’s, but later generations showed 

some “cleverness” in creating rules that caused structures to be 

built in the CA that could communicate local conditions to 

other locations on the CA. 

A multi-objective GA was used in [25] to optimize a 

strategy in an emergency planning simulation. This algorithm 

used Pareto optimality to sort candidate solutions and then 

applied the typical GA operators to optimize disaster response 

plans for such targets as low fatalities and hospital waiting 

times. 

Whether the objective was model optimization or data-

fitting, the common theme among the works cited in this 

section is that they succeeded in adjusting more variables than a 

human mind could comfortably cope with simultaneously. The 

techniques used in the literature vary, as researchers have used 

diverse methods from GA to hill-climbing to simulated 

annealing, but the results show an efficient search of a vast, 

nonlinear space. 

EVOLVING CSO SYSTEMS 
The CSO approach has demonstrated some simple 

capabilities thus far, such as flocking, goal finding [16], system 

reconfiguration [7], and box pushing [8]. We wish to expand 

the functionality of the CSO system, without drastically 

changing the assumptions made about the limited capabilities 

of individual mCells, by training it using machine learning 

rather than human trial and error.  

We propose to use genetic algorithms to explore the space 

of possible behavioral parameters in our CSO. By modeling the 

CSO as a multi-agent system, a multi-agent simulation can be 

used to analyze the global behavior emerging from the mCells’ 

local interactions. The parameters controlling this local 

behavior can be coded as a numeric string to be manipulated by 

a GA. These candidate numerical strings can be efficiently 

probed by the GA to lead to the discovery of successful CSO 

strategies in a reasonable amount of time. 

NetLogo [26] is a free multi-agent simulation environment 

that is well suited to study distributed systems with emergent 
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behavior. NetLogo has an optional API controller that can be 

run on a Java virtual machine. A simple command() function in 

the Java console can send arguments to the NetLogo software 

as if it were a human typing into the NetLogo console. In this 

way, all system parameters can be set, and the simulations can 

be called by a Java GA program with no further input from the 

human operator. 

Agent Behavior 

The simulation used is a flocking simulation inspired by 

the work of [9] and [27]. The flocking agents represent small 

robots moving on a 2-D surface in a torroidal (wrapped) world. 

Each robot has a limited sensory range and very little memory. 

At each time step, a robot will sense the positions and heading 

of all the other robots within its radius of vision and react 

according to a set of predefined rules. These rules take the form 

of 5 vectors, which give competing desired directions. The 

relative weights of the vectors are assigned to the agents before 

the simulation begins, and the direction taken at any given step 

is the weighted sum of all five vectors. The 5 robot behaviors 

are defined as [16]: 

1. Cohesion: step toward the center of mass of 

neighboring agents. 

2. Avoidance: step away from agents that are too close. 

3. Alignment: step in the direction that neighboring 

agents are headed. 

4. Randomness: step in a random direction. 

5. Momentum: step in the same direction as the last time-

step. 

The acronym COARM is used to refer to the weights 

assigned to each behavior. A robot calculates the cohesion, 

alignment, and avoidance directions according to the following 

formulas: 
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where     implies that agent i is in the neighborhood of the 

agent calculating its direction,     is the vector from an agent to 

its neighbor, D is the diameter of the agents, and     is the 

velocity of an agent. 

The denominator in (2) is used to ensure there are no 

collisions among agents. Since the vectors      are measured 

between the centers of agents, the avoidance term will increase 

toward infinity if the distance between the centers of any two 

agents approaches the agents’ diameter. A maximum step size 

of 0.7 is enforced at any time step. 

Because the behavior of the system relied predominantly 

on the ratios among the COARM parameters, rather than their 

absolute values, we decided to fix one value throughout the 

simulations. The value for R was fixed at 1, and all of the other 

parameters were allowed to adjust relative to this baseline. 

Desired Emergent Behaviors 
We wish to use a GA to evolve sets of parameters that lead 

to the following emergent flock behaviors: 

1. Flocking: at the end of the simulation, all agents 

should have the same heading. 

2. Exploration: at the end of the simulation, the agents 

should have discovered every location on the field. 

