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ABSTRACT 
Multi-agent systems (MAS) have been considered a 

potential solution for developing adaptive systems. The design 

of MAS however is difficult because the global effect emerges 

from local actions and interactions that can be hard to specify 

and control. In order to achieve high level resilience and 
robustness of MAS and retain the capability of specifying 

desired global effects, we propose a cellular self-organizing 

(CSO) system framework and a biologically inspired behavior 

based design approach (BDA) and a field based regulative 

control mechanism (FBR). The BDA approach links global 

functional requirements with the local behavior design of a 

CSO system. FBR is a real-time, dynamical, distributed 

mechanism that regulates the emergence process for CSOs to 

self-organize and self-reconfigure in complex operation 

environments. BDA and FBR together extend the system 

adaptability without imposing global control over local agents. 

This paper describes the models of CSO, BDA and FBR and 
demonstrates their effectiveness by presenting simulation based 

case studies in which CSO agents explore an unknown 

environment and move an object to designated locations.  
 

Keywords: Bio-inspired approach, self-organization, self-

reconfiguration, distributed control, field based regulation 

1 INTRODUCTION 

It has been well recognized that human engineered systems 

are becoming more and more complex. A major issue with 

developing complex engineered systems is that the sheer size of 

the system and interdependencies among the system 

components create uncertainty and unknowns to the engineers, 

leading to high level system risks. Furthermore, new systems 

are more likely required to function in unpredictably changing 
environments, where unpredictable situations may happen. 

Dealing with either or both of these problems requires future 

human engineered systems to be adaptive such that they can 

robustly redesign and rebuild themselves in response to task 

and environmental changes and resiliently self-repair and 

reconfigure as partial system failures happen. 

Our observations of system biology (Kitano 2002), self-

configurable systems (Subramanian and Katz 2000) and 
component-based design (Kopetz 1998) have led us to taking a 

MAS approach to adaptability by devising capable mechanical 

cells and their interaction mechanisms and then letting them 

“design and configure themselves” bottom-up in a distributed 

fashion based on their perceived operation situations. We call 

this a Cellular and Self-Organizing (CSO) approach to building 

complex and adaptive systems with each mechanical cell being 

an agent of MAS. It is fully understood that the CSO approach 

will not be able to compete with the traditional methods in a 

short term. However, the paradigm shift from functionally 

distinct component-based to cell-based and from top-down to 

bottom-up promises an alternative future for developing 
complex engineered systems.  

Both multi-agent systems and self-organizing systems have 

recently been highlighted in many engineering fields, such as 

computer science, industrial engineering, and material science. 

Much research has been done to investigate the properties and 

benefits of those systems, and the ways to build such systems. 

One critical research question that has yet to be fully explored 

is: How can a designer connect the design of local interactions 

of agents to the desired system level properties and functions?  

Answers to this question are needed for us to design self-

organizing mechanisms to achieve desired system functions    
with high level robustness and resilience.  

To address the abovementioned research question, we 

propose a behavior based design approach (BDA) for 

designing agents of a CSO system and a field based behavior 

regulation (FBR) mechanism, a bio-inspired behavioral control 

mechanism,  as a basis for agents to interact with each other 

and with their environment. In this approach, agents' local 
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actions and interactions can be designed as behaviors based on 

the functional requirements of the system under given 

conditions. The agent behaviors (i.e., all possible behaviors or 

actions) as design information are homogeneously stored in 

every individual agent. An agent's runtime behavior at any 

given time is a result of FBR based control that is determined 
by the "field position" of the agent.  

This approach allows a designer to design a multi-agent 

mechanical system from given functional requirements, and the 

resulting system will be able to possess adaptability for those 

situations that are not predicted by the designer. All agent 

behaviors are decided locally by agents themselves in a similar 

way as biological cells behave in natural systems. Our BDA 

requires no uniquely designed individual agents for specialized 

tasks. They are homogeneous agents. The agent differentiation 

is achieved locally through FBR control.  

It is worth mentioning that the concept of agent 

differentiation is a key distinction of our CSO approach as 
compared to conventional modular or component-based 

approaches. While the behavior of the modules and 

components is determined at design time and does not change 

during system operation, the behavior of our mechanical cells 

is determined at runtime through FBR regulation based on a 

predefined set of possible behaviors. This approach mimics 

cellular differentiation from stem cells and permits dynamical 

system redesign and reconfiguration, leading to higher levels of 

system adaptability. 

In the rest of this paper, we first review the related work in 

Section 2 and then introduce our behavior based design 
approach (BDA) in Section 3. In Section 4, we present a BDA 

based CSO design approach and in Section 5 we demonstrate a 

simulation based case study of using BDA for multi-agent 

system design. Section 6 draws conclusions of our current work 

and point to future research directions. 

2 RELATED WORK 

Much research has been done to investigate multi-agent 

and self-organizing systems and to develop methods to design 

such systems. Self-organization and emergent behavior as two 

major features of such systems have been popular research 

topics in the research field of complex systems (Bojinov, Casal, 

& Hogg, 2000; Butler, Kota, Rus, & Tomita, 2001; Fukuda & 
Kawauchi, 1990; Neumann, 1966; Weisbuch, 1991; Wolfram, 

2002; Zouein, 2009). Self-organization is the large scale 

organization through the limited local interactions of the 

constituent components.  Emergence represents the concept of 

the patterns, often unpredictable ones, which are exhibited in 

the large scale organization. With non-self-similar agents, 

Holland and Gell-Mann(1992, 1994) extended the research to 

non-homogeneous system and pointed out the non-linearity 

between local and global which becomes the biggest challenge 

of such systems. To further address the problem, the Game of 

Life (Garden,1970) and more Cellular Automata based fractals 
have been explored (Wolfram, 2002). More recent work on 

understanding and modeling complex adaptive systems can be 

found on Santa Fe Institute's website (Santa Fe, 2010).  

