
 1 Copyright © 2011 by ASME 

 

Proceedings of the ASME 2011 International Design Engineering Technical Conferences &  

Computers and Information in Engineering Conference 

IDETC/CIE 2011 

August 29-31, 2011, Washington, DC, USA 

DETC2011-48821

TOWARD A META-MODEL OF BEHAVIORAL INTERACTION FOR DESIGNING 

COMPLEX ADAPTIVE SYSTEMS 
 

 

Winston Chiang 
IMPACT Laboratory 

Dept. of Aerospace & Mechanical Engineering 
University of Southern California 

Los Angeles, California 90089-1453 
wwchiang@usc.edu 

Yan Jin* 
IMPACT Laboratory 

Dept. of Aerospace & Mechanical Engineering 
University of Southern California 

Los Angeles, California 90089-1453 
yjin@usc.edu (*Corresponding author) 

 

 

ABSTRACT 

Future complex engineered systems must be adaptable to, 

and function in, unpredictable situations, such as deep space or 

ocean explorations, hazardous waste cleanups, and search-and-

rescue missions. To increase system adaptability, various multi-

agent system approaches have been developed. From a design 

point of view, a critical question in developing such systems is: 

how can system adaptability be designed into complex systems 

based only on local interactions between (many) simple cells 

or agents? Although explicit cooperative methods have been 

applied to answer this question, their limitation in scaling-up 

has been recognized. In this paper, we introduce a meta-

interaction model that can be used as a design approach 

towards multi-agent complex systems. The approach 

parameterizes behavioral interactions extended from the Boids 

swarm intelligence model by introducing dynamical variables 

into the system. The goal of the meta-interaction model is to 

provide a mapping for the prediction of collective functionality 

from local interactions and for the indication of local 

interactions based on desired functionality. The proposed 

model is described in detail and a computer simulation based 

case study of search-and-surround is presented to demonstrate 

the effectiveness of our proposed approach to designing 

complex adaptive systems. 

INTRODUCTION 

In many engineering tasks and mission situations, a 

designer often cannot predict all possible functional 

requirements and operational situations that may be needed 

and encountered by the system being designed. Examples of 

such application domains include mine sweeping, natural 

disaster search & rescue, planetary & ocean exploration, and 

missile flocking. The common theme within these applications 

is the uncertainty from unforeseen circumstances in either the 

operation environment or in the required functionality. 

Environment exploration is a major application of interest 

because unknown environments such as space planetary 

surface missions and the deep ocean are beyond the reach of 

simple human exploration.  

To increase system adaptability, various multi-agent 

system approaches have been proposed, taking advantages of 

the flexibility of interacting agents. An agent is an entity or 

computational process that senses the environment and acts on 

it. Swarm multi-agent systems actively alter their overall 

structure and inter-relationships, translating into great 

versatility. This coordination of multiple entities often deals 

with synchronized complex motion planning thus a major 

research challenge is to develop methods for agent to act in 

sync robustly and reliably in response to task and 

environmental changes. 

Common solutions are to use centralized controllers or 

explicit cooperation algorithms. However, these solutions often 

do not scale well due to possible delays in the constant 

exchange of information between sensors, actuators, and the 

controller. Complex coordination algorithms can often become 

unmanageable with scale. Furthermore, robustness is hindered 

from the dependence upon a central controller. Most critically, 

the centralized control algorithms often cannot deal with 

unforeseeable circumstances. 

Another approach builds upon complex systems theory 

utilizing self-organization and emergence. These concepts are 
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inspired by nature as engineers strive to take advantage of the 

robustness and adaptability exhibited in natural systems such 

as bird flocking, fish schooling, and ant colonies. Self-

organization is the idea that individuals will organize into 

societies based only on local rules and local communication. It 

is basically large scale organization through limited local 

interactions of the constituent components. Emergence is the 

principle that unintuitive or unexpected global patterns will 

observably materialize from the interactions in the system.  

Self-organization and emergent behavior have been popular 

research topics in the complex systems field and many others 

including biology, thermodynamics, computer science, 

sociology, and economy [1-7]. Self-organizing systems can 

accomplish complex tasks with simple individual behavior and 

components, requiring simple programming and simple 

architecture of components. This not only decreases the 

manufacturing expense but eases hardware development and 

maintenance. Furthermore, self-organizing complex adaptive 

systems rely on local processes and distributed control, leading 

to high level theoretical scalability. 

The critical advantage of collectively intelligent multi-

agent systems is their adaptive ability, i.e., the ability to persist 

through external and internal changes. The natural world 

exhibits many biological examples of adaptive systems that 

robustly adapt to both the external environment and to internal 

changes. In schools of fish, many fish are capable of moving as 

a single entity while they disperse to avoid predators and 

obstacles but quickly gather to reform the school. This 

collective behavior results from each fish applying a few 

simple behavior rules of separation and movement. At a deeper 

micro-level, cells with identical DNA combine to form 

complex structures. By relying on vast numbers of resource- 

limited and unreliable cells, cellular systems achieve reliability 

even in cell death, varying scale, and uncompromising 

environments. 