We also slightly modify these goals to further challenge the 

GA and evolve other useful behaviors. For the flocking 

simulations, we introduce constraints on parameters to 

eliminate easy solutions. For the exploration simulations, we 

occasionally require that the system find only a certain fraction 

of the field – no more and no less. We map each of these global 

behaviors to a fitness function, and allow the GA to evolve sets 

of corresponding parameters.  

Genetic Algorithm Specifications 
The genetic algorithm is a custom program written in Java 

that controls a NetLogo simulation using the API. A string of 40 

bits (5 binary numbers) is interpreted as the weights of the five 

COARM parameters. The GA assigns the parameters, initializes 

the simulation, gathers the results, applies the GA operators, 

and begins the next generation. The actual simulation and agent 

behavior take place in the NetLogo software. 

Most genetic algorithms were seeded with an initial field 

of 15 candidates and allowed to run for 40 generations. Elitism 

was used so that the best candidate at each generation was 

cloned to the next generation. At each generation, fitness 

scaling [28] was used so that the selection probability of the 

best candidate was 30% greater than the selection probability of 

the average candidate. Two candidates were selected, with 

replacement, and their genomes were combined at a random 

cross point to create an offspring. All non-clones were allowed 

to mutate, with a mutation probability of 1% per bit of genome. 

This process was repeated until the next generation was full. 

 

 

RESULTS AND ANALYSIS 

Flocking 
To evolve flocking behavior, an empty field was filled with 

30 agents with random initial coordinates and headings. The 

COARM parameters were set by the GA, and the simulation 

was allowed to run for 250 time-steps. At the end of the 
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simulation, the momentum of the entire flock      and total 

fitness were calculated assuming unit mass for each agent: 

             

 

   

  
(4) 

        
        

 
  

(5) 

where N is the total number of flockers.  

The fitness will be 1 if every agent is travelling in the same 

direction, and will have an expected value of 0 if the agents are 

heading in random directions. 

 

 

Figure 1: Typical flocking fitness evolution 

 

Figure 2: Typical flocking average COARM parameter evolution 

This run of the GA, which allowed unrestricted 

manipulation of the COARM parameters, displayed intuitive 

results. As one would expect, the Alignment parameter (Figure 

2) was quickly maximized so that all agents would have an 

overwhelming tendency to match their heading to their 

neighbors. Momentum was also maximized, which smoothed 

out any randomness, leading to a more consistent flocking 

direction, and Cohesion and Avoidance generally tracked one 

another, with the     ratio varying from 0.2 to 0.5, which 

allowed the agents to keep a suitable separation distance from 

one another – not too close to avoid collisions and flock 

segmentation, and not too far to avoid flock dispersion. Figure 

3 shows the initial and final configurations for the MAS based 

on this parameter set. Other GA runs produced results that were 

qualitatively similar in relative parameter values and MAS 

results. 

 

 

Figure 3: Self organization to form a cohesive flock 

A “Hall of Fame” to Assess the Return on the GA 
Investment 

It is often seen that a suitable set of parameters is found in 

the first few generations of the GA. Is it then wise to spend 

more computational effort on evolving further? To answer this 

question we instituted a “Hall of Fame,” (HoF) which would 

house the best candidate from each generation. At the end of 

the GA run, each member of the HoF would be re-tested 5 

times to calculate a minimum, average, and maximum fitness. 

This could be used to determine if higher quality, more reliable 

parameter values would appear in later generations, or if the 

randomly found best candidate in the first generation was 

sufficient. 

 

 

Figure 4: Fitness evolution with high-quality candidate in first 

generation 
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Figure 5: Each generation's best candidate retested for reliability 

Figure 4 shows the fitness evolution in a GA that found a 

high-fitness candidate in the first generation by random luck. It 

is evident that there is not much improvement in the 

performance of each generation’s best candidate throughout the 

simulation, but is there another way that we can sense 

improvement in succeeding generations? The simulation run is 

partly stochastic. There is an explicitly random vector, and the 

mechanics of the simulation environment are such that minor 

random variations can be introduced in the stepping order of 

the agents. Therefore, we expect that the fitness of any one 

candidate will be subject to a certain amount of noise, and that 

good candidates should not only display high fitness, but 

display high fitness reliably.  

