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A Cellular Self-Organizing (CSO) approach is proposed for developing adaptive 

mechanical systems. The design of CSO systems however is difficult because the 

global effect emerges from local actions and interactions that can be hard to speci-

fy and control. In order to achieve high level resilience and robustness of CSO 

system and retain the capability of specifying desired global effects, we propose a 

field based regulative control mechanism, called Field based Behavior Regulation 

or FBR. FBR is a real-time, dynamical, distributed mechanism that regulates the 

emergence process for CSO systems to self-organize and self-reconfigure in com-

plex operation environments. FBR characterizes the task environment in terms of 

"fields" and extend the system flexibility and robustness without imposing global 

control over local cells or agents. This paper describes the models of CSO and 

FBR and demonstrates their effectiveness by presenting simulation based case 

studies. 

Introduction 

As human society progresses and becomes more sophisticated, our de-

mand for new ideals, new capabilities, and new environments intensifies, 

resulting in ever increasing complexity of man-made systems, including 

physical systems, technologies, organizations, and social, political and 

economic systems. Complexity has been recognized as an important fea-

ture and mechanism of bio-systems, societal systems and technology de-

velopment processes. However, for engineered systems, the notion of 

complexity often points to unintended, undesirable and must-avoid system 

properties. 

One may note that the increasing complexity of engineered systems 

comes from increasingly complex and highly sophisticated functional re-



 Y. Jin and C. Chen 
 

2 

quirements. For example, increasing demands for performance, safety, 

ease of operation, comfort of ride, and least environmental impact have led 

to today’s complex automobiles. Over the process of product evolution, 

the capabilities or functionalities of the automobile were added incremen-

tally, with special cares being made to make sure that unintended actions 

of, and interactions between, the components be eliminated or at least min-

imized. A major issue with developing complex engineered systems is that 

the sheer number of and sophisticated interdependencies among the system 

components imply uncertainty and unknowns to the engineers, making it 

difficult for them to ensure the valid operation range for the system to sur-

vive its expected lifecycle. 

On the other hand, it is intriguing to consider that the nature "faces" all 

the uncertainties and unknowns and yet the natural systems are "designed" 

to live with these uncertainties and unknowns as an inherent part of their 

capabilities. We observe that human design and natural "design" are very 

distinct from each other: human design is more purpose or function driven 

and takes a top-down approach to avoid possible complexity problems, 

while the nature "design" is arguably less purposeful and follows a bottom-

up approach by making complexity as a "solution" to deal with the arising 

uncertainties and unknowns (Ashby, 1958). The research on system biolo-

gy (Kitano 2002), self-configurable systems (Subramanian and Katz 2000) 

and component-based design (Kopetz 1998) has explored the formation of 

adaptive systems from both natural and man-made perspectives. In our re-

search, we introduce a Cellular and Self-Organizing (CSO) approach to 

building adaptive systems. In this approach, a mechanical system is com-

posed of multiple mechanical cells, which can be either identical (for ho-

mogeneous systems) or distinct (for heterogeneous systems). Further, the 

formation of such systems is based on a set of bottom-up, dynamical and 

self-organized mechanisms. It is fully understood that the CSO approach 

will not be able to compete with the traditional methods in a short term and 

for many applications. However, the paradigm-shift from component-

based to cell-based and from top-down to bottom-up promises an alterna-

tive future for developing complex engineered systems.  

Both multi-agent systems and self-organizing systems have been high-

lighted in many engineering fields, such as computer science, industrial 

engineering, and material science. Much research has been done to inves-

tigate the properties and benefits of such systems, and the ways to build 

them. One critical design research question is: How can a designer connect 

the design of mechanical cells/agents, their interactions with functional 

requirements (or tasks)?  In our research, we propose a field based behav-

ior regulation (FBR) approach as a basis for cells to interact with each 

other and with their task environment. In this approach, a mechanical cell 
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is a sensor-operator unit that can perform a range of actions or behaviors. 

At a given time, a cell's behavior can be self-regulated based on the cell's 

"field position" at that moment. The field position of a cell is determined 

by the task requirements and the environmental situation that are sensible 

by the cell. When a CSO system is composed of multiple mechanical cells, 

at any given time, different cells may perform different or similar behav-

iors. This cellular differentiation is achieved locally through field based 

regulation, unlike conventional modular (Gu et al, 1997, Gershenson et al, 

1999) or component-based (Kopetz, 1998) approaches in which differenti-

ation of components is determined at design time and does not change dur-

ing system operation. 

In the rest of this paper, we first review the related work in Section 2 

and then introduce our CSO (cellular self-organizing) framework in Sec-

tion 3. In Section 4, we present field based behavior regulation (FBR) ap-

proach, and in Section 5 we demonstrate the effectiveness of our approach 

through simulation based case studies. Section 6 draws conclusions and 

points to future research directions. 

Related Work 

Much research has been done to investigate multi-agent and self-

organizing systems and to develop methods for designing such systems. 

Self-organization and emergent behavior as two major features of such 

systems have been popular research topics in the research field of complex 

systems (von Neumann, 1966; Fukuda & Kawauchi, 1990; Weisbuch, 

1991; Bojinov et al, 2000; Butler et all, 2001; Wolfram, 2002; Zouein, 

2009). Self-organization is the large scale organization through the limited 

local interactions of the constituent components.  Emergence represents 

the concept of the patterns, often unpredictable ones, which are exhibited 

in the large scale organization. Holland (1992) and Gell-Mann (1994) ex-

tended the research to non-homogeneous system and pointed out the non-

linearity between local and global which becomes the biggest challenge of 

such systems. To further address the problem, the Game of Life (Garden, 

1970) and more Cellular Automata based fractals have been explored 

(Wolfram, 2002).  