While the natural systems had the luxury of evolution over 

millions from bottom up, in our engineering world, achieving 

bottom-up adaptability by design represents a major challenge 

to the systems engineering and design research community. 

Two fundamental issues must be addressed: one is the analysis 

problem of predicting the global emergence from local 

interactions; and the second is the design problem of 

compiling local rules based on a desired global function. One 

method to address the issues has been to use empirical 

approaches to simulate and model the observed responses 

exhibited in natural systems; however, this relies on trial-and-

error and can be difficult to use as an engineering tool. 

Another method is to implement communication mechanisms 

that trigger direct responses from individual agents, but this 

means that individual actions under specific conditions are 

already pre-specified. 

In our research, we propose a cellular self-organizing 

(CSO) approach to developing complex adaptive systems. In 

the CSO framework, a system is composed of multiple 

mechanical (e.g., robotic) cells, which self-organize themselves 

through individual actions and mutual interactions. To deepen 

our understanding and provide design methods for the 

development of CSO systems, in this paper, we introduce a 

design approach focusing on the relationship between local 

agent interactions and emergent collective system behavior. 

More specifically, a parametric approach centered upon 

interactive behaviors will be used to develop a meta-model of 

the behavioral model of agent interactions. Once complete, the 

approach can be used to manage adaptive ability by specifying 

interaction patterns of agents in a multi-agent system. 

Furthermore, parameterizing local behaviors provides an 

opportunity to analyze the relationship between different types 

of local interactions in addition to the relationship between the 

local interaction and the collective functionality. 

In our proposed CSO systems, each simple mechanical 

cell or agent usually cannot accomplish much by itself, but 

many cells organized properly can collectively achieve 

specified tasks. Global patterns will emerge from only local 

interactions between the individuals. It is hypothesized that 

properly designed local rules of self-organization will result in 

useful emergent collective behaviors and functions and that by 

utilizing a behavioral approach focusing on interaction 

between cells, a CSO system of many agents can be designed 

with collective functionalities. Using the parametric approach 

provides tunable dynamical variables towards managing 

collective behavior, leading to various desired global functions. 

In the rest of the paper, we first review the related work in 

the next section. After that a meta-interaction model approach 

is presented and discussed, followed by a detailed description 

and discussions of computer simulation based case studies. 

Future work and concluding remarks are described in the last 

two sections. 

RELATED WORK 

Self-organization and emergence has been used to study 

many natural systems such as chemical pattern formation, 

traffic jams, termites, and ant social behavior [8-11]. Much 

research focuses on creating a model that can parallel the 

natural system in order to understand how the natural system 

works. Extending such work, many of the observed natural 

techniques and principals are applied to artificial systems. One 

common example in mobile robotics is the application of ant-

like behaviors such as stigmergy [8, 11]. 

Reynold‟s Boids is a well recognized example of 

emergence in swarms where the collective complexity results 

from the local interaction of individual agents [12]. Each agent 

follows three simple rules of interaction: separation, velocity 

matching, and flock centering. However, more rules must be 

added to produce obstacle avoidance and goal seeking for true 

system functionality [12]. Mataric developed learning in group 

environments by using a set of basic behaviors abstracted from 

the Boids framework [13]. The behaviors served as building 
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blocks for synthesizing and analyzing learning group 

behaviors. Couzin‟s group also uses a method extended from 

the Boids framework in order to study movements in real 

collective animal systems [14]. By using a parametric 

matching approach, they try to find the true characterization of 

collective motion in animal groups. 

One of the challenges in using self-organizing approaches 

is to take a global goal and then generate the local rules of 

interaction. Stoy and Nagpal introduced a distributed approach 

where information is communicated in the form of directional 

gradients, which direct elements towards empty locations as 

defined by a CAD represented desired shape [15, 16]. In 

another approach, Nagpal had developed a language for 

instructing a sheet of identically-programmed agents to 

assemble themselves into a predetermined global shape [17]. 

The process of construction is sequenced, triggered, and 

communicated through the cells of the sheet by means of a 

gradient message. Both of these approaches constrain the 

system to preconceived structures dependent upon human 

understanding and creativity, and there is also no direct 

translation towards functionality. 

Another distributed communication method for task 

execution is the bio-inspired Digital Hormone Model, DHM 

[18]. With DHM, each component of a swarm can 

communicate via hormones and execute local actions via 

receptors. These actions are based not only on the received 

hormone, but also on the cell‟s local topology, current internal 

state, and sensed environment, thus each cell can react to the 

same hormone differently although all cells have the same 

decision-making protocol. The method is based on reactive 

responses such that implemented strategies are a collection of 

preprogrammed condition-action pairs. Similar to Nagpal‟s 

approach, the local rules are defined around specific individual 

reactions from a communication trigger as oppose to 

interaction and reaction between local neighbors. 

