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ABSTRACT 
Technology development is facing increased challenges as 

engineers begin to tackle the problem domains with greater 

uncertainty. Future engineered systems must be able to function 

in unpredictable environments such as deep ocean, rough 

terrain, and outer space while performing uncertain tasks like 

hazardous waste cleanup and search-and-rescue missions. 

Furthermore, the increasing size of engineered systems 

introduces unplanned interdependencies of components. 

Complex systems can provide the adaptability in order to 

manage uncertainties that traditional systems cannot. As the 

uncertainty of the problem domain increases, engineering 

design methods must be advanced in order to properly address 

the changing needs and constraints. This paper proposes a new 

approach inspired by natural phenomena in order to extend the 

design envelope towards an artificial nature. This approach 

broadens the traditional design and re-design methods by 

utilizing the self-organization process exhibited in natural 

systems. From a design point of view, the critical question is: 

how can system adaptability be designed into complex systems 

based only on local interactions between (many) simple cells? 

The goal is to design systems that excel in hostile and 

unpredictable environments where it is impossible for the 

designer to conceptualize every possible contingency. The key 

is to focus on the interactions and behaviors of the system. In 

this paper, we suggest a meta-behavior model for cellular self-

organization systems that can be used as a design approach to 

guide emergent function capacities. 

INTRODUCTION 
Designing complex systems has become a major challenge 

and research topic.  In many engineering tasks and mission 

situations, a designer often cannot predict all possible functional 

requirements and operational situations that may be needed and 

encountered by the system being designed. Examples of such 

application domains include mine sweeping, natural disaster 

search & rescue, planetary & ocean exploration, and missile 

flocking. The common theme within these applications is the 

uncertainty from unforeseen circumstances in either the 

operation environment or in the required functionality. 

Environment exploration is a major application of interest 

because unknown environments such as space planetary surface 

missions and the deep ocean are beyond the reach of simple 

human exploration.  

To increase system adaptability, various multi-agent system 

approaches have been proposed, taking advantages of the 

flexibility and reliability of many interacting agents. An agent is 

an entity or computational process that senses the environment 

and acts on it. Flexible multi-agent systems actively alter their 

overall structure and inter-relationships, translating into great 

versatility. An approach to implementing these systems builds 

upon complex systems theory utilizing self-organization and 

emergence. These concepts are inspired by nature as engineers 

strive to take advantage of the robustness and adaptability 

exhibited in natural systems such as cellular biology, fish 

schooling, and locust swarms. 

Complexity raises from the multitude of interactions and 

reactions that exist in a many entity system. Self-organization is 

the idea that the many individuals will organize into societies 

based only on local rules and local communication. It is large 

scale organization through limited local interactions of the 
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constituent components. Emergence is the principle that 

unintuitive or unexpected global patterns will observably 

materialize from the interactions in the system. Self-

organization and emergent behavior have been popular research 

topics in the complex systems field and many others including 

biology, thermodynamics, computer science, sociology, and 

economy [1-6]. Self-organizing systems can accomplish tasks 

with simple individual behavior and components, requiring 

simple programming and simple component architecture. This 

not only decreases the manufacturing expense but eases 

hardware development and maintenance. Furthermore, self-

organizing systems rely on local processes and distributed 

control, leading to high level theoretical scalability. 

However, the traditional engineering design process has not 

been well-adjusted to design these complex, self-organizing 

systems. While designers realize we must take a different 

approach towards complexity, so far, design has only addressed 

complicated systems. In order to take the design methodology 

one stop closer towards truly designing complex systems, we 

propose a cellular self-organizing (CSO) approach to 

developing complex adaptive systems. In the CSO framework, 

we consider a system composed of multiple mechanical (e.g., 

robotic) cells, which self-organize themselves through 

individual actions and mutual interactions. To deepen our 

understanding and provide design methods for the development 

of CSO systems, in this paper, we introduce a design approach 

focusing on the relationship between local agent interactions 

and emergent collective system behavior. The objective is to 

extend the envelope of design processes into the realm of non-

deterministic design problems and solutions. 