In the field of engineering design, design for adaptability and design of 

reconfigurable systems have been investigated in the past decade. In their 

work focusing on vehicle design, Ferguson and Lewis (2006) introduced a 

method of designing effective reconfigurable systems that focuses on de-

termining how the design variables of a system change, as well as investi-
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gating the stability of a reconfigurable system through the application of a 

state-feedback controller. This method is based on multi-objective optimi-

zation and allows systems to adjust their design variable by dynamically 

optimizing in response to changing conditions. The adaptability of such 

systems is limited by the range of change of the variables and by the pre-

conceivable changing situations. Martin and Ishii (2002) proposed a design 

for variety (DFV) approach that allows quick reconfiguration of products 

but mainly aims to reduce time to market by addressing generational prod-

uct variation. Indices have been developed for generational variance to 

help designers reduce the development time of future evolutionary prod-

ucts (Martin and Ishii, 2002). In addition to developing design methods for 

reconfigurable systems, various reconfigurable robotics have been devel-

oped mostly by computer scientists. Fukuda and Nakagawa (1988) devel-

oped a dynamically reconfigurable robotic system known as DRRS. Unsal 

et al (2001) focused on creating very simplistic i-Cube systems (with cubes 

being able to attached to each other) in order to investigate whether they 

can fully realize the full potential of this class of systems.  PolyBot has 

gone through several updates over the years (Yim et al., 2000, 2002) but 

acquired notoriety by being the first robot that “demonstrated sequentially 

two topologically distinct locomotion modes by self-configuration. 

SuperBot (Shen et al., 2006) is composed of a series of homogeneous 

modules each of which has three joints and three points of connection. 

Control of SuperBot is naturally inspired and achieved through what the 

authors describe as the “hormone” control algorithm (Shen et al., 2002, 

2004; Salemi et al., 2001). 

Bio-mimetic design methods allow designers to identify appropriate 

natural systems or mechanisms from which to draw design inspirations. 

The idea of using DNA and genes to capture genotype of systems is not 

new. Inspired by the nature’s evolution process, genetic algorithm (GA) 

(Goldberg, 1989) and genetic programming (GP) (Koza, 1992) have been 

established to model problems using bit string (GA) or functional tree (GP) 

genes and to solve problems by evolving the best solution(s) from a popu-

lation through reproduction, mutation, recombination, natural selection and 

survival of fitness. This approach has been taken to solve various engineer-

ing problems including design optimization, configuration design, and de-

sign automation (Maher, 2001; Koza, 1992; Fogel et al, 1996; Parmee, 

1997; Bentley, 1999; Bonnie and Malaga, 2000; Lee et al 2001; Koza et al, 

1999; Vajna and Clement, 2002; Fan et al, 2003). In addition to direct en-

coding where genotype codes map to the phenotypes directly, recently re-

searchers have explored indirect coding method, called computational 

embryogeny (Kumar and Bentley, 2000), to evolve rules that build or de-

velop corresponding phenotypes (Yogev and Antonsson, 2007). Although 
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these computational methods have been successfully applied to solve op-

timization problems with specific fitness functions, effectively integrating 

the methods into our proposed CSO systems design and development 

framework remains a key challenge. Aiming to develop machines that can 

replicate and repair themselves, Lipson (2007) and his colleagues (Zyokov 

et al, 2005) investigated and demonstrated autonomous self-replication in 

the context of homogeneously composed systems comprised of cube mod-

ules, and the systems that have the capability if damaged to construct a de-

tached functional copy of its non-functioning self through a technique 

called continuous self-modeling (Bongard et al. 2006).  

Our previous work on CSO generated a design DNA concept and asso-

ciated system formation mechanisms (Zouein, 2008, Jin et al, 2010). This 

research extends the previous research by first expanding the concept of 

design DNA from a static specification to a dynamic and probabilistic rep-

resentation and then introducing a new field based control mechanism to 

utilize the potentials of such systems for increased robustness and resili-

ence. In addition, while most current approaches for multiagent systems 

design requires agents to have a global unique identifiers for cooperation 

and some methods such as DHM (digital hormone model) (Shen et al 

2004) require explicit local interactions, our field based behavior regula-

tion approach allows agents to respond to the field of the task environment 

spontaneously and interact with other cells or agents only implicitly, rather 

than deliberately, as a result of their actions in the task field. 

CSO: A Naturalistic Approach to Design 

The goals of our research on CSO systems are two-fold. First, we aim 

to develop systems that are flexible in responding to various known or un-

known tasks, robust in achieving given tasks under changing environment 

situations, and resilient in dealing with partial system failures.  Secondly, 

we are interested in understanding how nature does "design" and develop-

ing a similar bottom-up and self-organizing based design method for future 

complex engineered systems, i.e., we intent to design the design that our 

CSO systems can carry out by themselves through self-organizing.  