In the field of engineering design, design for adaptability 

and design of reconfigurable systems have been investigated in 

the past decade. Martin and Ishii (2002) proposed a design for 

variety (DFV) approach that allows quick reconfiguration of 

products but mainly aims to reduce time to market by 

addressing generational product variation. Indices have been 

developed for generational variance to help designers reduce 

the development time of future evolutionary products (Martin 
and Ishii, 2002). In addition to developing design methods for 

reconfigurable systems, various reconfigurable robotics have 

been developed mostly by computer scientists. Fukuda and 

Nakagawa (1988) developed a dynamically reconfigurable 

robotic system known as DRRS. Unsal and Khosla (2000) 

focused on creating very simplistic i-Cube systems (with cubes 

being able to attached to each other) in order to investigate 

whether they can fully realize the full potential of this class of 

systems.  PolyBot has gone through several updates over the 

years (Yim, 1993, 1994; Casal and Yim, 1999; Yim et al., 2000, 

2002) but acquired notoriety by being the first robot that 

“demonstrated sequentially two topologically distinct 
locomotion modes by self configuration. SuperBot (Shen et al., 

2006) is composed of a series of homogeneous modules each of 

which has three joints and three points of connection. Control 

of SuperBot is naturally inspired and achieved through what the 

authors describe as the “hormone” control algorithm (Shen et 

al., 2000a, 2000b, 2002; Salemi et al., 2001). 

Bio-mimetic design methods allow designers to identify 

appropriate natural systems or mechanisms from which to draw 

design inspirations. The idea of using DNA and genes to 

capture genotype of systems is not new. Inspired by the nature’s 

evolution process, genetic algorithm (GA) (Goldberg, 1989) 
and genetic programming (GP) have been established to model 

problems using bit string (GA) or functional tree (GP) genes 

and to solve problems by evolving the best solution(s) from a 

population through reproduction, mutation, recombination, 

natural selection and survival of fitness. This approach has 

been taken to solve various engineering problems including 

design optimization, configuration design, and design 

automation (Maher, 2001; Koza, 1992; Fogel et al, 1996; 

Parmee, 1997; Bentley, 1999; Bonnie and Malaga, 2000; Lee et 

al 2001; Koza et al, 1999; Vajna and Clement, 2002; Fan et al, 

2003). In addition to direct encoding where genotype codes 

map to the phenotypes directly, recently researchers have 
explored indirect coding method, called computational 

embryogeny (Kumar and Bentley, 2000), to evolve rules that 

build or develop corresponding phenotypes (Yogev and 

Antonsson, 2007). Although these computational methods have 

been successfully applied to solve optimization problems with 

specific fitness functions, effectively integrating the methods 

into our proposed CSO systems design and development 

framework is a key challenge.  

Our previous work on CSO generated a design DNA 

concept and associated system formation mechanisms (Zouein, 

2008, Jin et al, 2010). This research extends the previous 
research by first expanding the design DNA from a static 

specification to a dynamic and probabilistic representation and 

then introducing a new field based control mechanism to utilize 

the potentials of such systems for increased robustness and 

resilience. In addition, while most current approaches for MAS 

design requires agents have a global unique identifiers for 

cooperation and some methods such as DHM (digital hormone 
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model) require explicit local interactions, our behavior based 

approach allows agents to respond to the field of the task 

environment spontaneously and interact with other agents only 

implicitly, rather than deliberately, as a result of their actions in 

the task field. 

3 A BEHAVIOR BASED DESIGN APPROACH 

Our behavior based design approach described in this 

paper is different from the existing approaches to multi-agent 

systems development. In particular, this approach focuses on 

devising common behaviors in individual agents and 

facilitating agent behavior differentiation based on a field based 

regulation (FBR) mechanism, mimicking the morphogen based 

cellular differentiation found in biological systems. This 

behavior based approach contrasts with the conventional 

structure based design approach because in our proposed CSO 

systems, structures emerge from behavioral self-organizing 

processes. The advantage of this behavior based approach is its 

capability of dealing with “unknowns”, e.g., unpredictable 
environment changes and new functional requirements, by 

spontaneously responding to new circumstances through 

behavioral self-organizing. From a system design perspective, 

the conventional design approach designs "structures" that 

generate needed "behaviors" in order to achieve desired 

"functions" (i.e., structure->behavior->function), while our 

proposed approach allows multiple agents to self-organize their 

"behaviors" which will together create "structures" of the 

system and then achieve "functions" of the system (i.e., 

behavior->structure->function).  

As mentioned above, a CSO system achieves its functions 
through emergence. Therefore, designing CSO systems means 

to design individual agent's behaviors that can lead to global 

emergence that is functional as expected. In the following, we 

first present the model of CSO systems and then introduce the 

method for behavior design. 

3.1 Concepts and Models 

A mechanical Cell (mCell) is the basic element or unit of a 

mechanical CSO system:  

 

Definition 1 (Mechanical Cell):  mCell = {Cu, S, A, B}; 

where Cu: control unit; S = {s1, s2, ...}: Sensors/Sensor 

information; A = {a1, a2, ...}: Actuators/Actions; B: designed 

behavior, or design information (see definition 4 below). 

Almost all existing cellular systems, such as Superbot 

(Shen et all 2001) and Miche (Gilpin et al 2005), can be 

modeled using this definition. mCell is the smallest structural 

and functional unit of a CSO system. Although for a CSO 
system design, either homogeneous with identical mCells or 

heterogeneous with different mCells, the appearance or the 

structure of its mCells may be different. A mCell should be able 

to sense the environment around it and process material, energy 

and/or information as their actions. We make following 

assumptions about mCells: 

Assumption 1 (Cellular Capability): A mCell has the 

ability to execute predefined programs, sensing the world 

around it, process sensory information and the incoming 

communication, and decide on its action and interaction with 

others.  

Assumption 2 (Cellular Limitation): mCells have limited 

sensors, limited range for each sensor, limited communication 

range with others, and limited number of possible actions.  