What are the advantages of CSO systems that make them 

compelling solutions? The critical advantage of CSO multi-

agent systems is the adaptability, i.e., the ability to persist 

through external and internal changes. The natural world 

exhibits many biological examples of adaptive systems that 

robustly adapt to both the external environment and to the 

internal changes. In schools of fish, many fish are capable of 

moving as a single entity while they disperse to avoid predators 

and obstacles but quickly gather to reform the school. This 

collective behavior results from each fish applying a few simple 

behavioral rules of separation and movement. At a deeper 

micro-level, cells combine to form complex structures based on 

DNA information. In addition, in the human immune system, 

white blood cells continuously patrol and protect in a very 

distributed way. By relying on vast numbers of resource-limited 

and unreliable cells, cellular systems achieve reliability even in 

cell death, varying scale, and uncompromising environments.  

Utilizing complex systems in the creation of artificial 

systems is inspired by the perseverance of natural systems. In 

the many complex self-organizing natural systems as discussed, 

many emergent advantages are exhibited. While it is impossible 

to make a perfect system such that the system is better than 

every other system in every way, there are many general 

advantages associated to the adaptability of CSO systems. 

 

1. Versatility & Multi-functionality – The key advantage is 

the ability to restructure, thus a variety of forms can be 

realized. This allows the system to dynamically respond to 

multiple and changing tasks. Some tasks require many 

different functions, especially when these functions may 

not all be initially foreseen. 

2. Reliability –The large number of similar agents provides 

redundancy such that the failure of a single cell does not 

destroy the effectiveness of the system. In addition, with 

distributed control, there is no single central command unit 

failure that will cause critical catastrophe for the system. 

Another means by which complex systems maintain 

robustness has been termed degeneracy, which is multiple 

processes with identical consequences [7].  Basically, the 

ability to do the same thing with multiple processes for 

achieving the same function makes it less likely that a 

single type of disruption can prevent functionality. 

3. Evolvability - The ability to grow and develop completely 

new functionality. Once the system is given the 

empowerment to create new forms and functionality, it will 

become truly adaptable to unperceived circumstances as 

the system will actually grow and increase its functional 

space after deployment. 

Furthermore, CSO systems are generally scalable and can 

be inexpensive to manufacture. They are ideally scalability as a 

consequence that most processes are performed locally. 

Because these systems are designed around the concept of 

massive population and distribution, they are theoretically 

scalable from medium teams to very large teams; however, 

realistically, there will be a lower and upper limitation to the 

resolution (population size) of the system. 

Due to the possibly simple architecture of each individual 

cell, the cost of manufacturing is kept to a minimum. In 

addition, since each cell does not require abundant processing, 

so complex software is not required.  Agents only rely on a 

local neighborhood of communication, so high power and high 

bandwidth communication hardware does not need to be 

integrated 

In the rest of the paper, we first review the related work. 

After that we discuss the new way of thinking for complex 

systems design. We then outline the CSO design process using 

behavior based models. Finally a simple example is presented. 

Future work and concluding remarks are described in the last 

section. 

RELATED WORK 
Bringing the natural processes of self-organization and 

emergence to multi-agent system is not a new idea. Self-

organization has been used to study many natural systems such 

as chemical pattern formation, traffic jams, termites, and ant 

social behavior [8-11]. Much engineering research has focused 

on copying structures and behaviors of natural systems. Many 
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of the observed natural techniques and principles are applied to 

artificial systems. One common example in mobile robotics is 

the application of ant-like behaviors such as stigmergy [8, 11]. 

Reynold’s Boids is a well recognized example of 

emergence in swarms where the collective complexity results 

from the local interaction of individual agents [12]. Each agent 

follows three simple rules of interaction: separation, velocity 

matching, and flock centering. Mataric developed learning in 

group environments by using a set of basic behaviors abstracted 

from the Boids framework [13]. The behaviors served as 

building blocks for synthesizing and analyzing learning group 

behaviors. Couzin’s group also uses a method extended from 

the Boids framework in order to study movements in real 

collective animal systems [14]. By using a parametric matching 

approach, they try to find the true characterization of collective 

motion in animal groups. 

Many research groups have developed different techniques 

for multi-agent systems to achieve natural-like processes. Stoy 

and Nagpal introduced a distributed approach where 

information is communicated in the form of directional 

gradients, which direct elements towards empty locations as 

defined by a CAD represented desired shape [15]. However, 

this method constrain the system to preconceived structures 

dependent upon human understanding and creativity. In another 

approach, Nagpal focuses on the construction process itself 

developing a language for instructing a sheet of identically-

programmed agents to assemble themselves into a 

predetermined global shape [16]. The process is sequenced, 

triggered, and communicated through the cells of the sheet by 

means of a gradient message. 