Before introducing the fundamental concepts of our proposed CSO sys-

tems, we first compare engineered systems with natural systems from a de-

sign perspective. As shown in Figure 1, in this comparison, we divide the 

natural systems into two categories, dynamical systems (e.g., planetary 

system) and biological systems (e.g., animals and plants), and the “design 

perspective” is captured by dividing analysis into four levels: 
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 Physical substrate: the physical units that constitute the system; 

 Mechanism: the ways by which the system attain its behavior; 

 Capability: the manifestation of external effects of the system, de-

sired or not; and  

 Adaptation: the ways by which the system changes itself. 

 

Levels 
 

Engineered 

Systems 

Natural Systems 

Dynamical 

Systems 

Biological 

Systems 

Adaptation N/A 
Strange 

attractors (?) 

Genetic  

evolution: Natural 

selection 

Capability 

Function: 

Constrained  

actions 

Dynamics: 

Attractors and 

stability 

Survival:  

Live and 

reproduce 

Mechanism 
Organization of 

Behaviors 

Self- 

organization 

DNA guided self-

organization 

Physical 

Substrate 
Components  

Objects (e.g., 

planets, particles)  
Cells 

 
Figure 1: Comparison of Engineered Systems and Natural Systems 

 
As shown in Figure 1, conventional engineered systems is designed and 

built based on physical components that can be structured in various ways. 

The mechanism is realized by the design based organization of the behav-

iors of the components. The desired functions are achieved through the 

working mechanisms of the organized component behaviors. These sys-

tems cannot change themselves in any explicit or implicit way in response 

to the changes of operation environment, meaning that unconventional 

ways of designing engineered systems is needed to achieve system adapta-

bility.  

Natural dynamical systems are formed based on objects such as planets 

or particles. Their mechanisms are completely self-organized based on the 

relationships, such as gravity, between the objects. While natural dynam-

ical systems do not perform their “functions” per se, they do exhibit their 

“capabilities” by reaching their attractors and maintaining stability around 

these attractors through spontaneous processes of the individual objects. 

Furthermore, the chaotic attractors of dynamical systems can be consid-

ered as the mechanism that can increase the variety of the stable states of 
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the system, hence the richness of strange attractors can be considered as a 

feature of adaptability. On the other hand, one may also consider the land-

scape of all attractors of a dynamical system is determined when the sys-

tem is formed.  

Common to all biological systems, cellular structure is indispensable 

for these systems to grow into complex configuration. Unlike dynamical 

systems where no memory or shared information is present from an ob-

ject’s point of view, each cell in a biological system possesses a “descrip-

tion,” called DNA, of the whole system and is able to interpret this locally 

shared information to generate local actions, i.e., producing adequate pro-

teins. The self-organizing behavior is still spontaneous but guided by 

DNA. The separation of description of the system from the system itself 

makes it possible to “copy” and “vary” the description independently from 

changing the system. Therefore, mutation and natural selection together 

create an evolution framework for open-ended adaptation. Even before the 

structure of the DNA molecule was discovered by Watson and Crick 

(1953), von Neumann (1966) proposed a self-replicating scheme indicating 

the complexity threshold, after which the system can increase its complexi-

ty in an open-ended fashion. Separation of the system description from the 

system and combination of “copying” and “interpreting” are the two key 

features of such a scheme.  

Learning from what nature “does” has led us to treat self-organizing as 

the key concept that needs to be implemented in future adaptive engi-

neered system. Self-organizing has profound implications in dealing with 

complexity. First, it is spontaneous hence does not require pre-specifying 

“who should do what in what ways,” allowing high level uncertainty under 

unpredictable situations. Secondly, if arranged properly, increasing system 

complexity can be a solution to dealing with high level environment com-

plexity. The challenge, however, is how we can devise and guide self-

organizing so that desired system level emergent behaviors and functions 

can be achieved. 

In our proposed Cellular Self-Organizing (CSO) systems framework, 

shown in Figure 2, three concepts are fundamental, namely, mechanical 

cells, fields, and design-DNA. Mechanical cells constitute the physical sub-

strate for system formation and they are the entities that self-organize 

themselves for emergent system behaviors and functions. The concept of 

field is needed to bring tasks and environmental constraints into the me-

chanical cells’ self-organizing framework. Like dynamical systems, where 

gravity fields are basic means for planets to self-organize, we need some 

fields in which our mechanical cells can self-organize. Unlike dynamical 

systems, our fields must be able to capture of tasks and make completing 

tasks part of the “attractor landscape.” Since our fields are artifacts to be 
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designed, the self-organizing behavior of our mechanical cells must be 

guided. For this, we introduce design-DNA that contains both system in-

formation and the information needed for finding and evolving into “at-

tractors”. Again, the explicit description of the system using design-DNA 

allows open-ended adaptation through genetic evolution. The details of 

these concepts together with the elaborations are described in the next sec-

tion.  

Levels 
 

Cellular Self-Organizing (CSO)  

Systems 

Adaptation 
Distributed and design-DNA based 

evolution 

Capability Field based “attractors” 

Mechanism 
 dDNA guided and field based self-

organizing  

Physical 

Substrated 
Mechanical Cells, Fields,  

 
Figure 2: The Cellular Self-Organizing Systems Framework 

The Model and Concepts 

In this section, we elaborated the discussion of the last section by intro-

ducing definitions of the concepts that were introduced. Through the pro-

cess of describing definitions, we also introduce the field based mecha-

nisms that are needed to realize self-organization. Since in this paper we 

focus on self-organization aspect of the CSO systems, we will skip the de-

tailed discuss on of the definition of design-DNA, of which more infor-

mation can be found in (Zouein 2008) and (Jin et al 2009). 