Figure 5 shows the results of the HoF from the same GA 

run. Note that despite the stochastic fluctuations in the middle 

generations, there is a clear improvement from beginning to 

end in the running of this GA, and that the worst performance 

of the final generation’s top candidate is better than the best 

performance of the first generation’s top candidate.  

This shows that the GA was implicitly selecting for 

reliability all along, even though the candidates were only re-

tested at the end of the simulation. It would be possible to test 

for reliability at each generation, but the time to complete one 

GA run would grow linearly with the number of repetitions 

required – see [29] and [30] for a good discussion of the 

tradeoffs in using repeated fitness evaluations for noisy fitness 

functions – and unnecessarily slow down the algorithm.  

Because clones and near clones of candidates were being 

carried over into future generations, the reliability testing was 

essentially performed across generations, and the success is 

shown in the HoF results which test for reliability within 

generations. 

Flocking with Parameter Constraints 
Applying the GA to simple flocking may have been “too 

easy” for the algorithm, so we decided to test the algorithm 

with a new constraint,    ; that is, the Alignment and 

Random factors will be equal. This is because, for the case of 

flocking, A and R counteract one another. In the original 

COARM formulation, R was meant to model system limitations 

such as noise in sensors or error in motor output [16], so we use 

it here to constrain a designer. Any relative importance placed 

on Alignment (which in practice would require more costly and 

precise sensors and actuators) will be offset with a Randomness 

penalty (representing the reduced performance of the rest of the 

robot). 

 

 

Figure 6: A = R Fitness Evolution 

 

Figure 7: A = R average parameter evolution 

 

Figure 8: A = R Hall of Fame 

It can be seen from these results that the flocking task with 

A = R is a much more difficult problem to solve than pure 

flocking. While improvement was shown in the top and average 

fitness measurements over time, the HoF results imply that very 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45

Generation

Minimum Fitness

Average Fitness

Maximum Fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50

Top Fitness

Average Fitness

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45

C

O

A

R

M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45

Generation

Minimum Fitness

Average Fitness

Maximum Fitness



 7 Copyright © 2013 by ASME 

 

few candidates were found that could give reliably high results. 

In the case of Figure 8, the best candidates’ average fitness 

value was raised from 0.4 to 0.7, but the spread between the 

best and worst of the repeated evaluation remained stubbornly 

at 0.5. Qualitatively similar results were found during other GA 

runs. 

The strategy that was evolved in this case was to maximize 

momentum, while keeping cohesion and avoidance within an 

order of magnitude. The C/O ratio could not become too small 

(~0.2) or too large (~5) so that groups could form. With a high 

M value acting as a sort of memory for past movements, the 

small, steady influence toward flocking from the alignment 

behavior could build up over time as the randomness canceled 

itself out. Over time a cohesive and aligned flock can be 

formed despite the presence of randomness.   

Exploration 
In this run, an 11-member CSO system was allowed to 

evolve behavior that corresponded to exploration. The mCells 

were initially placed in a straight line and allowed to move 

around the field, “discovering” locations on a 100 x 100 grid 

and turning the discovered locations blue. The fitness function 

was simply the portion of the field discovered after 200 time 

steps, expressed as a decimal value from 0 to 1. 

 

 

Figure 9: Typical exploration fitness evolution 

 

Figure 10: Typical exploration average COARM parameter 

evolution 

It can be seen (Figure 9, Figure 10)  that the typical GA for 

exploration reached a qualitatively steady solution after 

approximately 20 generations, with most of the dramatic 

changes occurring within the first 10 generations. This pattern 

typically held for the exploration problem. 

According to Figure 10, the O and M (avoidance and 

momentum) parameters came to dominate by the end of the GA 

run. This happened in the majority of flocking GA’s, and 

intuitively fits what a human designer might try if he were 

asked to assign a set of parameters to accomplish exploration. 

The high O and M predictably lead to the cells spreading out 

quickly in all directions and continuing in a set direction until 

they sense another cell. Then the two colliding cells turn and 

travel in other directions. This allows cells to work in parallel to 

discover new territory, and generally stay out of one another’s 

way. 

 

 

Figure 11: "Intuitive" case with high O and M gives middling 

results 

As is often the case in emergent systems, human intuition 

fails to create optimal local rules [24]. This intuitive setup 

performs well (fitness score in the 0.8 to 0.9 range), but 

improvement can be found using the GA.  