 
Definition 2 (State):  State = {SC, AC} 

where              are currently sensor information and 

actions, respectively. 

State is used to represent the situation which the current 

mCell is in. It is the combination of the current sensor 

information Sc and current actions Ac. 

 

Definition 3 (Behavior):  b = {SE, AE}  AN 

where             are existing sensor information and 

actions, respectively; and     are next step actions. 

A behavior b is the designed action for given situations or 

states. The Cu of the mCell should be able to judge the situation 

and make decisions on next actions. The design information 

(like a complete drawing in a conventional system design) of a 

CSO system is the fully developed behaviors for each mCell.  
 

Definition 4 (Behaviors of System): BoS = {B1, B2, ..., Bn}; 

where B1, B2, ..., Bn are behavior sets of each mCell in the 

system.  

The design information for such a system is the set of all 

the behaviors which local mCells should follow; also this BoS 

is supposed to be designed by a designer or designers. If all 

mCells share the same behavior set B, then we have a 

homogeneous CSO system. Otherwise, the CSO system is said 

to be heterogeneous.  

From the above four definitions, one may see that the 

concept of mCell is similar to that of biological cell. A 

biological cell serves its purpose by the production of proteins 
which parallels a mCell producing local actions; the biological 

cell can only process the signals that the receptor on the 

membrane can catch, similar to mCells. Furthermore, all 

biological cells hold a full "design information" stored in DNA. 

Similarly, mCells hold the same design information through a 

designDNA, or dDNA, which is captured by the associated 

behavior set.  

Given the above definitions, there are two problems 

remaining for designing CSO systems using this model, 1) how 

to generate or define behaviors B for each mCell, and 2) how to 

device “rules” so that mCells can self-organize themselves to 
achieved assigned functional requirements.  

 

Definition 5 ( Functional Requirement ): FRi = {Si, Ai } 

where Si, and Ai form a specific state or situation.  

There two reasons why the functional requirement holds 

similar construct of state described above. First, this 

representation allows us to specific “desired states” of the 

system. These desired states can be goal states or transient 

states that a designer deems to be necessary. Second, using the 
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state construct to represent functional requirements allows 

mCells to recognize whether the function is achieved by 

examining combinations their sensor information and actions.  

It is worth mentioning that our definition of functional 

requirement, or function, of using both sensory information Si 

and action Ai is more general than the conventional function 

definition that uses only action Ai.  When Si =  our definition 

is consistent with the conventional one. Our general 

representation allows designers to specific circumstances (i.e., 

sensory information) in addition to actions, leading to more 

precise functional specification. 

3.2 Behavior Based Design in CSO Systems 

From the above definitions, it can be seen that to design a 

CSO system for a set of given functional requirements is to 

define behaviors of all mCells in the system, as indicated 

below. 
 

FR1 = {S1, A1 } 

FR2 = {S2, A2 } 

FR3 = {S3, A3 }         BoS = {B1, B2, ...,Bm}                       (1) 

 .... 

FRn = {Sn, An }                                                                  
  
In a conventional design approach, the leaf functions FR1 

through FRn are derived through a specific “function 

decomposition” process, e.g., systematic design (Pahl and Beitz 

1976) or axiomatic design (Suh, 1990) in which the higher 

level functions are fulfilled by the lower level ones. Assuming a 

complete decomposition is carried out by following the 

axiomatic design (Suh, 1990), we will have following design 

results. 

FR1 = {S1, A1 }  b1 

FR2 = {S2, A2 }  b2 

FR3 = {S3, A3 } b3            BoS = {{b1}, {b2}, ..., {bn}}  (2) 
.... 

FRn = {Sn, An } bn                                                       

Equation (2) indicates that each mCell i (out of n mCells) 

will have a unique behavior bi as its behavior set, meaning that 

each mCell behaves as a specific function component. In this 

paper, we call this approach of design top-down function based 

or simply top-down. The advantage of this design approach is 

that the resulting system is functionally highly efficient with no 

possible “waste of functions.” However, there are at least two 

cases this top-down approach may lead to system failure. The 

first has to do with system robustness: if the operation 

environment requires functions that are not foreseeable at the 
design time, then the system will not be able to achieve the 

required but unforeseeable functions and fail. Second has to do 

with system resilience: if any of the functional components 

fails, the system will fail.  

In our research, we propose a behavior based design 

approach to facilitate the design of CSO adaptive systems. In 

this approach, we do not require a designer be able to foresee 

all required functions. Furthermore, mCells may hold partial or 

fully redundant behaviors so that if some mCells fail others can 

replace them and perform their functions. Although top-down 

functional decomposition can still be carried out but the final 

set of functional requirements does not need to be complete 

since the completeness does not exist in the unpredictable 

situations. The fundamental idea behind this behavior based 

approach is that by introducing mCells with multiple and 

redundant behaviors and letting them self-organized, it is 
expected that the emergence of these self-organizing mCells 

will yield system functions that are needed for the changing 

circumstances. From a design perspective, there are two issues 

that must be addressed to complete this approach. One is that 

we need to know what constitute a “sufficiently compete” set 

of behaviors of a mCell for a given task domain, and the second 

is how one can design guidance for mCells to self-organize 

properly. The first issue will be addressed separately in other 

papers. In the following, we explore the issue of emergence and 

the ways to guide it.  

3.3 Traditional Systems Behavior 

Traditional engineered systems operate based on strictly 

pre-specified behaviors of all the components involved. 

Furthermore, the possible interactions between the components 

are also restricted. The complete specification is the guarantee 

of proper system functions and the complete conformance is 

required for system realization.  
In order to show the behavior of conventional systems and 

compare it with our proposed CSO systems, in the following 

discussion we assume that the behaviors of all functional 

component can be “freely” and “linearly” combined to form 

system behaviors.  