A mechanical Cell (mCell) is the basic element or unit of a mechanical 

CSO system:  

 

Definition 1 (Mechanical Cell):  mCell = {Cu, S, A, B}; 

where Cu: control unit; S = {s1, s2, ...}: sensors/sensory information; A 

= {a1, a2, ...}: actuators/actions; B: designed behavior, or design 

information (see definition 4 below). ■ 
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Almost all existing cellular systems, such as Superbot (Shen et al., 

2006) and Miche (Gilpin et al., 2008), can be modeled using this defini-

tion. mCell is the smallest structural and functional unit of a CSO system. 

Although for a CSO system design, either homogeneous with identical 

mCells or heterogeneous with different mCells, the appearance or the 

structure of its mCells may be different, a mCell should be able to sense 

the environment around it and process material, energy and/or information 

as their actions. We make following assumptions about mCells: 

 Assumption 1 (Cellular Capability): A mCell has the ability to exe-

cute predefined programs, sensing the world around it, process sen-

sory information and the incoming communication, and decide on 

its action and interaction with others.  

 Assumption 2 (Cellular Limitation): mCells have limited sensors, 

limited range for each sensor, limited communication range with 

others, and limited number of possible actions.  

 

Definition 2 (State):  State = {SC, AC} 

where           
  are currently sensory information and actions, 

respectively. ■ 

 

State is used to represent the situation which the current mCell is in. It 

is the combination of the current sensor information Sc and current actions 

Ac. This definition of state parallels the sensor-motor description of cogni-

tive systems (von Foerster 1977). 

 

Definition 3 (Behavior):  b = {SE, AE}  AN 

where           
  are existing sensor information and actions, 

respectively; and   
  are next step actions. ■ 

 

A behavior b is the designed action for given situations or states. The 

Cu of the mCell should be able to judge the situation and make decisions 

on next actions. The design information (like a complete drawing in a con-

ventional system design) of a CSO system is the fully developed behaviors 

for each mCell.  

 

Definition 4 (Behaviors of System): BoS = {B1, B2, ..., Bn}; 

where B1, B2, ..., Bn are behavior sets of each mCell in the system. ■ 

 

The design information for such a system is the set of all the behaviors 

which local mCells should follow; also this BoS is supposed to be designed 

by a designer or designers. If all mCells share the same behavior set B, i.e., 
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B1 = B2 = ... = Bn = B, then we have a homogeneous CSO system. Other-

wise, the CSO system is said to be heterogeneous.  

From the above four definitions, one may see that the concept of mCell 

is similar to that of biological cell. A biological cell serves its purpose by 

producing proteins, which parallels a mCell producing local actions; the 

biological cell can only process the signals that the receptor on the mem-

brane can catch, similar to mCells. Furthermore, all biological cells hold a 

full "design information" stored in DNA. Similarly, mCells hold the same 

design information through a design-DNA, or dDNA, which is captured by 

the associated behavior set.  

As mentioned above, incorporating task requirements into the self-

organizing system as “attractors” is a challenge. We address this challenge 

with the following definitions of function requirements and fields.  

 

Definition 5 (Functional Requirement): FRi = {Si, Ai } 

where Si, and Ai form a specific state or situation. ■ 

 

There are two reasons why the functional requirement holds similar 

construct of state described above. First, this representation allows us to 

specify “desired states” of the system. These desired states can be goal 

states or transient states that a designer deems to be necessary. Second, us-

ing the state construct to represent functional requirements allows mCells 

to recognize whether the function is achieved by examining combinations 

their sensor information and actions.  

It is worth mentioning that our definition of functional requirement, or 

function, of using both sensory information Si and action Ai is more general 

than the conventional function definition that uses only action Ai.  When Si 

=  our definition is consistent with the conventional one. Our general 

representation allows designers to specify circumstances (i.e., sensory in-

formation) in addition to actions, leading to more precise functional speci-

fication. 

At present we explore CSO systems with homogeneous mCells. Fol-

lowing the stem cell analogy, we consider that the initial homogeneous 

mCells with multiple behavioral capabilities will, during the process of 

emergence, differentiate and find their “specialty” behaviors during the pe-

riod of task execution. We expect that this self-organized emergence may 

create functional blocks consisting of multiple mCells, as organs forming 

in biological systems or attractors in dynamical systems. Once a task is ac-

complished, or the environment changes, the functional blocks may dis-

solve by themselves and the mCells will continue to renew their differenti-

ation and form new functional blocks.  
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The high level self-organizing and redundancy ensure the flexibility, 

robustness and resilience of the system, i.e.,   

 The enormous size of the potential behaviors resulted from the cellular 

formation of the system provides functional basis for “unforeseeable” 

functional requirements and environment changes, increasing the sys-

tem flexibility and robustness, respectively, and 

 The redundancy of mCells together with the large number of mCells 

makes the role of single mCell insignificant during the emergence of 

the system behaviors. Failures with a single mCell can be dealt with by 

other similar mCells, leading to high level system resilience.  