At the end of certain GA runs, the dominant parameters 

were Alignment and Momentum, rather than Avoidance and 

Momentum. Intuitively, it would seem that such high A values 

would lead to a single flock which was too cohesive and thus 

could not send individual cells to explore new territory, but the 

“clever” output of the algorithm actually resulted in precisely 

balanced parameters whose C/O ratio, along with high 

Alignment, caused an emergent fanning and sweeping 
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Figure 12: High A and M values with a proper C/O ratio produce 

fanning and sweeping 

 

Figure 13: Fitness evolution in fanning GA 

 

Figure 14: Emergent spreading and sweeping behavior 

Compared to the GA’s which discovered high O and M 

behavior, the high A and M behavior discovers approximately 

an extra 10% of the field. Due to the stochastic nature of the 

algorithm, it is impossible to determine a priori which set of 

parameters a GA will converge to, if it converges at all. This is 

why it is important to run multiple GA’s on one problem, or 

insert extra GA steps to ensure a diverse population is 

maintained. Note also that this sweeping behavior is dependent 

on the initial conditions of the flock (all in a straight line, facing 

up), and should not be expected to arise in a population with a 

different initial configuration.  

If we can expect this initial condition in a real-world 

deployment of exploratory robots, our findings are valid and 

fan/sweep is a useful emergent strategy for exploration. 

However, if that assumption is false, then we have fallen for the 

common trap of optimizing to a specific condition and fitness 

function, rather than a general design intent [19]. It is quite 

possible that in other initial configuration, other emergent 

problem-solving patterns would be evolved. 

Percentage Exploration 
Encouraged by the results of the exploration GA, we 

attempted to further challenge the algorithm by selecting for 

parameter sets that would discover only a certain portion of the 

field within the allotted amount of time (200 simulation time 

steps). This forces the system to exhibit some sort of restraint or 

throttling, as the previous results showed that full-on 

exploration can reliably discover at least 85% of the field. The 

target exploration values range from 0% to 75%. 

The search for no exploration (0%) predictably led to high-

C behavior which prohibited any flockers from leaving the 

initial pack. This clustering behavior is sometimes discussed in 

the literature as a desirable behavior in self-organizing systems 

[31], but here it evolves when the system requirements are to 

not explore the system’s surroundings. 

 

 

Figure 15: Fitness evolution for 0% exploration 
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Figure 16: Parameter evolution for 0% exploration 

This pattern was repeated for every run of the GA, and 

there was almost always at least one candidate randomly 

discovered in the first generation which achieved the maximum 

possible fitness. These figures are only included to illustrate the 

point that sometimes a task is actually too simple to justify the 

computational cost of a GA, and a designer must take these 

time tradeoffs into account. 

 

 

Figure 17: High O strategy for 25% exploration 

The search for 25% exploration resulted in more 

interesting results. These GA’s tended to converge to one of two 

behavioral profiles. In Figure 17, a high-O, low-M behavioral 

profile was evolved. The strategy for this flock was to 

immediately disperse so that they were outside of one another’s 

field of vision. Then, once they were “on an island,” the 

random behavior dominated, and they flitted about (R and M 

are the only behaviors that act when a flocker has no 

neighbors), uncovering just enough new territory to move the 

system near 25%. 

Another typical evolved behavioral profile is given in 

Figure 18. Here we see high-C/O, high-A behavior, which 

causes tightly packed, single-file, finger-like flocks to emerge. 

The high C/O ratio causes the tight packing, and the high A 

value ensures that the most stable configurations are long 

trains. These flocks do not venture far from the initial 

configuration, but extend out like a pseudopod and explore only 

enough to reliably uncover 25% of the field’s territory within 

200 steps. 

 

Figure 18: High C/O and high A strategy for 25% exploration 

Again we see that a GA can converge to one of two (or 

more) qualitatively different strategies. The first strategy (high-

O, low-M) is dependent on the agents’ field of vision, which we 

fixed for all experiments. If the field of vision were larger, we 

would expect this strategy to uncover too much of the field, as 

the agents would pass the 25% mark before their random 

behavior came to dominate. The second behavior profile (high 

C/O, high-A) was dependent on the number of time-steps that 

the system was allowed, as the agents were still active at the 

200
th

 step, and would have discovered too much of the field if 

allowed to run further. These results remind us of the 

importance of considering fixed variables in the agents’ 

capabilities as well as the translation from simulation to reality 

in the formation of the fitness function. 