Classical Design Paradigm 

The classical approach, such as systematic design and 

axiomatic design, creates a good design only when the 

designer can foresee all the future needs and environments, 

and thus eliminate the unexpected and the unintended from the 

process [19, 20]. The performance of the system depends on 

the knowledge, capability, and innovation of the designer since 

the designer will absolutely determine the system behavior and 

functionality. The classical process requires the function and 

task environment to be well-defined before completing a 

functional break-down with piece-by-piece design [21]. The 

end-goal is to generate a single solution that will be precisely 

replicated such that users can expect an exact functionality, 

even if most engineers admit that many equally good solutions 

can exist. 

The classical engineering process has produced most of 

the current technological advances including lunar rovers and 

microprocessors. While these systems definitely have 

“complexity” challenges, they have only been designed as 

“complicated” systems. As Braha points out, „complicated‟ 

does not equal „complex‟ [21]. Scientific complexity arises 

from the numerous actions and reactions that happen in the 

inter-relationships of the components. The traditional 

approaches attempt to indirectly consider complexity by 

simplifying the system and stripping the complex nature of the 

problem. 

In addition, by attempting to impose a top-down approach, 

the innovative patterns and structures that arise from 

emergence would be suppressed since only human-conceived 

global structures would be enforced. Using self-organizing 

rather than explicit design can leave the system free to 

innovate its own solutions. The problems that complex systems 

will confront are not entirely predictable so all the possible 

solutions cannot be determined or optimized in advance. 

Complex systems must explicitly leave room for unpredictable 

task environments and unforeseen challenges. 

A META-INTERACTION MODELING APPROACH 

The presented approach focuses on the interactive 

behavior between cells. Interaction is the intrinsic mechanism 

of complexity. The interactions between the individual cells 

also collectively result in the global behavior. Even with simple 

actions and simple rules of interactions, unintuitive and 

complicated global patterns emerge. The designer must focus 

on designing the context of the local interactions between 

components rather than only on the individual functions. In 

contrast to traditional AI, which addresses intelligence in the 

individual, this work is centered on the belief that intelligent 

behavior of a multi-agent system is tied to agent interaction 

and cannot be understood in isolated individual circumstance 

[13]. 

This research hinges on the argument that collectively 

intelligent behavior in a decentralized multi-agent system can 

occur from only local interactions, based on simple rules, 

between simple agents. The goal of this approach is to 

demonstrate a variety of complex interactions that are achieved 

with basic abilities and manipulated through parametric 

variables. It is concerned with the emergent collective behavior 

as oppose to predicting the precise behavior of individual 

components. 

As mentioned previously, distributing work among cells by 

a central controller has many disadvantages, so this approach 

designs the behavior of individual cells such that collective 

intelligence emerges from the cell cooperation. The system has 

no central brain, yet the cells must synchronize to produce 

collaborative motion. The challenge in the self-organizing 

approach is to achieve specific system functionality rather than 

simply allowing and observing some global behavior to 

emerge. In many of the past approaches, the system function is 

defined by the overall final configuration of the cells where the 
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human designer constructs a target configuration given some 

functional requirement set. Then a transformation algorithm 

provides the step process to obtain the target configuration. 

However, in this approach, only the end system behavior is 

significant, not the specific target configuration. There are no 

predetermined structures as long as the collective system can 

achieve the desired function. In actuality, it is more likely that 

the system will not maintain a consistent specific structure. In 

the behavioral approach, the collective behavior will translate 

into the end system functionality. Utilizing behaviors can hide 

low-level details of control and allow for higher-level 

directives, which are often more intuitive for the user. 

Meta-Interaction Model Development 

The approach is to identify and then parameterize the 

local interactive behaviors for each individual to create 

dynamical variables in the system. The meta-interaction model 

is abstracted on top of the interactive behaviors through the 

parametric variables. Once the model can be built, it will 

provide a guide to understand the possible global function 

based on the current system profiles, and also a heuristic on 

how to change the profile based on a desired global function. 

Interactive behavioral models such as Reynold's Boids are 

abstracted upon the identified local interactions. The 

behavioral models can then be parameterized by weighting and 

aggregating the different behaviors. The parameters are 

variables that can be manipulated to change the collective 

behavior in order to achieve different global functions. 

Furthermore, these parameters provide an opportunity to 

analyze the relationship between different interactive behaviors 

in addition to the relationship with the collective behavior. 