From a design perspective, however, developing CSO systems is a 

challenging task. As much as we attempt to understand how biological sys-

tems develop their emergence, we face enormous challenges in developing 

such fruitful emergence in our engineered systems. In our research, we at-

tempt to generate “guided emergence” by providing rules for mCells to 

self-organize and for desired system behaviors to emerge. Two fundamen-

tal issues must be addressed. The first relates to design information repre-

sentation. We have introduced a design DNA or dDNA based representa-

tion scheme to capture CSO system information at the cellular level (Jin et 

al, 2008; Zouein et al 2011). The second issue has to do with devising 

mechanisms to guide self-organization. In the following, we introduce a 

field based approach to allow mCells to self-regulate their behaviors in or-

der to induce system level emergence of reaching “attractors”.  

Field driven Behavior Regulation (FBR)  

In dynamical systems, the concept of field is everywhere, e.g., gravity 

field, electrical field, magnetic field and electromagnetic field. Objects op-

erating in the fields can “sense” the field and react to it by following phys-

ical principles. In the biological world, the function of an organism is real-

ized by a collection of different types of cells working together. The 

distribution of the chemical signals, called morphogen, controls the biolog-

ical regulation hence the shape and organ formation. Through the devel-

opmental process stem cells differentiate into different cell types by re-

sponding to specific morphogen distribution. 

In our CSO systems, mCells need the similar differentiation capability 

in order to self-organize and collectively become a functional system. In-

stead of producing different proteins, differentiated mCells produce differ-

ent actions. Instead of being triggered by chemical signals, our mCells dif-

ferentiation must be triggered by the functional requirements and 



 Y. Jin and C. Chen 
 

12 

environmental constraints. To realize such behaviors, we extend the con-

cept of physical field and chemical field into more general "fields" and in-

troduce a field driven behavior regulation (FBR), for guiding cellular self-

organization and building CSO systems. 

For a CSO system, the sensory capabilities of its mCells are pre-defined 

and given. In this case, whenever a task (defined by its FRs) and an opera-

tion environment (may or may not be fully known) are given, we can de-

fine a task field which captures the external world to a mCell encompass-

ing both task requirements and environmental conditions. We have: 

 

Definition 6 (Sensory Info & Sensing): sInfo := SNS (FR, Env) 

where, FR: functional requirements; Env: environment situation ; SNS: 

sensory operator.■ 

 

Definition 7 (Task Field & Field Formation):  tField  := FLD (sInfo) 

where, sInfo = (s1, … sn): sensory information; FLD: filed formation 

operator.■ 

 

From Definition 7 it can be seen that we define the task field relative to 

a specific mCell and its sensing capability. Figure 3(a) shows a simple ex-

ample of tField.  A mCell m is moving to its destination d with the poten-

tial of encountering an obstacle obs in a two dimensional space. In this 

case, the destination d can be considered as an attractor that creates an at-

traction field, capturing the task requirements; and in a similar way, the 

obstacle, obs, creates a repelling field, characterizing the operation envi-

ronment. It can be seen from Figure 3(a) that the task field tField serves as 

a "complete" context for a mCell to operate in this specific example.  

 

 

 

 

 

 

 

 

 

     (a) m moves to d in tField                (b) m moves to d in bField 

 

Figure 3: An Example of Task Field and Behavior Field 

 

Since mCell differentiation is about behavior distribution, a mCell must 

be able to determine its behavior based on the given task field. Therefore, 

d 

m 

obs d 

m 

obs 
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we introduce a concept called behavior field, or bField, to capture the po-

tential distribution of preferable behaviors a mCell can choose in a given 

task field.  We further use FBRFD to denote the transformation from a task 

field into a behavior field and introduce the following definition: 

 

Definition 8 (Behavior Field & Field Transformation):   

bField = FBRFT(tField, B) 

where,  FBRFT: field based regulation (FBR) operator for field trans-

formation; bField: behavior field; tField: task field. ■ 

 

According to Definition 8, how behaviors should be distributed is large-

ly dependent on the field transformation operator FBRFT. There can be dif-

ferent ways to represent bField.  One may associate “rewards”, “risks”, or 

“probability” with different “locations” for a mCell to perform different 

behaviors. The “locations” can be defined as real 2- or 3-dimention spaces 

or n-dimension virtual spaces depending on the task domain and mCell 

properties.  Figure 3(b) shows a simple example of bField.  A mCell m is 

moving in the task field caused by the destination d’s attraction field and 

the obstacle obs’ repelling field. Based on some given field transformation 

operator, FBRFT, the mCell m creates a bField around itself denoted by the 

curved dark line around m. 

In this research, we associate a mCell’s “behavior distribution” with its 

surrounding “locations”, and we further call this distribution behavior pro-

file, or bProfile. Therefore, we introduce the following definition, which is 

a specific case of Definition 8.  

 

Definition 8b (Behavior Profile & Field Transformation):   

bProfile = FBRFT (tField, B)  

where:  bProfile := {(b1, p1), ..., (bn, pn)}; & [bi ϵ B, 0 ≤ pi ≤ 1, 1≤ i 

≤ n] indicates (behavior, probability) pairs for a mCell to 

choose its actions, and n is the total number of possible behav-

iors that the mCell can perform;  tField: task field;  B: mCell's 

behavior set. ■ 

 

The dark line in Figure 3(b) mentioned above indicates the “behavior 

profile” for mCell m. Given a behavior profile at a given point of time, a 

mCell still need to “make a decision” to select a behavior. We introduce 

the second field based behavior regulation operator as follows. 