Let’s consider the mobility of an automobile. To make it 

simple, we assume that, as a physical system, an automobile is 

composed of a steering system and a drivetrain system, i.e.,  

Auto = {SteeringSystem, Drivetrain}.  

Let’s use beh to denote “behavior” and assume: 

Beh(Auto) = Move  

Beh (SteeringSystem) = Steer = {left, right, ahead} 

Beh (Drivetrain) = Drive = {forward, back, stop} 
 

Then we have: 
 

 Beh (Auto)= Beh(SteeringSystem)*Beh(Drivetrain) 
Or 

 Beh (Auto)= 

 {left, right, ahead }*{ forward, back, stop} 
 

The operator “*” can be defined based on the dependency 
of different behaviors. For the automobile example, the total 

possible overall system behaviors are calculated as 3 x 3 = 9. 

We can write these possible combinations in a matrix form as 

indicated below in Equation (3).   
 





















ASABAF

RSRBRF

LSLBLF

SBFARLAutoBeh T

                   

],,[],,[)(

                            (3) 
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3.3.1 Internal Physical Constraints 
The matrix above shows all the possible behaviors of an 

automobile system. L, B, A stands for steering left, right and 

ahead, respectively; and F, B, S for forward, backward, and 

stop, respectively. In many system designs, it is often the case 

that not all possible behavioral combinations are allowed for 
internal physical reasons. In this circumstance, a dependency 

matrix may be applied. For example, if left-stop and right-stop 

are not allowed, one can introduce the following dependency 

matrix: 

 



















111

011

011

),( drivesteerDep            (4) 

 
Combining (3) and (4), we have: 

 





















ASABAF

RBRF

LBLF

SBFARLdrivesteerDep

AutoBeh

T

0

0

                   

],,[],,[),(                   

)(      
    (5) 

 

Equation (5) shows that the constraining dependencies 

between different behaviors of components limit the behavior 

of the overall system. When more than two components are 

involved, the dependency matrices can become significantly 
large and complicated.  

In traditional engineering design, it is assumed that the 

designer has a complete map of all the constraining dependency 

matrices. Although this might be the case for simple design 

cases, the increasing level of complexity of recent and future 

engineered systems threatens this “taken for granted” wisdom: 

we may not have a complete, not event sufficiently partial, 

understanding of the matrices. The result of this lack of 

understanding can be loss of functions or catastrophes. 

Assuming the complete map is not obtainable, the research 

questions will be how one can make the system, or the 

components of the system, to deal with these dependencies by 
themselves. We will come back to this question later. 

3.3.2 External Environmental Impact 
In addition to internal physical constraints, the external 

environmental may also limit the behaviors of functional 

components and hence restrict the system behaviors. We call 

such constraints environmental impact or EI.  

For our automobile example, given the environmental 
impact EI (auto), the system behavior will be constrained as 

indicated below.  

 

Beh (Auto)= Beh(Auto)*EI(Auto)  (6) 

 

This same Equation (6) can also be applied to functional 

components. For the SteeringSystem, assuming the 

environment is an ally, there is way to move either left or right, 

then moving ahead will be the only possibility, as indicated 

below in Equation (7).  

 

 

ARL 

steerEI ally

                        

100)( 
   (7) 

Furthermore, assuming the “destination” is at the end of 

the ally, then for Drivetrain, the environmental impact can be 

captured by the following matrix: 

 

 
SBF

driveEI dest

                         

001)( 
   (8) 

The overall EI of the automobile is calculated through the 

similar way of Functionality:  

 

   























001

000

000

                   

001100                   

)()()(

T

destallyally driveEIsteerEImoveEI

 (9) 

 

Now we have the overall behavior of the system under the 

influence of the environment is to move ahead (A) and forward 

(F), as indicated below. 

 

























































00

000

000

                   

001

000

000

                   

)()()(

AF

ASABAF

RSRBRF

LSLBLF

AutoEIAutoBehAutoBeh ally

  (10) 

 

If there is an obstacle in the environment, then we may 

have the following system behavior: system fails to act. 

.

 

(11)                                           

000

000

000

                   

110

111

111

001

000

000

                   

)()()()(


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







































































ASABAF

RSRBRF

LSLBLF

autoEIAutoEIAutoBehAutoBeh obsally

 

3.3.3 Implications 
Limited variability and little adaptability: In traditional 

system design, the intention is to limit the behaviors of 

functional component only the ones that is intended. Any extra 

behavior is considered either as a waste or as a risk. The results 
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of such design are the systems that have limited variability and 

little adaptability. 

Unintended behaviors and their dependencies: Although 

only intention unintended behaviors are not welcome, for 

complex engineered system, when the number and the level of 

sophistication of components increase, unintended component 
behaviors become unavoidable. Furthermore, unintended 

dependencies may not be fully counted as indicated in Equation 

(4) and (5). When the ratio of unintended behaviors and 

dependency increase as system complexity levels, it may 

become difficult to keep the system within the bound of 

intended behaviors, leading to failures or accidents. 

 Environmental impact: Environmental impact can either 

guide the system behavior, as shown in Equation (10), or hinder 

it, as in Equation (11). Without the full knowledge of how 

environment impact may be, a designer can hardly device 

intended behaviors to deal with unknown environments. Recent 

"death" of Mars rover "Spirit" is an example of this case. Fixed 
and fully intended system behaviors made it impossible for 

"Spirit" to work around the "new seen before" situations. 

Little inherent system “intelligence”: It may not be fair to 

ask for “intelligent” behavior of mechanical systems unless a 

computer program is devised to do so. It is however fair to say 

that the mechanical systems composed by conventional 

approaches are inherently inadequate for dealing with 

unforeseeable, either endogenous or exogenous, changing 

situations. It is enlightening to see how biological systems, and 

even some chemical systems, may “smartly” live through 

unpredictables through their capabilities resulted from 
emergence. 