The GA that selected for 50% exploration gave results 

typically resembling the following figures: 

 

 

Figure 19: Fitness evolution for 50% exploration 
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Figure 20: Parameter evolution for 50% exploration 

The high-A, high-M behavior allowed a single flock to 

form and simply travel ahead while maintaining a roughly 

constant separation distance. This is because in the flock’s 

initial state, the agents’ vision covers about half of the 

horizontal row. If the flockers maintain this formation and 

simply sweep the field once, they will reliably uncover about 

50% of the available field. The end result of this behavior is 

shown in Figure 21. 

 

 

Figure 21: Flock maintenance behavior for 50% exploration 

 Certain 50% GA’s evolved a high-O strategy, similar to 

Figure 17 for 25% exploration, but with a higher Momentum 

value so that the flock would spread out more before the 

random behavior dominated. 

The results for 75% exploration are shown in the following 

figures: 

 

Figure 22: Fitness evolution for 75% exploration 

 

Figure 23: Parameter evolution for 75% exploration 

This strategy (high-M, high O/C ratio) was found in all 

runs of the GA for this amount of exploration. It results in 

system behavior of spreading out quickly, and then traveling in 

straight lines while avoiding neighbors, similar to the behavior 

evolved in Figure 10 for 100% exploration. 

CONCLUSIONS AND FUTURE WORK 
We have shown that a simple genetic algorithm is capable 

of tuning the parameters of a CSO system so that its emergent 

behavior corresponds to the intent of the designer. For simple 

tasks, such as unrestricted flocking or clustering, hand-tuned 

parameters performed well, and the use of GA was not shown 

to be justified, but for more complicated tasks, such as flocking 

with limited sensory information, or exploration within a set 

amount of time, a GA produced results that were superior to 

what human intuition would have suggested. 

Out of a search space that contained             

possible parameter combinations, no more than     

simulations were carried out during any run of the GA, and in 

every run, candidates of high fitness were discovered.
 

We wish to find more difficult tasks to challenge our CSO 

further. It will be simple to apply the GA developed here to 

other simulations in the NetLogo environment. Given a set of 

parameters, a numerical encoding, and a global fitness function, 

this approach can be applied to any NetLogo simulation. 

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45

Generation

C

O

A

R

M

t = 100 t = 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50

Generation

Top Fitness

Average Fitness

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45

Generation

C

O

A

R

M



 11 Copyright © 2013 by ASME 

 

The genetic algorithm itself could be made more 

sophisticated using techniques demonstrated in the literature in 

the last few decades. Like any optimization algorithm, GA is a 

tool to be hacked according to the user’s unique situation. Pure 

adherence to the GA’s biological inspiration makes for 

interesting GA research, but many techniques, some even 

included in the seminal texts on GA [32], [17], are available to 

the user of GA to improve the algorithm and ameliorate some 

potential downfalls of the stochastic optimization process. The 

GA could also work at a higher level on the self-organizing 

rules. Currently, the 5 behaviors of the mCells are defined, and 

the GA only optimizes the relative weights of those behaviors.  

It may be possible via evolutionary optimization to evolve the 

local rules themselves, in addition to their relative importance.  

For some tasks, different runs of the GA would produce 

qualitatively different emergent behavior in the final 

generations. For example, for the exploration task, some GA 

runs would converge to high avoidance behavior sending agents 

in divergent particle-like trajectories, while other runs would 

converge to the high Alignment and high Momentum sweeping 

behavior. It would be useful to develop a means of identifying 

these different ways of achieving the same goal (both emergent 

behaviors had high fitness) so that they can be preserved for 

later study and one or more are not lost in the churn of the GA 

as its population reaches homogeneity. 

Of course the final goal is to create physical CSO systems 

whose emergent tasks are useful for the general consumer. 

Work is underway in our laboratory to embed small iRobots 

with the self-organizing rules described in this paper to test 

their emergent behavior when limited by actual hardware 

constraints. 
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