 

Definition 9 (Behavior Selection & Behavior Selection):   

b = FBRBS (bProfile)  
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where:  FBRBS: field based regulation (FBR) operator for behavior se-

lection; bProfile := {(b1, p1), ..., (bn, pn)}; & [biϵB, 0 ≤ pi ≤ 1, 

1≤ i ≤ n]; b: selected behavior b ϵ B. ■ 

 

Summarizing the above definitions, for a mCell m at time t under given 

functional requirements FR and environmental situation Env, the behavior 

or action of the mCell is chosen by following the following self-organizing 

operations: 

 

                                      (1) 

 

From Equation (1), one can see that a mCell’s sensing capability (SNS), 

its capability of forming a internally useful information field (FLD), and 

its field based behavior regulation based on field transformation (FBRFT) 

and behavior selection (FBRBS) completely determine the mCells self-

organizing behavior. Interactions between mCells can be introduced by 

devising constraints between mCells that influences a mCell’s SNS, FLD, 

FBR capabilities and consequently its behavior. The system stabilities and 

functions are achieved around the “attractors” of the mCells. For different 

task domains, these capabilities should be designed and devise differently 

so that the overall performance of the emergent behavior is desirable. In 

the following, we describe examples of how these self-organizing capabili-

ties can be design and implemented in computer simulations.  

Case Studies and Discussion 

To investigate how such our approach can be applied to CSO systems 

design, a set of computer simulation based case studies were performed 

with the intention of addressing the following questions: 

 What constitutes the task and behavior fields?  

 What is the benefit of using the concept of behavior field? 

 How will locally regulated behaviors emerge into desired global ef-

fects? 

 How will the field transformation (FBRFT) and behavior selection 

(FBRBS) impact the global system behavior? 

In the following subsection, we present two case studies. The first case 

study is designed to investigate the concept of field and the second one for 

demonstrating FBR effectiveness. 



 
 

Field Based Behavior Regulation for Self-Organization 15 

Case Study 1: Single Exploration Cell 

The overall task for this case study is for one mCell to travel to a given 

destination in an unknown environment. The two functional requirements 

are:  

FR1 = “move to destination”, and 

FR2 = “avoid obstacle”.  

The mCell can decide the direction of movement, so the two behaviors 

are: 

b1 = “move to the direction toward destination”, and  

b2 = “move away from the direction to obstacle”.  

We further assume that the obstacles between the mCell and the desti-

nation can be everywhere with any density and that the mCell can always 

sense the location of the destination and can sense the locations of the ob-

stacles only when they are within a certain range. Given the two functional 

requirements, the sensor information and current actions, a mCell needs to 

decide which “action”, i.e., direction, to take.  

Task Field 

The task field for this example is composed of the attraction field of the 

destination and the repelling fields of various obstacles, and more than one 

obstacle can exist at any time. We use parameter  to represent the attrac-

tion field and β the repelling field, as show in Figure 3. Combining the 

two, we have task field for mCell m: 

tFiledm = {; β1, β 2, ..., β n}; where, n = no. of obstacles 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Tasks Field for mCell m 

 Behavior Regulation  

As described above, in CSO systems field-driven behavior regulation 

has two steps, i.e.,  

d 

m 

obs 

 

β 
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Step1: Transform tField into bFiled through FBRFT 

Step2: Select a specific behavior/action through FBRBS. 

Behavior field and FBRFT: In this example, the bField or bProfile de-

termines the likelihood in which a mCell is taking its next move into direc-

tion α, and the likelihood the mCell is avoiding this direction due to the ex-

istence of obstacles. The distribution of these two likelihoods around the 

360 degree circle around a mCell constitutes the bField or bProfile of the 

mCell. Specifically, for one destination and on obstacle, we introduce the 

following FBRFD:  
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where,   α: direction for the next move 

pα: probability that direction α should be taken 

qα: probability that direction α should be avoided 

 

Behavior selection and FBRBS: After the behavior field is established, 

a mCell needs a mechanism for behavior selection. In this case study, we 

define two types of behavior selections: "select the best" and "select any 

one good enough", as indicated below. 

FBRBS-B  =  [Select the action with the highest probability in the bField] 

FBRBS-G  =  [Select any action, randomly from the actions that has a 

bigger than threshold probability in the bField] 

In this case study, we will show how the above mentioned behavior 

field can be useful and the effective of applying different behavior selec-

tion strategies. 

Figure 4 shows the time sequence of screen dumps of one of our simu-

lation runs, with time steps indicated at the bottom of each box. As shown 

in Figure 4, a single explorer mCell can travel from a randomly assigned 

position on the left to a given destination on the upper right. Both the 

mCell's initial position and the positions of all obstacles are randomly gen-

erated for each simulation run.   

In this case study, the mCell acts solely based on the task assignment 

(represented as FRs) and its sensory information without memory and 

planning. The FBRFT constantly trans-forms the perceived task field into 

local behavior field, allowing the mCell to "know" what are possible valid 

behaviors that can be performed at each moment. Furthermore,  the FBRBS 

converts behavior or action potential into specific actions. By splitting the 
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process of FBR into two steps, a designer can make various combinations 

and find the good ones for his/her task domain. 