3.4 Emergence of CSO systems Behaviors 

Given the above definitions and discussion, it becomes 

straightforward to analyze the behavioral space of CSO 

systems and to evaluate the potentials that this huge behavioral 

space may bring. Assuming a CSO system, CSO1 is composed 
of two mCells, mCell1 and mCell2, and they each possess 

identical set of behaviors. We have: 

 



























pppp

p

p

p
T

p

bbbbbb

bbbbbb

bbbbbb

bbbbbb

mCellBehmCellBehCSOBeh

...

:...::

...

...

                   

],...,,[],...,,[                     

)2()1()1(

21

22212

12111

2121

 (12) 

 

In our research, we assume mCells are multifunctional in 

the sense that the p in Equation (12) can be large. For a CSO 

system having n mCells, the possible system behavior space 

can be as large as n
n
. When each behavior potentially has 

multiple parameters, the potential behaviors space can be 

unimaginably bigger than nn, providing a fertile ground for 

emergence at system level.  
In our current research, we explore CSO systems with 

homogeneous mCells. Following the stem cell analogy, we 

consider that the initial homogeneous mCells with multiple 

behavioral capabilities will, during the process of emergence, 

differentiate and find their “specialty” behaviors during the 

period of task execution. We expect that this self-organized 

emergence may create functional blocks consisting of multiple 

mCells, as organs forming in biological systems. Once a task is 

accomplished, or the environment changes, the functional 
blocks may dissolve by themselves and the mCells will 

continue to renew their differentiation and form new functional 

blocks. The high level of self-organizing and redundancy 

ensures the robustness and resilience of the system, i.e.,   

 The enormous size of the potential behaviors resulted 

from the cellular formation of the system provides 

functional basis for “unforeseeable” functional 

requirements, increasing the system robustness, and  

 The redundancy of mCells together with the large 

number of mCells makes the role of single mCell 

insignificant during the emergence of the system 
behaviors. Failures with a single mCell can be dealt 

with by other similar mCells, leading to high level 

system resilience.  

From a design perspective, developing CSO systems is a 

difficult task. As much as we attempt to understand how 

biological systems develop their emergence, we face enormous 

challenge in developing such fruitful emergence in our 

engineered systems. In our research instead of “free 

emergence” we target “guided emergence” by providing rules 

for mCells to self-organize and for desired system behavior to 

emerge. Two fundamental issues must be addressed. First 

relates to design information representation. We have 
introduced a design DNA or dDNA based representation 

scheme to capture CSO system information at the cellular level 

(Jin et al, 2008; Geroge et al 2011). The second issue has to do 

with devising mechanisms to guide self-organizing. In the 

following, we introduce a field driven approach to regulating 

mCells’ behaviors in order to induce system level emergence. 

3.5 Cellular Differentiation and Field Based Behavior 
Regulation 

3.5.1 Local Behavioral Cellular Differentiation  
In the biological world, the function of an organism is 

realized by a collection of different types of cells working 

together. While all stem cells possess the same DNA 

information and have identical properties and structures, the 
developmental process allows stem cells to differentiate into 

different cell types by responding to specific chemical signals. 

Although differentiated cells still hold the same DNA, the 

biological regulation (i.e., gene regulation) enable them express 

different "portion" of the DNA "string", leading them to 

producing different proteins. The distribution of the chemical 

signals, also called morphogene, controls the biological 

regulation hence the shape and organ formation. Without cell 

differentiation, there will be no advanced biological systems 

existing in today's world. 

In our CSO systems, our mCells need the similar 

differentiation capability in order to collectively become a 
functional system. Instead of producing different proteins, our 

differentiated mCells produce different actions. Instead of being 

triggered by chemical signals, our mCells differentiation must 
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be triggered by the functional requirements and environmental 

constraints. 

3.5.2 Field driven Behavior Regulation (FBR)  
In biological systems, the distribution of morphogene 

creates a "chemical field" that triggers cellular differentiation. 

Depending on the "location" of a cell in the "chemical field", 

the cell will produce the protein which is specific to that 

"location". In our CSO framework, we extend the "chemical 

field" into more general "fields" and introduce a "field driven 

behavior regulation” or FBR for guiding cellular behaviors and 

building CSO systems. 

For a CSO system, the sensory capabilities of its mCells 

are pre-defined and given. In this case, whenever a task 

(defined by its FRs) and an operation environment (may or may 
not be fully known) are given, we can define a task field which 

captures the external world to a mCell encompassing both task 

requirements and environmental conditions. We have: 

 

Definition 6 (Task Field):  tField  := {FR, Env, S } 
 

where, FR: global function requirements; 

Env: environmental constraints; 

S: sensory information of a mCell; 
 

Figure 1(a) shows a simple example of tField.  A mCell m 

is moving to its destination d with the potential of encountering 

an obstacle obs in a two dimensional space. In this case, the 

destination d can be considered as an attractor that creates an 

attraction field, capturing the task requirements; and in the 
similar way, the obstacle, obs, creates a repelling field, 

characterizing the operation environment. It can be seen from 

Figure 1(a) that the task field tField serves as a "complete" 

context for a mCell to operate.  

 Since mCell differentiation is about behavior distribution, 

an mCell must be able to determine its behavior field, or bField 

for short, based on the given task field. We use FBRFD to denote 

the transformation from a task field into a behavior field and 

introduce the following definition: 
 

Definition 7 (Behavior Field):  bField = FBRFD(tField) 

where,  FBRFD: FBR operator for field transformation; 

bField: behavior field; 

tField: task field. 
 

Figure 1(b) shows a simple example of bField.  A mCell m 

is moving in the task field caused by the destination d’s 

attraction field and the obstacle obs’ repelling field. Based on 

some given FBRFD, the mCell creates a bField around itself.  