This tunable mapping between the local interactive behaviors 

and the collective behavior provides the basis for the proposed 

design approach. Utilizing the tunable variables, the 

relationships will be investigated leading to the development of 

the meta-interaction model. The meta-interaction model can be 

used to provide information on the indication and prediction 

relationships between the global function and the local 

interactions. 

 

Figure 1: Parameterization of interactive behaviors introduces a 

tunable mapping between local interactions and global result 

The general goal of the meta-interaction model is to 

provide design information creating a path between the local 

interactive behaviors and the global function. Essentially, the 

approach creates a tunable connection between the local and 

global behaviors. The meta-interaction model is an abstracted 

layer above behavioral interaction models. The behavioral 

model is an abstracted layer above the individual cell 

functions. 

Individual Cell Model 

The first level of abstraction is to model the individual 

cells and define their capacity.  Admittedly changing cell 

functions can greatly affect not only the emergent properties, 

but also change the entire space of possible collective 

behaviors. With increased functionality of the individual cells, 

the collective system has more degrees of freedom likely 

resulting in greater possible global behaviors and functions. 

However, maintaining simple cells allows the research to 

highlight the stated focus of interaction. The current purpose is 

not to study how individual capacity changes collective 

emergence. In order to focus on the method based on 

interaction, the individual cell functions will be constrained to 

a very simple mechanical cell. This also aligns with the 

premise that useful emergent properties can occur from self-

organization from simple cells.   

The system will be homogeneous consisting of mobile, 

circular mechanical cells. Each cell only has 2-D movement 

such that the decision process is simply to consider in which 

direction to move. Cells maintain no long-term memory of the 

environment and have a limited communication and sensing 

range. As such, cells do not form explicit models or 

expectations of other agents or the environment. However, in 

the homogeneous system, all cells are functionally identical, so 

some implicit modeling does exist. 

Specifics regarding how information is obtained through 

sensors are beyond the scope of this paper. The approach 

assumes that each cell can communicate wirelessly over a 

finite spatial locality of communication in addition to 

perceiving relative positions and velocities of other 

individuals. Also, the cells can identify like-cells from other 

environment entities. No cell has knowledge over the global 

state of the system beyond its local neighborhood. Therefore a 

cell can be characterized in the simulation by its x-y-

coordinate position, its velocity, its physical diameter, and its 

neighborhood of locality. 

Behavioral Interaction Model 

The next level of abstraction is modeling the behavioral 

interactions between cells. This paper uses a behavioral model 

extended from the Boids model: maintaining a separation 

distance, cohesion, and alignment. As the cells have no global 

coordinate system, they can only perceive the relative positions 

of the other cells. Each cell maintains separation distance by 

generating a unidirectional repulsive virtual spring from other 

cells and perceived obstacles.  This means that the closer a cell 
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is to an obstacle, the greater the cell wants to move in the 

opposite direction. The avoidance vector is given by 
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where xi is the relative position of component i and 

( i ) denotes iterating over all other elements within the 

neighborhood. N is the number of other elements that have 

been perceived, or stated differently, the number of elements 

inside neighborhood η besides the cell itself. An important 

consequence to notice is that the interactive repelling force 

between two neighboring cells is effectively doubled since both 

cells are repelling from each other. In addition, the vector is 

undefined when the denominator equals zero; however, this 

never occurs because two elements will not exist at the exact 

same location. 

Centering, or here-in called cohesion, is implemented by 

each cell moving towards the average position of all the other 

cells in its neighborhood. With cohesion, xi is the relative 

position of cell i iterated over all other cells within the 

neighborhood. 
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Velocity matching, or alignment, is achieved by each cell 

moving in the average direction of all the other cells in its 

neighborhood. 
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Alignment is the velocity parallel to cohesion. Alignment 

is a vector pointing in the average direction of the other cells‟ 

movements. Each cell also takes into account its own 

momentum (M), maintaining some of its previous velocity as 

inertia rejects change. The simulation estimates velocity by 

1 tt xxv      (4) 

where t is the current time step and (t-1) was the previous 

step. Cells also exhibit a small amount of random (R) variation 

in the selected direction. 

The next step is to convert the interactive behaviors into a 

parametric model.  This is done by assigning weights to each 

type of interactive behaviors, which corresponds to each of the 

presented vectors. These weights associate with cohesion (WC), 

avoidance (WO), alignment (WA), randomness (WR), and 

momentum (WM). Each cell takes the above factors into 

account in generating its decided movement. The change in 

position, δx, for a single time step is given by 

MWRWAWCWOWx mRACO    (5) 

Substituting each derived term gives the equation 
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Figure 2 is a visual representation of a profile where each 

weight is equal to one another. In the profile visualization, 

'COARM' represents cohesion, avoidance, alignment, 

randomness, and momentum, respectively. 