 

 
Steps: 60 

 
Steps: 180 

 
Steps: 228 

 
Steps: 275 

 
Steps: 333 

 
Steps: 358 

 
Steps: 421 

 
Steps: 537 

 
Steps: 641 

 
Figure 5: Simulation Results of a Single mCell Exploring in a Random Obstacle Field Sim-

ulation Results 

 

As one may imagine, when the density of obstacles increase, the mCell 

may be trapped on its way and not be able to reach the destination. Our 

simulation results verified this statement. To investigate how different 

FBR strategies may influence the "success rate" of the simulation runs, we 

examined two "behavior selection" strategies, i.e., FBRBS-B (select the best) 

and FBRBS-G (select from good enough, i.e. top 40%, randomly). We ran 

500 test runs for each obstacle density for FBRBS-B and FBRBS-G, respective-

ly, and calculate the success rate based on the 500 runs. Figure 5 shows the 

comparison result with 40 to 120 randomly assigned obstacles. 

Figure 5 shows that overall the "select from good enough randomly" 

works better than "select the best" and that as the density of obstacles in-

creases the advantage of the former increases. From a CSO system devel-

opment perspective, the result is interesting in two ways. First it indicates 

that behavior regulation strategies have profound impact on individual 

mCell  
Destination 

Obstacles 
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mCell's performance, and secondly the "randomness" seems to bring "in-

telligence" into the system mechanically.  

 
 

Figure 6. Comparison of "Select the Best" (FBRBS-B) and "Select from Top 40% Ran-
domly" (FBRBS-G) 

 
With the "select the best" strategy, a mCell always targets on one single 

best direction in deciding on their next move. When the obstacle density is 

low, this strategy can likely produce ideal performance in which both time 

and energy can be saved. The reason behind is that with limited number of 

obstacles distributed sparsely, there is close to zero likelihood that the 

mCell may get trapped by its own "best" calculation. When the density of 

obstacles increases, however, much more likely the "traps" exist in the 

field, resulting in lower success rate for this strategy.  

The "select from top 40% randomly" strategy may not work perfectly in 

terms of saving time and energy. However, when the environment be-

comes more unpredictable and unfriendly, the mCell can robustly sustain 

the environmental change and maintain its performance. Thanks to the 

randomness of behavior selection, the "traps" may be overcome by the 

mCell through internal variability.  Only the intrinsic variety of the system 

(i.e., mCell in this case) can concur the variety of the environment (Ashby 

1958). 

Case Study 2: CSO Mover System 

In the single mCell case study, we demonstrated how tField can be de-

fined and how bField can be generated and behavior selection be carried 

out through field-driven regulation (FBR). To investigate how FBR may 

impact on the emergence when multiple such mCells work together for a 
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single task, we conducted the second case study. In Case Study 2, the task 

for multiple identical mCells is to move an object from a start point to a 

destination point in a two dimensional unknown environment with all the 

obstacles randomly distributed in the field in the same way as in Case 

Study 1. The mCells are limited in action: they only push the object from 

their center to the object's center. At a given time, a mCell must decide on 

which direction to push the object. The overall movement of the object 

will be the result of the emergent behavior of all the mCells pushing the 

object. 

In this case study, all mCells can only push from their centers to the ob-

ject's center with the same force, and the overall movement of the object is 

the emergence of all mCells’ relative locations. The behavior of each 

mCell is to choose a “right” location to push the object. The three func-

tional requirements are: 

FR1 = “stay close to the object”, 

FR2 = “push object to destination”, and 

FR3 = “avoid obstacles”. 

 

A mCell can choose a relative location to the object, so the three behav-

iors are: 

b1 = “move to locations as close as possible to the object”, 

b2 = “push the object towards destination”, and 

b3 = “push the object away from obstacles”. 

 

We assume that all the mCells have similar setup as the previous case 

study; they can sense the destination anywhere and they can only sense the 

obstacles within a certain range. 

Task Field 

Similar to the previous case study, we also use parameter  to represent 

the attraction field and β the repelling field. In addition to those two, this 

case study introduces a new attraction field d as the relative distance from 

mCell to the Object. The related task field is shown in Figure 7 and besides 

mCell m there are mCells i, j and k in dash line. Combining the three, we 

have task field for mCell m: 

tFiledm = {d,; β1, β 2, ..., β n}; where, n = no. of obstacles 

Behavior Regulation  

The two steps behavior regulation described in the previous case study 

is still valid in this case:  
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Figure 7: Tasks Field for mCell m 

 

Behavior field and FBRFT: In this example, the bField or bProfile de-

termines the likelihood in which a mCell is taking its next move to either 

stay in the current location to push the object or move to other locations 

because the relative distance is too far, the pushing direction is towards a 

collision or the pushing direction is away from destination. The relative lo-

cation for mCell is represented by α and d. For one destination and on ob-

stacle, we introduce the following FBRFT:  
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where α: the angle corresponding to an arbitrary predefined coor-

dinate 
d: the related distance. 
pd: probability that distance d should be taken 
pα: probability that pushing direction α should be taken 
qα: probability that pushing direction α should be avoided 

Behavior selection and FBRBS: After the behavior field is established, 

a mCell needs a mechanism for behavior selection. In this case study, we 

assume that the mCell will change their location when the probability is 

below a threshold instead of choosing the “best” locations. 

FBRBS  =  [Select any action, randomly from the actions that has a big-

ger than threshold probability in the bField] 

In this case study, we will show how the above mentioned behavior 

field can be useful and effective for not only a single mCell case but an 

emergent system of multiple mCells. 
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Figure 8. Simulation for Design Case 2, CSO Object Mover 

Simulation Results 

Figure 8 shows the time sequence of simulation screen dumps with time 

steps indicated at the bottom of each block. All each mCell chooses a loca-

tion to push the blue square Object. Each mCell attempts to choose a 

“highly” recommended zone and move into it when the zone of its current 

location has the probability below the threshold. There is no explicit com-

munication between the mCells, reducing the need for more design efforts. 