 

 

 

 
 

 

 

 

  (a) m moves to d in tField       (b) m moves to d in bField 

Figure 1: An Example of Task Field and Behavior Field 

 

There can be different ways to represent the concept of 

bField.  One may associate “rewards”, “risks”, or “times” with 

different “locations” for a mCell. The “locations” can be 

defined as real 2- or 3-dimention spaces or n-dimension virtual 

spaces depending on the task domain and mCell properties.  In 

our current research, we associate a mCell’s “behavior 
distributions” with its surrounding “locations”, and we further 

call this “behavior distribution” behavior profile, or bProfile. 

Therefore, we introduce the following definition.  

 

Definition 8 (Behavior Profile):   

bProfile = FBRFD (tField, B)  

where:  bProfile := {(b1, p1), ..., (bn, pn)}; & [biϵB, 0 ≤ pi ≤ 1, 
1≤ i ≤ n] indicates (behavior, probability) pairs for a 

mCell to choose its actions, and n is the total number 

of possible behaviors that the mCell can perform. 

tField: task field 

B: mCell's behavior set 

Figure 2 illustrates how FBRFD works in a CSO system: for 

a given task in a certain environment, the Function 
Requirements (FRs) and Environment  Locally, a mCells has 

different sensor information and different current actions, if the 

state of the current situation meets the FRs, just keep doing the 

current actions. But when the current state is different from 

FRs, the decision needs to be made for the system to reduce the 

difference between the future State and FRs by applying 

FBRFD.  
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b1

a
3

a
2

a
1s3s2s1

b2

b3

…

...

bn

● ● ●

●

●

● ● ●

● ● ● ●

A/S LFR

Beh

Beh:

+

FBR

50

95

20

75

45

b1

b2

b3

b4

b5

{s1, s2, s3, …, si, a1, …, aj}FR:

+

Influence/Change

Global Effect

E
m

er
g

en
ce

bProfile

Figure 2. An Illustration Field driven Behavior Regulation 

(FBR) in CSO Systems 

Given a behavior profile, a mCell still needs to make a 

decision to choose a specific behavior or action from the 

profiled behaviors. In our research, we introduce the second 

FBR operator called FBRDM  for behavior selection:  

 

Definition 9 (Behavior Selection):  b = FBRDM (bProfile)  

where:  bProfile := {(b1, p1), ..., (bn, pn)}; & [biϵB, 0 ≤ pi ≤ 1, 
1≤ i ≤ n]. 

b: selected behavior b ϵ B. 

Our “field driven” approach mimics the natural systems, 

although we define and apply “information fields” rather than 

physical fields such as Ph gradient in chemistry and gravity 

d 

m 

obs d 

m 

obs 
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field in physics. In our framework, both tasks (or task require-

ments) and operation environments are interpreted in terms of 

tFields and transformed by mCells into their behavior fields or 

behavior profiles. The hope is that the field concept can be used 

to uniformly represent the world to the mCells and therefore 

allow them to self-organize and emerge as a single system.  
For any single mCell, it is the goal that the current 

environment is the same as the functional requirements require 

(in the right state). It can be said that in our FBR framework, 

such ideal goals are represented as “attractors” in the tField. If 

the given task is constant but the environment is changing, then 

the resulting tField will have changing “attractors”, and the 

mCells will pursue these changing “attractors” as part of their 

emergent behavior in the changing world. This way, the 

“guided emergence” problem is translated into the problems of 

tField representation and FBR design. In the following section 

we present computer simulation based case studies to illustrate 

how our “behavior based design” and “field driven behavior 
regulation” can be effectively applied to CSO systems.  

4 CASE STUDIES AND DISCUSSION 

The previous sections introduced our behavior based 

design approach and discussed the potential of applying field 

driven behavior regulation mechanisms to facilitate emergence 

of CSO systems. To investigate how such an approach and 

mechanism can be applied to CSO systems design, a set of 

computer simulation based case studies were performed with 

the intention of addressing the following questions: 
 

 What constitutes the task and behavior fields?  

 What is the benefit of using the concept of behavior field? 

 How will locally regulated behaviors emerge into desired 

global effects? 

 How will the behavior transformation (FBRFD) and behavior 

selection (FBRDM) impact the global system behavior? 
 

In the following subsection, we present two case studies. 

The first case study is designed to investigate the concept of 

field and the second one for demonstrating FBR effectiveness. 

4.1 Case Study 1: Single Exploration Cell 

The overall task for this case study is for one mCell to 
travel to a given destination in a unknown environment. The 

two functional requirements are:  

FR1 = “move to destination”, and 

FR2 = “avoid obstacle”.  

The mCell can decide the direction of movement, so the 

two behaviors are: 

b1 = “move to the direction toward destination”, and  

b2 = “move away from the direction to obstacle”.  

We further assume that the obstacles between the mCell 

and the destination can be everywhere with any density and 

that the mCell can always sense the location of the destination 

and can sense the locations of the obstacles only when they are 
within a certain range. Given the two functional requirements, 

the sensor information and current actions, a mCell needs to 

decide which “action”, i.e., direction, to take.  

4.1.1 Task Field 
The task field for this example is composed of the 

attraction field of the destination and the repelling fields of 

various obstacles, and more than one obstacle can exist at any 

time. We use parameter  to represent the attraction field and β 

the repelling field, as show in Figure 3. Combining the two, we 

have task field for mCell m : 

 

tFiledm = {; β1, β 2, ..., β n}; where, n = no. of obstacles 

 

 

 

 

 

 

 

 

Figure 3: Tasks Field for mCell m 

4.1.2  Behavior Regulation  
As described above, in CSO systems field-driven behavior 

regulation has two steps, i.e.,  

Step1: Transform tField into bFiled through FBRFD 

Step2: Select a specific behavior/action through FBRDM. 

Behavior field and FBRFD: In this example, the bField or 

bProfile determines the likelihood in which a mCell is taking its 

next move into direction α, and the likelihood the mCell is 
avoiding this direction due to the existence of obstacles. The 

distribution of these two likelihoods around the 360 degree 

circle around a mCell constitutes the bField or bProfile of the 

mCell. Specifically, for one destination and on obstacle, we 

introduce the following FBRFD:  
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where,   α: direction for the next move 

pα: probability that direction α should be taken 

qα: probability that direction α should be avoided 

 

Behavior selection and FBRDM: After the behavior field 

is established, a mCell needs a mechanism for behavior 

selection. In this case study, we define two types of behavior 

selections: "select the best" and "select any one good enough", 
as indicated below. 