Another distributed communication method for task 

execution is the bio-inspired Digital Hormone Model, DHM 

[17]. With DHM, each component of a swarm can communicate 

via hormones and execute local actions via receptors. The 

method is based on reactive responses such that implemented 

strategies are a collection of preprogrammed condition-action 

pairs. Similar to Nagpal’s approach, local rules are defined 

around specific individual reactions from a communication 

trigger as oppose to interaction and reaction between local 

neighbors. 

While all of these techniques and systems have been 

important to advancing multi-agent swarm systems, they have 

all centered around specific system developments without 

specifically addressing the general engineering design 

challenge. This paper aims to progress our design understanding 

of cellular, self-organizing systems. 

Methodologies in Design Theory, such as Axiomatic 

Design [18] and General Design Theory [19], have a different 

focus than traditional science theory, which analytically 

observes nature in order to discover and describe the natural 

behaviors [20]. Design Theory centers on processes humans can 

use to produce functional systems. Figure 1 shows the 

Systematic Design [21] process, which was developed through 

years of observing the natural engineering design practice 

where design is approached from a systematic and practical 

point of view. It looks not only at the defined problem but also 

at the surrounding environment. The design process can be 

divided into four main steps: the planning and clarifying the 

task phase, the conceptual design phase, the embodiment design 

phase, and the detail design phase. This is all followed by the 

replication and distribution of a single solution. 

The classical approaches in Design Theory creates a good 

design when the designer can predict and identify all the future 

needs and environments, thus eliminating the unexpected from 

the process. The performance of the system predominantly 

depends on the knowledge and innovation of the designer since 

the designer will absolutely determine the system form and 

functionality. The classical design process begins with an exact 

specification of the requirements of the system. This requires 

the task environment and the function to be well-defined. The 

needs are formulated as thoroughly as possible on the 

assumption that the final intended design will never work 

outside these needs and constraints. 

After this design specification, the next step is often to 

perform a hierarchical functional break-down which will be 

followed by piece-by-piece design [22]. Of course, there may 

be some zig-zag in the design specification and functional 

solution as the conceptual design becomes more complete and 

detailed [18]. However, regardless of the early zig-zag 

evolution, the end-goal is to generate a single solution that will 

 

Figure 1: Example Parametric Profile 
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be precisely replicated such that users can expect an exact form 

and functionality, even if most engineers admit that many 

equally good solutions can exist. 

This classical engineering process has produced most of the 

current technological advances that have been realized 

including space shuttles and microprocessors. While these 

systems definitely have “complexity” challenges, they have only 

been designed as “complicated” systems. As Braha [22] and 

Sumpter [23] point out, ‘complicated’ does not equal ‘complex.’ 

Scientific complexity arises from the numerous actions and 

reactions that happen in the inter-relationships of the 

components. This complexity gives rise to a whole system that 

is much more than simply the additive sum of the component 

parts. The traditional approaches attempt to indirectly consider 

complexity by simplifying the system and stripping the complex 

nature of the problem. By stripping the inherent complexity of 

the system, the system loses the advantages gained through the 

complexity. Moreover, by attempting to impose a top-down 

approach, the innovative patterns and structures that arise from 

emergence would be suppressed since only human-conceived 

global structures would be enforced.  

Specialized robots will likely always be better at their 

specific actions, but for tasks that require a variety of actions, 

the specialized robots will not be able to complete the mission. 

For a given set of tasks, robot designers can consider the known 

factors during the design phase in order to satisfy the task 

requirements; however, it is difficult and sometimes impossible 

to design a single robot that can meet every task requirement for 

some applications. Moreover, in many missions, the designer 

often cannot foresee all environments and requirements that are 

possible and necessary. Research in the design field have 

recognized the need to develop design methodologies to 

address design of complex systems [22, 24], but few approaches 

have been fully outlined. 

DIFFICULTY IN DESIGNING CSO SYSTEMS 
While natural systems have had the luxury of evolution 

over millions of years, in the engineering world, achieving 

bottom-up adaptability by design represents a major challenge. 

With emergence, the designer does not know what will happen. 

One method is to use purely empirical approaches, which 

implement human conceived understandings of natural systems 

into a simulation and then observe the emergent responses. 

However, this strongly relies on trial-and-error and can be 

difficult as an engineering tool. 