However, the mCells interact indirectly by avoiding overlapping with each 

other. Our simulation results showed that with the setup of this simulation, 

in almost all simulated test runs, the mCells were successful in pushing the 

square object into its destination. 

One advantage of this behavior based design is that the shape of the 

Object and therefore the shape of the overall system are not predefined and 

limited in any way. The mCells observe the world and decide on their be-

haviors locally, as the global behavior and result emerge. Based on Kol-

mogorov complexity measure (Li and Vitanyi 2008), our CSO system of 

multiple mCells can be considered highly complex since the states of each 

mCell changes dynamically without certainty and it takes a rather long de-

scription to capture the whole system. However, using FBR makes it pos-

sible to regulate mCells' behaviors and to lead the emergence process to a 

productive direction.  

Figure 9 illustrates the dynamically changing behavior field (bField), 

and how mCells choose their behaviors (i.e., locations) through FBR. As 

shown in Figure 8 the different current situations introduce two different 

mCell 

Mover 

Object 

Obstacles Destination 
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bFields. Depending on the relative locations of the destination, obstacles 

and the object, the field changes, as shown as color changes in Figure 9. 

Different colors in Figure 9 correspond to different probabilities, as indi-

cated in the figure. The mCells try to choose the “green” or “yellow” zone 

to occupy. Through the use of field driven behavior regulations (FBR), the 

system dynamically adapts to its new situations even for the simple de-

signed mCells of limited capability (can only push from its center to the 

object’s center). The system can move the object in an unknown environ-

ment by mCells using the fields as their dynamic vision of the world. It is 

conceivable that the bFields and FBR concepts can be applied to those task 

situations where physical fields and chemical fields exist. We plan to ex-

pand our application example domains to assess the effectiveness of our 

field and FBR concepts. 

 
0.75< p < 1

0.5< p < 0.75

0.25< p < 0.5

p < 0.25

  
 

Figure 9: Illustration of the Dynamic bField of the CSO Mover in the Sim-

ulated Field of Obstacles 

 
In our simulation test runs, we also examined how the system might 

perform if some mCells become inactive. Figure 10 shows the resilience of 

the overall system when  some of the mCells become "dead" during the 

simulation. There are four mCells that were deactivated at the step 400, 

since the system is fully decentralized, deactivated mCells had little influ-

ence to the rest of the mCells in the system. This way, although the system 

losses its performance due to the loss of mCells, it could still successfully 

accomplish the task of moving the object to its destination, showing the 

system resilience. 

Because CSO systems are decentralized and have redundancies main-

tained among its mCells, they are more resilient than the systems with 

specified local functional components. When one part of the system fails, 

other nearby mCells can modify its functionality and redistribute their 

functions. This way, the system can not only adapt to the environmental 

change but also to the system change. 
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Figure 10: Resilience Test by Deactivating 4 of 12 mCells at Step 400 

Conclusions  

This paper presents a field based behavior regulation approach to de-

signing cellular self-organizing (CSO) complex mechanical systems. The 

concept of CSO systems is developed based on the observations of 1) that 

current engineered systems are inherently incapable of dealing with varia-

ble functional requirements, changing environment situations, and possible 

system failures, and 2) that natural systems including dynamical systems 

and biological systems are formed in a bottom-up fashion and inherently 

equipped with capabilities to deal with uncertainties and unknowns. By 

combining the current engineering concepts of functions with the funda-

mental mechanisms of stability, self-organizing and DNA, our proposed 

CSO systems framework promises a different approach to developing en-

gineered systems. 

In our proposed CSO systems, self-organization is the key concept and 

mechanism. To make mechanical cells self-organize in a bottom-up fash-

ion, a field concept is introduced that allows mechanical cells to sense the 

tasks and environment and formulate a task field as a model of the task 

world. By following the field based behavior regulation mechanism that 

we devised, mechanical cells can transform the sensed task field into their 

behavioral field in which their possible behaviors/actions are profiled and 

ready to be selected. The final behavior section is carried out by the FBR 

behavior selection operator. It is worth mentioning that our field-based be-

havior regulation framework is composed of distinguishable stages of cel-

lular operations, including sensing, field formation, field transformation, 

Deactivated mCells 
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and behavior selection. These operators together with their associated vari-

ables provide a rich design space for us to explore and design CSO sys-

tems. The case studies discussed in the paper demonstrated how different 

FBR behavior selection strategies may yield different performances, and 

how transformation from task field to behavioral field determines the sys-

tem behaviors and capabilities. It is expected that different domain tasks 

require different designs of FBR mechanisms. Future research is needed to 

classify the domain tasks and explore various possible FBR designs.  

Our current work on this research includes expanding the case study in-

to more sophisticated problem domains, examining trade-offs of having 

various combinations of mCells including heterogeneous ones and between 

swarm mCell structures as we presented in this paper and more structured 

organizations that require more tight connections, e.g., physical dockings, 

among mCells. 

This paper is based on the work supported in part by the National Sci-

ence Foundation under Grant No. CMMI-0943997. Any opinions, find-

ings, and conclusions or recommendations expressed in this paper are 

those of the authors and do not necessarily reflect the views of the National 

Science Foundation. 
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