 

 

Figure 2: Example Parametric Profile 

In the simulated results, the change in position is 

normalized when the desired step size is greater than the 

maximum step size resulting in 

 stepsize
x

x
x




~     (7) 

This limits the distance a single cell can take in any given 

step just like real hardware with speed limits. 

Meta-Interaction Model 

The last level of abstraction is the meta-interaction model. 

The goal of the meta-interaction model is to provide a 

mapping for the prediction of collective functionality from 

local interactions and for the indication of local interactions 

based on desired functionality. The collective behavior of the 

system will emerge from the aggregation of all the reactions 

and actions occurring through the local interactions, and this 

collective behavior will translate into the end system 

functionality. With the parametric approach, profiles can be 

built based on the relative contributions of the different types 

of interaction. As the profiles change, the collective behaviors 

will also change. To form the meta-interaction model, task 

functions based on collective behaviors must be classified, and 

then parametric profiles can be categorized into the 

classification.   

The first step is to identify the behavioral trends due to the 

combination and adjustment of the parameter weights. This 

will give the general design guidelines on how to tune the 

parameters in order to achieve specific functions, which are 

matched to collective behaviors. Within the trends, similar 
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profiles can later be grouped into sets that correspond to 

certain types of collective behaviors and functions. 

With the trend information, designers can control the 

parameter adjustment in order to manage the system's multi-

functionality. To validate the use of the meta-interaction 

model, it must be shown that multi-functionality not only 

exists, but can be transitioned through manipulation of the 

parametric variables that were applied to the interactive 

behaviors. The categorization of the profiles provides the 

information guiding the manipulation. The next step will be to 

simulate the system and use the dynamical variables to analyze 

the relationships in combinations of interactive behaviors. 

SIMULATION ENVIRONMENT 

Highly complex systems are difficult to analyze purely 

through current mathematical theory, thus this work uses 

computational methods to evaluate the approach. The 

simulation environment is built on Luke‟s MASON framework 

leveraging the Flockers simulation [22].  MASON is a 

discrete-event multi-agent simulation library built in JAVA. 

The simulation study is done with 2-dimensional space, but the 

conclusions can easily be extended to a 3-D space. The 

environment field is toirodal, which means that exiting the 

screen on the right will bring cells to the left and vice versa 

(the same with top and bottom). 

The simulation occurs in discrete time meaning that at 

each time step, agents will be able to go through one decision 

process: sense the environment, make decision, and perform 

action.  Although real robotic multi-agent systems would likely 

act in parallel, the simulated agents do not run on parallel 

threads. However, the approach is not designed around 

sequential agent actions, and the system does not know which 

agent will act first. The model maintains no central time so 

there is no restraint requiring sequential or synchronized 

actions. This would also be true for parallel processing agents 

that do not maintain a centralized or synchronized time 

reference. Furthermore, the agents lack a large memory 

database, nor do they make expectations for the future. The 

agents do not explicitly maintain a sense of time, so they do 

not consider the order/synchronization of actions with others. 

 

Figure 3: Randomly selected initial positions of 100 cells 

SIMULATION RESULTS 

It is important to understand the balance between the 

simple behavioral rules of interaction. To do this, the 

parameter weights were toggled between various combinations 

of values. The neighborhood size is arbitrarily set to nine, 

which is three times the selected cell diameter. For 

comparison‟s sake, the same randomly selected initial 

positions for 100 cells are used to compose the full system in 

an open toroidal environment as can be seen in figure 3. The 

cells are initially at rest. 

 In order to compare different states of the system, the 

disorder entropy calculation was used as follows, 
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The calculation is the sum of the minimum toirodal 

distance between each cell coupling i-j divided by the number 

of cells N in the system. The equation equates decreased 

disorder with a more tightly packed system. 

Under pure cohesion, the cells cluster into many small 

groups exhibited by figure 4. The cells do not cluster into a 

single group because they do not have an infinite view of the 

world. Individual cells and small groups may not be aware of 

the existence of the other small groups. The cohesive 

equilibrium arises from the simulated physical constraints that 

do not allow the cells to move closer from cohesion. 

 

Figure 4: Pure cohesion after 30 time steps 

 

Figure 5: Pure avoidance after 30 time steps 
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Disorder Entropy: Pure Interactive Behavior
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Figure 6: Disorder entropy of pure interactive behaviors 

Under pure avoidance, cohesion‟s counter-part, the cells 

distribute themselves in the available space in order to 

maximize distance between all the cells as exhibited in figure 

5. If a new cell was suddenly inserted into this separated 

system, it would force many cells to redistribute and 

accommodate the new density because of the many reactions 

that would propagate through the system. 

 

Figure 7: Cohesion-avoidance combination phase plane plot of 2 

cells. x and y represent the absolute location of the 2 cells. 