Applying traditional processes in the design of complex 

systems runs into difficulties in the first step of planning and 

clarifying the task. Clarification of the task requires defining the 

functional requirements and the problem environment. While 

this process has created systems with complexity, the process 

was not completed under the nature of complexity. Instead, only 

complicated systems were created and complexity is not the 

same as complicated. 

As an example, space shuttles are both a complicated and 

complex system, but the design process in creating the space 

shuttle only looked at the system as a complicated system. A 

space shuttle that has the requirements of making a round-trip 

voyage from earth to mars is very difficult; however, we exactly 

specify the functional need and the environment of operation. 

The challenge holding designers back is not the complexity of 

the system or the environment but the lack of resources like 

technology. In essence, we know how to do it, but the 

technology is not yet there. 

Complexity is based on the difficulty to understand the 

relationship and reaction in all the interactions of a many 

component system. As system size grows, many inter-

dependencies in the components unknowingly develop. The 

uncertainty in a design problem sources from the designer's 

inability to understand all of the relationships in the 

environment, target functionality, and system form. Using self-

organizing and emergence rather than explicit design can leave 

the system free to innovate its own solutions. The problems that 

CSO systems will confront are not entirely predictable so all the 

possible solutions cannot be determined or optimized in 

advance. CSO systems must explicitly leave room for 

unpredictable task environments and unforeseen challenges. 

Traditional design relies on a complete knowledge of the 

problem statement, but complex systems are advantageous in 

applications where this knowledge is incomplete. Especially 

because the problem domain cannot be completely specified, 

the functional domain is also uncertain. Traditional design 

methodologies rely on deterministic information, therefore there 

is a gap in the design process between the problem domain and 

finding a solution in the solution domain. 

GAP IN DESIGN KNOWLEDGE 
If a problem could be one-hundred percent perfectly 

specified and the solution can be achieved from completely 

understood technologies, then a computational automatic 

process can be applied to define the solution. Engineers are 

constantly pushing this knowledge envelope as more and more 

processes become automatic. Designers step in once there is at 

least a small amount of uncertainty and knowledge such that a 

choice must be intuitively selected from several possible 

solutions based on a top-down functional objective. 

Nature works in the completely opposite way. There are 

vast amounts of simple building blocks that react to local 

environments and interactions to form emergent structures. 

Besides survival, there is no specific function or structure 

enforced by a functional break-down and hierarchy. As humans 

study and observe nature, the exact behaviors, motivations, and 

processes of the different natural systems are difficult to 

identify and replicate. Even after mimicking some systems, 

there's question in how perfect the knowledge is about the 

system. So far, we can only observe and copy natural systems. 

Design of CSO systems will end up falling somewhere in 

between the two extremes of human computational automation 
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and natural behaviors. With modular-reconfigurable robotics, 

computer scientists attempt to optimize specific system 

configurations. Ecologists and evolutionary biologists study 

natural systems with the objective to understand the exact 

behaviors and processes. Design of CSO systems will use 

nature-inspired approaches to develop artificial systems but 

must overcome the solvability challenge of the inherent massive 

dependencies. The CSO approaches will address these issues 

and extend the envelope of design methodologies deeper 

towards natural methods. 

 

 

Figure 2: Design Knowledge Envelopes 

 

In the early phases of design, designers already realize that 

they lack some knowledge or there is uncertainty in their 

knowledge, whether it be in the task environment, customer 

requirements, functional specification, available technologies, 

etc. In general, there are 4 main zones exhibited in figure 2. 

1. Certain You Know: This is the information that you are 

absolutely certain you do know. This is the space that 

Designers tend to work in, exactly specifying details such 

as functional requirements, environmental constraints, and 

solution form.  

2. Certain You Don't Know: This is information that you are 

absolutely certain you do not know about. Designers often 

put this case as a fifty-fifty chance and tend to avoid this 

space. 

3. Uncertain You Don't Know: This is the realm of nature and 

the abyss of the unknown. Current scientific knowledge 

does not know the vastness of the world and the 

information out there. Engineers and scientists cannot be 

certain how much they do not know. Natural systems fall 

into this space. Human knowledge is repeatedly 

discovering new details about nature that was previously 

unknown. A prime example is the quantum mechanics 

breakthrough after Newtonian mechanics. 

4. Uncertain You Know: This space is really the space of 

things the designer knows but may have not even realized. 

