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ABSTRACT 
        Bayesian reliability analysis (BRA) technique has been 
actively used in reliability assessment for engineered systems. 
However, there are two key controversies surrounding the 
BRA, that is, the reasonableness of the prior, and the 
consistency among all data sets.  These issues have been 
debated in Bayesian analysis for many years, and as we 
observed, they have not been resolved satisfactorily.  These 
controversies have seriously hindered the applications of BRA 
as a useful reliability analysis tool to support engineering 
design.  In this paper, a Bayesian reliability analysis 
methodology with a prior and data validation and adjustment 
scheme (PDVAS) is developed to address these issues.  In order 
to do that, a consistency measure is defined first that judges the 
level of consistency among all data sets including the prior.  
The consistency measure is then used to adjust either the prior 
or the data or both to the extent that the prior and the data are 
statistically consistent.  This prior and data validation and 
adjustment scheme is developed for Binomial sampling with 
Beta prior, called Beta-Binomial Bayesian model. The 
properties of the scheme are presented and discussed. Various 
forms of the adjustment formulas are shown and a selection 
framework of a specific formula, based on engineering design 
and analysis knowledge, is established. Several illustrative 
examples are presented which show the reasonableness, 
effectiveness and usefulness of PDVAS.  General discussion of 
the scheme is offered to enhance the Bayesian Reliability 
Analysis in engineering design for reliability assessment.  
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1. INTRODUCTION 
        Bayesian reliability analysis (BRA) technique has been 
actively used in reliability assessment [1-4].  BRA follows a 
traditional Bayesian approach that is to assume a sampling 
distribution for the data being analyzed, assign a probability 
distribution, called prior distribution, to the sampling 
distribution parameters, then collect test data to form the 
likelihood function, and update the prior to the posterior 
distribution with the Bayes’ formula that aggregates the prior 
with the likelihood function [3-4].  It has been long known that 
the reliability result obtained through BRA is very sensitive to 
the assignment of the prior.  The criticisms on the prior 
assignment, and prior and data inconsistency have not been 
stopped since the Bayesian technique was introduced, as 
evidenced by many literature articles [5-6]. Numerous 
researches have been under way that addressed the initial prior 
assignment, and several objective and non-informative prior 
generation methods have been developed [7-8].  Examples of 
the approaches include Maximum Entropy method [9], 
Reference Analysis technique [10], and Frequentist Matching 
method [11-13]. 
        After the initial prior is determined, the Bayesian then 
collects test or experiment or analysis data, and derives the 
posterior distribution using the Bayesian formula.  This process 
is called Bayesian updating.  The Bayesian updating can be 
conducted repeatedly as multiple data sets and new information 
become available.  The Bayesian updating basically takes the 
prior and the experiment or test or analysis data, and aggregates 
them in a weighted average manner.  All this is done 
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procedurally, usually without considering how contradicting 
and inconsistent the prior is with the data as well as among data 
sets by Bayesian analysis itself.                      
        Figure 1 describes the traditional Bayesian analysis flow. 
After a sampling distribution is specified in Step 1 and an 
initial prior is determined in Step 2, the Bayesian then collects 
experiment data to form likelihood function in step 3, and 
derives the posterior distribution in Step 4 using the Bayesian 
formula given by Eq. (1). If a repeated Bayesian updating is 
conducted, the posterior distribution derived from Step 4 loops 
back in Step 4R as a new prior input to Step 3, and the 
Bayesian formula (Eq. (1)) is used again to aggregates this new 
prior with new likelihood data to arrive an updated posterior 
distribution.  The posterior distribution is then used as a 
statistical inference tool in engineering design applications in 
Step 5. 
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Figure 1. Traditional Bayesian Analysis Flow 
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        In Eq. (1), )(θΘf
Θ
is the prior density for the sampling 

distribution parameter ; )|(| θxf X Θ
 is the likelihood function 

of the data x given a value as Θ θ ; )|(| xXf θΘ  is the posterior 

density of the Θ ;  is the marginal density of the data. )(xfX

        If a prior distribution takes the same form of the 
distribution function as the posterior distribution, the prior is 
called conjugate prior. Mathematically, the prior, )(θΘf  in a 
conjugate Bayesian model has the same function form as the 
posterior, )|(| xf X θΘ

),

.  The examples of conjugate prior include 

Beta prior with Binomial sampling, called Beta-Binomial 
Bayesian Model, and Normal prior for the mean with Normal 
sampling.  For more conjugate prior examples, see [3-4]. A 
conjugate Bayesian model has several nice features.  The first, 
the derivation of the posterior is much easier.  Usually, a closed 
form formula exists that aggregates the prior and the data to 
obtain the posterior.  For example, for Beta-Binomial model 
with Binomial parameter p, if we assume p is subject 
to ( βαBeta

Beta

, and we obtain the test data of F failures out of 
N trials, the posterior distribution of p is then given 
by )FN −,( F ++ βα . Secondly, for a repeated 
Bayesian updating with k (>1) data sets available, the final 
Bayesian updated result is independent of the sequence of the 
updating taken on the k data sets.    