 

Figure 8: Disorder entropy of cohesion combinations 

Alignment and momentum do not have any effect without 

some type of initial velocities since they are calculated based 

on velocities. This means that a system that starts at rest will 

not change based purely on alignment or momentum. 

In figure 6 the pure interactive behaviors are related 

through the disorder calculation. Cohesion tends to decrease 

the disorder while avoidance results in the opposite. Pure 

uniform randomness presents no discernable trend. 

The combination of cohesion and avoidance acts to create 

a 2-cell solvable target separation distance. Figure 7 shows the 

phase portrait for two cells in 1-dimension using cohesion and 

avoidance. The absolute locations of the two cells are 

represented by „x‟ and „y‟ and the equilibrium points are 

shown with the solid double arrow lines. This corresponds to 

the separation distance. Besides the points where the positions 

of the two cells are equal and cannot be solved represented by 

the dotted line, all points lead to the equilibrium lines. It is 

important to realize that these plots are only true when the 

cells are within each other‟s neighborhood. 

Disorder Entropy: Cohesion & Avoidance with Alignment
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Figure 9:Disorder entropy of cohesion avoidance and alignment 

In figure 8, pure cohesion definitely has a relatively 

greater decline in disorder while the cohesion-alignment 

combination reaches an even lower value. In addition, 

doubling the cohesion weight in the cohesion-avoidance 

combination allows the cohesion contribution to make a 

greater impact and decrease the disorder of the system 

reinforcing the previously discussed separation distance. The 

cohesion-randomness combination does have an overall drop 

in disorder, but the random effect is definitely visible. The 

interesting result here is that the alignment contribution in 

addition to cohesion reaches a lower disorder. With alignment, 

cells continued to move because of the collective velocity of 

their neighborhoods. Basically, when groups of cells would 

normally stop after reaching a point of cohesive equilibrium 

based on pure cohesion, the cell and cell groups continued to 

move based on the collective momentum of the neighborhood. 

However, when alignment is added to the cohesion-

avoidance combination, the end result between the two 

combinations of parameters do not produce significantly 

dissimilar results as emphasized by figure 9. At first, this may 

seem confusing, but it can be better clarified by considering the 

case where there is an increased amount of alignment. To 

further emphasize, adding momentum to the cohesion-

avoidance-alignment combination also has a significant effect. 

While at first alignment had no significant visible effect, 

this is due to the fact that the collective momentums of the 
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groupings were so low that the contribution from alignment 

was dominated by the cohesion and avoidance contributions. 

After alignment is increased, a significant change in the 

collective behavior of the system becomes visible. Additionally, 

if instead of increasing alignment, momentum is added, a 

similar significant change in the collective behavior of the 

system occurs. By increasing each cell‟s momentum, the 

collective velocity of each neighborhood is also increased. By 

increasing alignment, the impact of the collective velocity of 

each neighborhood is increased. The end result is that the 

alignment term can overcome the domination of the cohesion 

and avoidance contribution.  

 

Figure 10: Search environment 

The system still forms clear gatherings of cells; however, 

the gatherings have a continual flow of movement. Continuous 

fluidity is achieved by introducing momentum into the system 

such that the cells will maintain some speed. Furthermore, 

alignment is needed for collective motion in synchronized 

shared directions. Because of the continual movement, the 

groups are no longer separated in several smaller groups. As 

the cells move, the different groups intersect and merge 

together to form a larger single group. This continual flow of a 

cohesive group is the emergence of the collective behavior 

called flocking. 

Searching 

One of the difficulties in only giving each cell a small 

locality of sensing is that there may be no cell that is aware of 

target objects or locations. Figure 10 shows two locations that 

contrast varying difficulty of discoverability. In order to 

simplify the analysis, the number of cells considered in the 

system was eight. The grayed areas represent environmental 

obstacles. 

Generally, the cells can discover target location 1 more 

easily than target location 2 because of the obstacles covering 

location 2. An increased average avoidance weight in the 

system would produce a swarm with a wider search net, which 

can make discovering some open locations quicker. In this 

case, avoidance causes the cells to veer away from the 

obstacles making location 2 difficult to find. However, without 

obstacle avoidance, cells would run into each other and the 

obstacles. 

Of course, analyzing the system behavior is not as simple 

as tuning a single weight. Avoidance works in conjunction 

with cohesion to define the separation distance between cells.  

Increasing cohesion yields similar results to low avoidance 

where the swarm tightly gathers and has a smaller sensor net 

field.  Intuitively, to increase the search field, a lower cohesion 

weight should be used. However with low cohesion, if one cell 

were to discover the passive object, the other cells would not be 

as inclined to follow. 
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Figure 11: Search comparison with the standard profile 

chosen as equal contributions from cohesion, avoidance, 

alignment, and momentum while having no randomness. 