The argument is that this space is related to intuition, 

creativity, and experience. Intuition is basically not 

knowing what we do know. Creatively new and practical 

solutions are unproven ideas we knew but had not 

previously realized. It may work more on sudden instinct 

rather than rigorous processing. 

Regardless of how much the designer admits to know or 

not know, in the end, with the traditional design process, the 

designer must make executive decisions specifying an 

assumption of certain knowledge. Stated another way, as 

designers solidify the final design solution, they must make 

final decisions on the assumption that they are certain about 

what they know. They will exactly specify the task environment, 

the functional requirements, the solution form, and the 

functional behavior.  If the system fails outside the specified 

bounds, it is not the designs fault. 

The Demand-Supply Relationship of Complexity 
In the design process, the demand is the design problem 

and the supply is the design solution. As Ashby points out with 

the Law of Requisite Variety, "variety absorbs variety, defines 

the minimum number of states necessary for a controller to 

control a system of a given number of states" [25]. CSO 

approaches will develop complex solutions that offer increased 

functional capacity, although at possibly decreased efficiency, 

and thus should be used for matching problem demands. 

 

 

Figure 3: Problem Demand Curve 

The above figure displays two example problem demands 

curves. The solid curve represents a demand that is peaked at 

one point in the problem space. There is absolute certainty 

about the needs of the problem and it is at one known point. 

The designer knows exactly the necessary function, and the 

problem can be specified with absolute certainty. This matches 

the sharp top-down breakdown in conventional design. On the 

other hand, the dotted line more closely exhibits natural 

problems. We have a guess at what the problem is but we really 

do not know everything about it. The design demand 

represented by the dotted line curve shows an uncertainty of the 

required function. 

A similar and parallel figure can represent the supply side. 

With traditional design, designers take the specific problem and 

endeavor to create a product that performs a single solution at a 

very high certainty. The dotted line represents a system that 

might have many forms and perform many functions. There is 
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wider functional capacity range with many run-time 

possibilities, but less certainty in the specific function. Note that 

the y-axis does not represent efficiency of the solution, although 

there may be some correlation with efficacy and the certainty in 

the design solution, which can be explored in future research. 

 

 

Figure 4: Solution Supply Curve 

Ideally, designers could create systems with both a wide 

and tall supply curve where the solution could achieve many 

solution instances with a high certainty. However, design 

research can only take small steps in reaching this ideal. The 

CSO processes takes this step with objective solution curves 

lying in between the two extremes represented in figure 5. 

Essentially, CSO prepares an emergent capacity as oppose to 

designing one specific function capacity. This does trades some 

determinism for a variety of functionality. CSO solutions have 

an increased function space in order to fulfill demands with 

uncertain space. Originally, we have no idea what might 

emerge, but with the CSO approach, we will guide emergence 

so we can at least know a little. 

 

 

Figure 5: CSO Demand Supply Medium 

DESIGNING CELLULAR SELF-ORGANIZING 

SYSTEMS 
Complex systems are expected to excel for problems where 

the task environment or the functional requirements are not 

completely known. The CSO approach recognizes that to design 

for uncertainty in the problem, there must be uncertainty in the 

solution. CSO explicitly designs for unpredictable task 

environments and unforeseen challenges. The specific 

uncertainty in the solution consequences in the adaptability 

carried by CSO systems. This adaptability is a direct trade-off 

with determinism. The designer must initially accept that not all 

possible solutions will be humanly determined and even 

appreciate the inherent knowledge limitations. The system will 

be engineered with partial ignorance [22]. 

 

 

Figure 6: Extending the Envelope of Design Processes 

Exhibited in the above figure, the CSO approach will push 

the envelope of design techniques further into the spectrum and 

closer towards natural processes. There is a realization that the 

designer does not know what the possible solution forms might 

be and plans to take advantage of the natural process of self-

organization in order to allow solutions to emerge. 

Behavioral Based Design 
Behaviors are how a cell acts given the observed 

environment and current cell state. The CSO approach uses 

Behavioral Based Design (BBD) rather than focusing on form. 

The challenge in the CSO approach is to achieve specific 

system functionality rather than simply allowing and observing 

some global behavior to emerge. Many other solutions for 

multi-agent robotic systems focus on creating specific forms, 

and those forms translate to functionality. The system function 

is defined by the overall final configuration of the cells where 

the human designer constructs a target configuration given some 

functional requirement set. Then a transformation algorithm 

provides the step process to obtain the target configuration. 