FBRDM-B  =  [Select the action with the highest probability in 

the bField] 
 

FBRDM-G  =  [Select any action, randomly from the actions 

that has a bigger than threshold probability in the 
bField] 

In this case study, we will show how the above mentioned 

behavior field can be useful and the effective of applying 

different behavior selection strategies. 

d 

m 

obs 

 

β 
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Steps: 60 

 
Steps: 180 

 
Steps: 228 

 
Steps: 275 

 
Steps: 333 

 
Steps: 358 

 
Steps: 421 

 
Steps: 537 

 
Steps: 641 

Figure 4: Simulation Results of a Single mCell Exploring in a Random Obstacle Field

4.1.3 Simulation Results 
Figure 4 shows the time sequence of screen dumps of one 

of our simulation runs, with time steps indicated at the bottom 

of each box. As shown in Figure 4, a single explorer mCell can 

travel from a randomly assigned position on the left to a given 

destination on the upper right. Both the mCell's initial position 

and the positions of all obstacles are randomly generated for 
each simulation run.   

In this case study, the mCell acts solely based on the task 

assignment (represented as FRs) and its sensory information 

without memory and planning. The FBRFD constantly trans-

forms the perceived task field into local behavior field, 

allowing the mCell to "know" what are possible valid behaviors 

that can be performed at each moment. Furthermore,  the 

FBRDM converts behavior or action potential into specific 

actions. By splitting the process of FBR into two steps, a 

designer can make various combinations and find the good 

ones for his/her task domain. 
As one may imagine, when the density of obstacles 

increase, the mCell may be trapped on its way and not be able 

to reach the destination. Our simulation results verified this 

statement. To investigate how different FBR strategies may 

influence the "success rate" of the simulation runs, we 

examined two "behavior selection" strategies, i.e., FBRDM-B 

(select the best) and FBRDM-G (select from good enough, i.e. top 

40%, randomly). We ran 500 test runs for each obstacle density 

for FBRDM-B and FBRDM-G, respectively, and calculate the 

success rate based on the 500 runs. Figure 5 shows the 

comparison result with 40 to 120 randomly assigned obstacles. 

 
Figure 5. Comparison of "Select the Best" (FBRDM-B) and 

"Select from Top 40% Randomly" (FBRDM-G) 

Figure 5 shows that overall the "select from good enough 

randomly" works better than "select the best" and that as the 

density of obstacles increases the advantage of the former 

increases. From a CSO system development perspective, the 
result is interesting in two ways. First it indicates that behavior 

regulation strategies have profound impact on individual 

mCell's performance, and secondly the "randomness" seems to 

bring "intelligence" into the system mechanically.  
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With the "select the best" strategy, a mCell always targets 

on one single best direction in deciding on their next move. 

When the obstacle density is low, this strategy can likely 

produce ideal performance in which both time and energy can 

be saved. The reason behind is that with limited number of 

obstacles distributed sparsely, there is close to zero likelihood 
that the mCell may get trapped by its own "best" calculation. 

When the density of obstacles increases, however, much more 

likely the "traps" exist in the field, resulting in lower success 

rate for this strategy.  

The "select from top 40% randomly" strategy may not 

work perfectly in terms of saving time and energy. However, 

when the environment becomes more unpredictable and 

unfriendly, the mCell can robustly sustain the environmental 

change and maintain its performance. Thanks to the 

randomness of behavior selection, the "traps" may be overcome 

by the mCell through internal variability.  Only the intrinsic 

variety of the system (i.e., mCell in this case) can concur the 
variety of the environment (Ashby 1958).  

4.2 Case Study 2: CSO Mover System 

In the single mCell case study, we demonstrated how 

tField can be defined and how bField can be generated and 

behavior selection be carried out through field-driven 
regulation (FBR). To investigate how FBR may impact on the 

emergence when multiple such mCells work together for a 

single task, we conducted the second case study. In Case Study 

2, the task for multiple identical mCells is to move an object 

from a start point to a destination point in a two dimensional 

unknown environment with all the obstacles randomly 

distributed in the field in the same way as in Case Study 1. The 

mCells are limited in action: they only push the object from 

their center to the object's center. At a given time, a mCell must 

decide on which direction to push the object. The overall 

movement of the object will be the result of the emergent 

behavior of all the mCells pushing the object. 
In this case study, all mCells can only push from their 

centers to the object's center with the same force, and the 

overall movement of the object is the emergence of all mCells’ 

relative locations. The behavior of each mCell is to choose a 

“right” location to push the object. The three functional 

requirements are: 

 

FR1 = “stay close to the object”, 

FR2 = “push object to destination”, and 

FR3 = “avoid obstacles”. 

 
A mCell can choose a relative location to the object, so the 

three behaviors are: 

 

b1 = “move to locations as close as possible to the object”, 

b2 = “push the object towards destination”, and 

b3 = “push the object away from obstacles”. 

 

We assume that all the mCells have similar setup as the 

previous case study; they can sense the destination anywhere 

and they can only sense the obstacles within a certain range. 