Figure 11 compares the average amount of time steps the 

system needed in order to discover the passive object at 

location 2. This shows that the increased disorder from 

avoidance does yield a quicker search than the standard 

combination, although not much quicker than from increased 

cohesion. Adding randomness has the best overall effect which 

indicates that increased uncertainty helps deal with the 

uncertainty in search applications. While disorder does seem to 

have some relation to search ability, because of the coupled 

nature of disorder with obstacle avoidance, depending on the 

environment, the relationship between disorder and search 

efficiency is not directly proportional. 

Preliminary Insights into the Interactive Behaviors 

The behavioral examination was initiated in order to gain 

insights into the relationship of interactive behaviors.  The 

following key points and representative profiles summarize the 

different findings.  Further work will fully categorize the 

ranges of profiles that match identified behavioral trends. 

 

1. Managing obstacles requires 

avoidance 
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2. Aggregation,  Joining, Attaching, 

Compacting, centering 

 

3. Scattering, Dispersion 

 

4. Specific group demand requires 

decreased disorder 

 
 

5. Momentum gives continuous 

fluidity 

 
 

6. Alignment gives synchronized 

fluidity 

 
 

7. Increasing uncertainty in the 

system deals with application 

search uncertainty 

  
 

Using these insights, the designer can identify interaction 

behaviors for different functions. Essentially, by controlling the 

parametric variables, the system‟s mechanical implications can 

be manipulated. In most cases, different ratios and 

combinations of interactive behaviors will be required. It will 

rarely be as simple as using a single behavior. The hard task is 

simultaneously handling both uncertainty and a specific 

demand. 

Example Application 

The following are typical simple mechanical tasks: 

formation, synchronized group motion, exploration or 

searching, coverage, containment, surrounding, pursuit, 

evasion, and following. Most applications will require a 

combination of tasks either simultaneously or sequentially. As 

an example task application, consider the case of search-and-

surround. Search-and-surround applications include hazardous 

waste cleanup, bomb detection and removal, and disaster 

survival rescues. A natural system parallel would be the human 

immune system where white blood cells continuously swarm 

through the body searching for foreign substances to eliminate. 

The complex system provides many advantages to the 

search-and-surround problem. First of all, as the number of 

agents multiplies, it will become impossible for a central 

commander to coordinate the search task for the numerous 

agents. This approach is fully distributed not relying on any 

central control or global information. In addition, the search-

and-surround applications often occur in hostile and 

unpredictable environments whether in enemy territories, 

unexplored regions of the space and the ocean, or natural 

disasters like earthquakes and storms. The agent swarms must 

be able to adapt to the situation without the need for a prior 

knowledge of the specific hazards that might be encountered. 

 

 

Phase 1: Exploring / Searching  
Behavior: Synchronized Continuous Motion 

+ Uncertain Directions 
Parameter Profile: 

 +  =  

Phase 2: Surrounding 
Behavior: Following 
Parameter Profile: 

 

Figure 12: Representative profile for phases of search-and-

surround 

 
initial 

 
step 36 

 
step 82 

 
step 142 

 

Figure 13: Search-and-Surround example.  There are 100 cells 

searching to surround the 5 big red objects. 

This task requires two phases, the first of searching and 

the second of following. Many cells following a stationary 

object has the consequence of surrounding so the second phase 

will require cohesive groups. The first phase can preemptively 

form groups for the second phase by utilizing synchronized 

directional motion in the search as oppose to random 

individual searches. Thus, search-and-surround should tune 
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with a reliance on randomness, momentum and alignment, and 

then transfer to a dominance of cohesion after the object is 

found. Just to note, some avoidance is required so that 

individuals do not run into each other. Figure 12 shows each 

phases required behavior and parameter profile matching. 

Figure 13 exhibits an example simulation of 100 cells 

searching to surround 5 big red objects in an open 

environment. From the initial positioning, two of the objects 

are quickly discovered and surrounded. Consequently, the 

cohesive behavior of the cells draws more entities to that 

general location. However, since the objects have already been 

surrounded, the new cells cannot latch onto the central 

position of the target objects and thus continue moving in 

search of other objects. By step 142, the five objects have been 

surrounded and the remaining cells continue to search for 

other targets. 

The cells can more quickly discover objects in the open 

space with higher disorder entropy from random movements 

and increased separation. Furthermore, because the cells are 

constantly interacting implicitly through the collective 

behaviors, objects can be quickly surrounded rather than 

waiting for each individual cell to discover the object on its 

own. When cells move as a group rather than individually, an 

object is quickly encompassed after discovery. The method is 

fully distributed without any explicit cooperation between the 

simple cells. This search-and-surround simulation is a simple 

demonstration of one application. 