However, in this approach, only the collective system behavior 

is significant, not the specific target configuration. There are no 

predetermined structures as long as the collective system can 

achieve the desired function. In actuality, it is more likely that 

the system will not maintain a consistent specific structure. In 

BBD, the collective behavior will translate into the end system 

functionality. 

In BBD, the functionality results from the collective system 

behavior. In fact, the global system form is likely to be 

amorphous in a sense that it may be constantly changing. This 

amorphous form will emerge from the self-organizing behaviors 

of the constituent components. 

Restricting system solutions to specific forms is not 

conducive of the self-organizing design approach. In addition, it 

enforces human conceived forms thus constraining the system 

functionality to human conceived solutions, which contradicts 
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the spirit of CSO design. The particular forms are specialized 

solutions for a single function, and in the end, nature will punish 

the specialist that cannot adapt. Furthermore, by focusing on the 

behaviors of the system, the designer can hide low-level control 

details and concentrate on the high-end design problem. 

Specifically, designers can focus on the interactive 

behavior between cells. Keying in on interaction brings the 

designer closer to the source of complexity, and thus the source 

of adaptability. This approach does not look for a single 

solution form but centers on the component interactions. The 

pooled interactions between the individual cells collectively 

result in the global behavior. Even with simple actions and 

simple rules of interactions, unintuitive and complicated global 

patterns emerge. 

In our Behavioral Model (BM), we breakdown and isolate 

simple component behaviors. Example component behaviors 

are attraction and repulsion. These component behaviors can 

then be paramerized and linearly added. This sum results in the 

end action of the cell. These relationships are shown in the 

following equations. 

 

   mBBBBBM ,...,, 21  

 

)()( 2211 imm aactionBWBWBWBMf    

The parameter coefficient weights, Wi, lay the basis for the 

Meta-Interaction Model (MIM). 

The Meta-Interaction Model 
This CSO approach utilizes the Meta-Interaction Model 

(MIM) [26], which focuses on the intrinsic property of 

complexity: interaction. The MIM is abstracted on top of the 

BM through the variable parameters. The implication of using 

the MIM approach is the introduction of a new design space 

based on the parameterized behaviors. This design space 

consists of tunable variables that controls the behavior of the 

system and it connects behavior to emergent function capacity. 

MIM hinges on the argument that collectively intelligent 

behavior in a decentralized multi-agent system can occur from 

only local interactions, based on simple rules, between simple 

agents. It is concerned with guiding the emergent function 

capacity as oppose to precisely determining a single function 

capability. The designer must focus on designing the context of 

the local interactions between components rather than only on 

the individual functions. This combines top-down design with 

bottom-up self-organization. 

A MIM has been developed for the extended-Boids model 

[12], COARM, which uses the simple behaviors of cohesion, 

avoidance, alignment, momentum, and randomness [26]. In the 

equation below, the COARM behavior set is multiplied by the 

parameter matrix and linearly combined. This results in the 

oriented function capacity. 
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Each row represents one parameter profile leading to one 

function capacity. The following figure exhibits an example 

visualization of a COARM profile with uniform parameter 

weights. 

 

 

Figure 7: COARM Paramter Visualization 

The trends and relationships in the parameter matrix are 

more important than specifying absolute numbers because at 

this point, we can only guide expected capacities as oppose to 

defining specific capabilities. The goal is to orient emergence 

so that we have some knowledge over what might happen. 

CSO Design: Three Levels of Abstraction 
The first step is still to plan and clarify the task. The 

difference is that the CSO-MIM process does not fully specify 

the environment and task requirements. Designers are still far 

from achieving comprehensively multi-functional and adaptive 

systems, but the CSO-MIM approach only calls for general task 

environment type. The designer would know of some expected 

functions and thus would identify certain functional capacities 

that might be desirable. 

After the planning and clarifying task, there are three levels 

of abstraction to develop. The next abstraction level to develop 

is the individual cell model. This level of abstraction is still 

compatible with traditional design. This level defines the 

individual cells that will be used in the CSO system. The 

individual cell model will layout the scope of possible 

behavioral sets. Cells might be software agents, sensor nodes, or 

biological organisms. The COARM behavior set requires only a 

simple mechanical cell that can move in 2-dimensions. 