4.2.1 Task Field 

Similar to the previous case study, we also use parameter  

to represent the attraction field and β the repelling field. In 

addition to those two, this case study introduces a new 

attraction field d as the relative distance from mCell to the 

Object. The related task field is shown in Figure 6 and besides 

mCell m there are mCells i, j and k in dash line. Combining the 

three, we have task field for mCell m: 
 

tFiledm = {d,; β1, β 2, ..., β n}; where, n = no. of obstacles 
 

m

dobs

Obj
d β θ 

Push direction

i j
k

α 

 
Figure 6: Tasks Field for mCell m 

4.2.2 Behavior Regulation  
The two steps behavior regulation describe in the previous 

case study is still valid in this case:  

Behavior field and FBRFD: In this example, the bField or 

bProfile determines the likelihood in which a mCell is taking its 

next move to either stay in the current location to push the 

object or move to other locations because the relative distance 

is too far, the pushing direction is towards a collision or the 

pushing direction is away from destination. The relative 

location for mCell is represented by α and d. For one 

destination and on obstacle, we introduce the following FBRFD:  
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where α: the angle corresponding to an arbitrary predefined 

coordinate 

d: the related distance. 

pd: probability that distance d should be taken 

pα: probability that pushing direction α should be taken 

qα: probability that pushing direction α should be 

avoided 
 

Behavior selection and FBRDM: After the behavior field 

is established, a mCell needs a mechanism for behavior 

selection. In this case study, we assume that the mCell will 

change their location when the probability is below a threshold 

instead of choosing the “best” locations. 
 

FBRDM  =  [Select any action, randomly from the actions that 

has a bigger than threshold probability in the 

bField] 

In this case study, we will show how the above mentioned 

behavior field can be useful and effective for not only a single 

mCell case but an emergent system of multiple mCells. 
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Figure 7. Simulation for Design Case 2, CSO Field Move

4.2.3 Simulation Results 
Figure 7 shows the time sequence of simulation screen 

dumps with time steps indicated at the bottom of each block. 

All each mCell chooses a location to push the blue square 

Object. Each mCell attempts to choose a “highly” 

recommended zone and move into it when the zone of its 

current location has the probability below the threshold. There 

is no explicit communication between the mCells, reducing the 
need for more design efforts. However, the mCells interact 

indirectly by avoiding overlapping with each other. Our 

simulation results showed that with the setup of this simulation, 

in almost all simulated test runs, the mCells were successful in 

pushing the square object into its destination. 

One advantage of this behavior based design is that the 

shape of the Object and therefore the shape of the overall 

system are not predefined and limited in any way. The mCells 

observe the world and decide on their behaviors locally, as the 

global behavior and result emerge. Based on Kolmogorov 

complexity measure (Li and Vitanyi 2008), our CSO system of 

multiple mCells can be considered highly complex since the 
states of each mCell changes dynamically without certainty and 

it takes a rather long description to capture the whole system. 

However, using FBR makes it possible to regulate mCells' 

behaviors and to lead the emergence process to a productive 

direction.  

Figure 8 illustrates the dynamically changing behavior 

field (bField), and how mCells choose their behaviors (i.e., 

locations) through FBR. As shown in Figure 8 the different 

current situations introduce two different bFields. Dependng on 

the relative locations of the destination, obstacles and the 

object, the field changes as shown in color changes. Different 
colors in Figure 8 correspond to different probabilities, as 

indicated in the figure. The mCells try to choose the “green” or 

“yellow” zone to occupy. Through the use of field driven 

behavior regulations (FBR), the system dynamically adapts to 

its new situations even for the simple designed mCells of 

limited capability (can only push from its center to the object’s 

center). The system can moving the object in an unknown 

environment by mCells using the fields as their dynamic vision 

of the world. It is conceivable that the bFields and FBR 
concepts can be applied to those task situations where physical 

fields and chemical fields exist. We plan to expand our 

application example domains to assess the effectiveness of our 

field and FBR concepts. 

0.75< p < 1

0.5< p < 0.75

0.25< p < 0.5

p < 0.25

  

Figure 8: Illustration of the Dynamic bField of the CSO Mover in 
the Simulated Field of Obstacles 

In our simulation test runs, we also examined how the 

system might perform if some mCells become inactive. Figure 

9 shows the resilience of the overall system when  some of the 

mCells become "dead" during the simulation. There are four 

mCells that were deactivated at the step 400, since the system is 

fully decentralized, deactivated mCells had little influence to 

the rest of the mCells in the system. This way, although the 

mCell Mover 

Object 

Obstacles 

Destination 



 12 Copyright © 2011 by ASME 

system losses its performance due to the loss of mCells, it could 

still successfully accomplish the task of moving the object to its 

destination, showing the system resilience. 

Because CSO systems are decentralized and have 

redundancies maintained among its mCells, they are more 

resilient than the systems with specified local functional 
components. When one part of the system fails, other nearby 

mCells can modify its functionality and redistribute their 

functions. This way, the system can not only adapt to the 

environmental change but also to the system change.  

 

 

 

 

Figure 9: Resilience Test by Deactivating 4 of 12 mCells  

at Step 400 

5 CONCLUSIONS  

This paper presents a behavior based design approach to 
multi-agent complex mechanical system development. This 

approach focuses on individual agent's behaviors instead of 

structures, maps system functional requirements into agent 

behavior sets, and devises field-driven behavior regulartion 

mechanisms for agents to self-organize in response to 

requirement changes, environmental situation changes, and 

system changes. The behavior based design approach embeds 

design information into every individual agent in the system, 

achieving the maximum level of design information 

redundancy and making it possible for the system to self-

organize, self-repair and self-reconfigure for high level 

robustness and resilience.  The case studies and simulation 
results have shown that our behavior based design approach 

allows mCells to utilize their limited vision to choose the right 

actions as they perform collectively in a CSO system. The 

emergence process is controlled and maintained through a field 

based regulation (FBR) mechanism only at local level, allowing 

high level adaptability at the system level. The behavior based 

approach also links the system functional requirements and 

agent local behaviors, providing a way for mapping global 

effects and local decision-making process in designing CSO 

system.  

Our current work on this research includes expanding the 

case study into more sophisticated problem domains, 
examining trade-offs of having various combinations of mCells 

including heterogeneous ones and between swarm mCell 

structures as we presented in this paper and more structured 

organizations that require more tight connections, e.g., physical 

dockings, among mCells. 
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