However, it must be pointed out that for simulation 

purposes, the change between phases was hard-coded into the 

cells as a response to discovering the target. This is the same 

as hard-coded DNA in white blood cells that automatically 

attack foreign substances. The meta-interaction model 

currently only provides information on the profiles required to 

achieve the functions in each phase and does not yet identify 

learning or communication methods that trigger the phase 

changes. The triggering mechanism may be based on other 

mechanisms such as Nagpal's gradients or Shen's DHM [15-

18]. 

FURTHER VALIDATION REQUIREMENTS 

The meta-interaction model based on parametric 

behavioral weights has been introduced and applied to a 

representative multi-robotic application. The approach can 

easily and quickly be applied towards systems with behavioral 

models. It provides a method to manage multi-functional 

adaptive ability by exploiting dynamical variables that can be 

easily manipulated to change the overall behavior of the 

system. This approach lends itself well to further developments 

in using control feedback design, learning methods, or 

evolutionary algorithms, especially those that require heuristic 

guidance. However, there are a few key aspects that still 

require verification. 

Firstly, with any non-linear complex system, stability must 

be analyzed. One of the major challenges in these types of 

systems are the nonlinear effects such that little changes in 

initial conditions will consequence in drastically different 

outcomes. Consequently, users and designers can never 

deterministically predict the system behavior. However, with 

this approach, there is a major difference with many traditional 

complex systems because the end functionality is based on the 

collective behavior as oppose to specific formations. Because of 

this, it is difficult to use traditional stability approaches based 

on coordinate positions to identify basins of attraction, stable 

cycles, or sink nodes. The current mathematical techniques 

provide limited capability towards solving this complex 

system, so a computational, statistical approach will be relied 

upon. The next step is to complete a statistical study by 

characterizing the resultant global behavior from many 

different initial conditions to ensure a statistical confidence of 

expected behaviors from the same parameter profiles. This will 

then needed to be expanded to show that emergent functions 

will not violate possible safety and performance requirements. 

This will require the system's collective behavior to be 

characterized in order to properly compare different trials. 

Much of the current research has relied on qualitative 

observations from engineers to define whether the collective 

behavior provides functional emergence. For collective animal 

behavior, different metrics that have been suggested are 

various density functions such as coupling distance; polarity, 

which describes the directional alignment of individuals [23]; 

and nearest neighbor distance. The statistical approach will 

demonstrate if these metrics are sufficient or if further 

measures must be identified. 

Finally, the meta-interaction model should further 

demonstrate multi-functionality through additional mechanical 

task applications and implications. It should also be shown 

that the general trends represented by the meta-interaction 

model hold even in slight variations of behavioral 

implementations in different multi-agent systems. However, it 

is not expected that the described meta-interaction model 

would work for dissimilar systems with different simple 

behaviors as the model is abstracted upon a specific behavioral 

model. But after validation, the meta-interaction model 

approach should be feasible for other multi-agent systems with 

different behavioral models. 

CONCLUSIONS 

This paper has presented a meta-interaction model based 

on behaviors in order to help design self-organizing, complex 

systems. The relationships between the simple behaviors of 

cohesion, avoidance, alignment, momentum, and randomness 

were investigated. The concept is to understand the space of 

possible collective behaviors by focusing on simplified classes 

of group behaviors. From there the paper showed how the 

interactive factors affected the collective behaviors. The 
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exhibited implications from the interactive behaviors are as 

follow: managing obstacles requires avoidance; aggregation 

and dispersion are controlled through cohesion and avoidance; 

group demands requires decreased position disorder; 

momentum provides continuous fluidity; alignment gives 

synchronized fluidity; and uncertainty in the system can deal 

with application search uncertainty. 

Through this process, an approach based on the behavioral 

interactions within the complex system is introduced that once 

fully developed can principally be applied towards the design 

of complex, adaptive systems. Further behavioral trends will be 

studied such as the onset of synchronized directional motion 

from varying amounts of alignment. 

While the approach still needs certain validation studies 

such as stability, once validated, it can easily lend itself 

towards control feedback, evolutionary methods, and learning 

approaches. Future research can combine these techniques 

such that the system can self-discover new system behaviors, 

and thus functionality. Currently, the system objective is 

defined extrinsically by a human programmer, but it can be 

adjusted to be intrinsic based on fitness functions or even 

simply survival. 

Of course, the classical engineering approach may still be 

ideal when the environment can be well-defined along with the 

required functional specification. Self-organizing based 

complex systems excel in complex environments containing 

unforeseeable circumstances because engineers cannot predict 

all the possible contingencies that may be encountered. 

Complex systems can provide the adaptive ability in order to 

manage such uncertainties that classical systems cannot. On 

the other hand, complex systems gain adaptive ability at the 

compromise of predictable determinism. Pure self-organizing 

systems may not be the optimal solution towards many tasks, 

and a hybrid system combining deterministic hierarchical 

approaches with complex self-organizing methods may prove 

promising for further research. 
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