 



 8 Copyright © 2012 by ASME 

 

 

Figure 8: Meta-Interaction Model Process 

The next step is to develop the Behavioral Model (BM) 

consisting of principal behaviors. The designer may pick 

behavioral models from previous experiences or develop new 

interaction sets. The designer has already accepted that the 

specific end behavior of the global solution will not be exactly 

defined, but using experience and knowledge can identify a set 

of local behavioral interactions. Example behaviors might be 

physical, communication and information interactions, or even 

learning actions. The COARM model is defined upon spatial 

movements. 

And lastly, the Meta-Interaction level assesses the 

relationship trends in the simple interactive behaviors. These 

trends provide a heuristic for the designer to tune the system to 

perform functions. Secondly, they act as a guide for learning 

and evolutionary methods that can be implemented to facilitate 

the growth of the system. Using the insights from the MIM, the 

designer can identify interactive behaviors for different 

functions. Essentially, by controlling parametric variables, the 

system’s mechanical implications can be manipulated. For well-

known and studied systems such as Craig Reynold’s Boids 

interaction model [12], the MIM has already been generally 

solved and developed [26]. 

The CSO approach pushes further into the design spectrum 

towards nature. The input for the design process has been 

relieved of the absolute deterministic constraint only requiring 

general definitions and classes. The output is not a single 

solution form but an amorphous system that can perform many 

functions. With further development, these systems will be able 

to grow and evolve to produce completely new structures and 

optimally specialize for certain tasks and environments. 

It is important to note that the CSO Design Process does 

not eliminate the design engineer. This is not an automatic 

process that can work in the general case. It does not exclude 

the conventional approaches but still relies on the same basis of 

traditional design techniques and theory. It works in conjunction 

with established design approaches because it is a hybrid 

process combining principles from design theory with those 

from self-organization theory. This approach still relies on 

designer capabilities and intuition but not completely as it 

allows room for further natural developments. However, it does 

not reach a fully natural process as that is also not design. 

Natural process are fully reactionary while design approaches 

have specific functional objectives. 

Example Application 
To illustrate these abstract concepts, consider a small 

design example of the task application search-and-surround. 

Search-and-surround applications include hazardous waste 

cleanup, bomb detection and removal, and disaster survival 

rescues. A natural system parallel would be the human immune 

system where white blood cells continuously swarm through the 

body searching for foreign substances to eliminate. Figure 9 

shows a field where a 100 cell system has 5 large target objects 

to surround. 

The CSO system provides many advantages to the search-

and-surround problem. First of all, as the number of agents 

multiplies, it will become impossible for a central commander 

to coordinate the search task for the numerous agents. This 

approach is fully distributed not relying on any central control 

or global information. In addition, the search-and-surround 

applications often occur in hostile and unpredictable 

environments whether in enemy territories, unexplored regions 

of space and deep ocean, or natural disasters like earthquakes 

and storms. The agent groups must be able to adapt to the 

situation without the need for a prior knowledge of the specific 

hazards that might be encountered. Figure 10 outlines the 

context for each level of abstraction as previously discussed. 

 

 

Figure 9: Search-and-Surround with 5 target objects 

The search-and-surround mission requires function 

capacities of exploration and searching. These fall under a 

spatial and movement class of functions. The task will occur in 

a generally open environment they may have some hills and 

dips that create boundary limitations. There may also be 

possible enemy aggressors or other non-hostile entities that also 

exist in the environment. Because of the nature of the 

exploration and searching task, the target location is also 

unknown but only identified after discovery and verification. 
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Planning and Clarifying 
with Uncertainty 

BM 

General Environment 

Definition:  
 Open terrain may have 

hills and dips. 
 Possible enemy 

aggressors 
 Unsure of target location 
 
General Function Class: 
 Movement, self 

propulsion 
 Particle net 
 
Uncertainties: 
 Necessary direction 
 Terrain layout 
 Hostilities 

 

Requirements 
 Search net or separation 

distance 
 
 Continuous movement of 

search 
 
 
 
 Use COARM Interaction 

Model 

CM MIM 

 Simple mechanical cell 
 2-D motion 
 Limited local sensor 
 Senses relative position 

and velocity 
 Sense foreign objects 

(boundaries) 
 Limited long-term 

memory (only MIM 
parameter weights) 

 Preliminary tests and 

simulations 
 Justify working behavior 
 Behavioral heuristics 
 Introduce evolution 

algorithms 
 Finalize 

Figure 10: Search and Surround CSO Design Process 

This task requires the general function of motion. In a 

massive homogeneous system, the cells would be self-

propelling creating a particle net in its exploration. The particle 

net also assists in the surround task as the second-phase task 

requires more than one particle to successfully discover the 

object, not just one. The main uncertainties are the environment 

layout although a generally expected terrain type is given. There 

is a huge uncertainty in the target location. Another uncertainty 

is in not knowing the possible dangers and enemy aggressors 

that might exist. However, the general function class is simply 

self-propelled movement. 

Once the loosely defined requirements have been outlined, 

the designers next task is modeling, with the first phase in 

selecting a behavioral model. The interactive behaviors that 

may be required are maintaining a separation distance to create 

a particle search net and also continuous motion of search. To 

do this, the selection can focus on behaviors of synchronized 

motion and uncertain directions. The COARM model was 

selected and requires a very simple cell form for 

implementation, which aligns with the goals of using simple, 

non-intelligent agents. The intelligence of the system results 

from the combined global behavior. 

And finally, the MIM for the selected BIM can be 

developed. For COARM, this has already been initiated in [26] 

and preliminary insights that outline the heuristic relationships 

were found. This information can be used for later growth 

implementations such as learning and genetic algorithms. As 

shown in [26] the designer can tune the parameter variables in 

order to accomplish the search-and-surround task. 

 

Figure 11: A COARM Profile for Search-and-Surround Task 

As shown in Figure 11, for the search-and-surround task, 

the first function capacity is a combination of synchronized 

continuous motion and search uncertainty. Based on the trends, 

we can take a flocking profile and increase the random behavior 

in order to deal with the search application uncertainty. Phase 2 

requires the function capacity of following. This requires an 

increased cohesion, so the cells requires a profile with greatly 

increased cohesion to the target objects. 

Being able to tune the parameters to manage the system's 

multi-functionality shows the power of the meta-behavior model 

approach. Using the CSO-MIM approach, we can specify the 

top-down directive of search-and-surround but rely on the self-

organizing of the system through behavioral interaction to 

accomplish the task.. 

CONCLUSIONS 
In this paper we discussed a proposal for a CSO design 

approach. Our aim is to formulate this conceptual but practical 

model and validate it by observation of first simulation and then 

experimentation. The goal is to, not only introduce, but solidify 

a new paradigm in design theory toward complex systems and 

to harness the benefits provided by CSO. To make the design 

theory more universal requires bringing together as many 

domains as possible. 

We discussed shifting the paradigm in design in order to 

extend the envelope of the design process towards complexity, a 

more "natural" way. We have presented the conceptual 

framework for the CSO design process. There is a fundamental 

shift from designing specific function capabilities to guiding 

emergent function capacities. With the results, we want to 

achieve a theory of design that is applicable in practice. The 

design process will become less dependent upon the single 

interpretation and capability of a designer but heed determinism 

for the sake of adaptability. 
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The CSO design process is based on the self-organization 

and emergence processes in complex systems. In order to do so, 

it takes a Behavioral Based Design approach and is based on 

interactive behaviors, the fundamental property of complex 

systems. Using the Meta-Interaction Model based on behaviors, 

it aims to explore the space of collective behaviors that may 

achieve mechanical functionality. It also leaves room for growth 

and evolution after system implementation. While this element 

has not been as specifically discussed, the MIM provides design 

information and heuristics that can easily be applied by other 

research in control feedback, evolutionary methods, and 

learning approaches. Future research can combine these 

techniques such that the system can self-discover new behaviors 

and functional capacities. 

Of course, the classical engineering approach may still be 

ideal when the environment can be well-defined along with the 

required function specification. CSO systems excel in complex 

environments containing unforeseeable circumstances because 

engineers cannot predict all the specific possible contingencies 

that may be encountered. CSO systems provide the adaptability 

in order to manage such uncertainties that classical systems 

cannot. On the other hand, CSO systems gain adaptability at the 

compromise of predictable determinism. Pure CSO systems 

may not be the optimal solution towards many problems, and a 

hybrid system combining deterministic hierarchical approaches 

with CSO methods may prove promising for further research. 

The given process already combines hybrid approaches, with 

the cell model still following a traditional design approach. 

This paper has simply moved to extend the envelope of 

design and shift, not just towards artificial intelligence, but 

artificial nature. The CSO design approach may not be the one 

and only approach to extend the envelope, but it is a working 

one.  

This paper is based on the work supported in part by the 

National Science Foundation under Grant No. CMMI-0943997. 
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