        During engineering design, especially at conceptual 
design stage, reliability analysis relies on various data sources, 
including historical failure data from similar parts or systems, 
expert opinions, engineering modeling and simulations, and 
prototype or lab test results. Huang and Jin [14] provided a 
comprehensive survey of reliability prediction data sources as 
potential data inputs to BRA. Grantham Lough et al. [15-16] 
correlated the historical failure data to the functions of system 
during functional design to assist risk assessment. Wang and 
Jin [17] developed a functional design approach which utilized 
Bayesian Network technique with uniform distributions as 
inputs to assess individual function’s influence on the system 
failure probability.  Wang et al. [1] applied BRA technique 
during a product design and development cycle using evolving, 
insufficient and subjective data sets including customer survey, 
response surface physics model, and clinic trial test data for a 
repeated Bayesian updating as the design iterates. Huang and 
Jin [18] extended the traditional reliability stress-strength 
interference theory to the conceptual design with combination 
of team survey, historical similar function design data, physics 
bounds of the design to define conceptual stress and conceptual 
strength for reliability quantification.  However, none of the 
above work has addressed the data inconsistency and data 
contradiction issue.  For some BRA applications, an obvious 
data inconsistency may appear between the prior and the test 
data or among data sets from various data sources.  One 
extreme example is that the prior states that the Binomial 
sampling parameter p is equal to 0.01 with probability 1 but the 
experiment data show 5 failures out of 10 trials which is very 
much contradicting with the prior from both statistical point 
view and common sense. A less extreme example is that the 
prior states that the Binomial parameter p is subject to the 
Beta(1, 100) prior while the experiment data shows 1 failure 
out of 10 trials. For the data samples like this, what Bayesian 
analysis produces is a weighted average of the prior and the 
data set as the posterior, as illustrated in Figure 2, though the 
likelihood data and the prior hardly overlap as shown in the 
figure. A data inconsistency example is that one data set has 1 
failure and 2 successes and the other has 1 failure and 50 
successes.  It is not likely that these two data sets are from the 
same sampling distribution. Therefore it is seriously 
questionable whether these two data sets are combinable for 
Bayesian analysis.  The aforementioned prior generation 
methods, namely, Maximum Entropy method, Reference Prior 
Analysis and Frequentist Matching only address the generation 
of the initial prior. As we surveyed Bayesian Analysis literature, 
we observe that there is little active research that addresses the 
prior and data inconsistency, and the validation of the prior and 
the data during a repeated Bayesian updating process.  The 
research in [19] is probably one of the few that discuss the data 
conflict.  This observation is confirmed by the statement in 
Wikipedia [http://en.wikipedia.org/wiki/Bayesian_probability]. 
“Of the tens of thousands of papers published using Bayesian 
methods, few criticisms have been made of implausible priors 
in concrete applications.” 
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Figure 2. Bayesian Result as a Weighted Average  

of Prior and Data Set 

        The above discussion brings an obvious need for prior and 
data validation and adjustment.  If the prior is contradicting 
with the data, the analyst has 3 choices: 1) accept the prior and 
the data, and perform Bayesian update as usual; 2) reject the 
prior and the data; or 3) do something about the prior and the 
data to continue the Bayesian process in a reasonable manner.  
For Choice 1, the analyst may lead himself or herself to a 
misleading inference model generated from Bayesian. For 
Choice 2, the analyst will have no data to perform Bayesian 
analysis.  For Choice 3, the literature survey indicates there is 
no existing theory and method doing so. The objective of this 
paper is to provide such a method helping address Choice 3.  In 
Section 2, we present a modified Bayesian updating process 
with an added step that validates the consistency between prior 
and data, and adjusts the prior and the data accordingly if 
inconsistencies arise.  We provide the mathematical formulas 
for the prior and data validation and adjustment scheme 
(PDVAS) for Beta-Binomial Bayesian model. In Section 3, we 
present and discuss several properties of PDVAS which provide 
some insight and motivation of PDVAS. In Section 4, we 
discuss the selection of prior and data adjustment formulas 
based on the engineering design knowledge and data available.  
In Section 5, we present various examples to illustrate the 
PDVAS applications.  We then summarize the paper in Section 
6, and discuss future research possibilities including the 
generalization of PDVAS to other prior-data sampling model 
situations. 

2.  A Prior and Data Validation and Adjustment 
Scheme (PDVAS) 

2.1 Modified Bayesian Analysis Flow  
        Figure 3 presents our proposal of the modified Bayesian 
analysis process with an added prior and data validation and 
adjustment step, which is Step 4a. All other steps are the same 
as the original Bayesian analysis flow as in Figure 1. We 
discuss the details of the Step 4a in the next several sections.  
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Figure 3. Altered Bayesian Analysis Flow with Addition of  

Prior and Data Validation and Adjustment Step 

2.2 Prior and Data Validation and Adjustment Formulas 
        For Step 4a of Figure 3 for a Beta-Binomial Model, we 
have a Binomial distribution as the sampling distribution with 
the parameter p as follows, 

                      (2) 

)()1()|( xNx pp
x
N

pxXp −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=== θ

x = 0, 1, 2,…, N. p is assigned a Beta distribution with Beta 
parameters α and β .  Its density is  
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11

βα
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                                            (3)                
In Eq. (3), ),(.00,10 βαβα Betaandp >><<  is a              
complete Beta function given by 

∫ −− −
1

0

11 )1( dppp βα . The mean and the standard deviation of 

the Binomial sampling distribution are  
                =Binoμ Np                                                            (4) 

and      )1( pNp −                                                             (5) 
respectively.                                                                                             
        The mean and the standard deviation of the Beta(α , β ) 

are               =Betaμ
βα

α
+                                                 (6) 

and             =Betaσ
1)( +++ βαβα

αβ
                          (7) 

respectively.                                                                                 

        For a general Bayesian analysis, we have the following 
data: Prior distribution is given by Beta(α , β ), and  k data 
sets (k≥1) are given by (F1, S1), (F2, S2),…, (Fk, Sk). For the 
convenience of the notation, we just name α≡0F  

and β≡0S . So we have Bayesian data sets: (F0, S0), (F1, S1), 
(F2, S2),…, (Fk, Sk). Recall Fi and Si represent number of 
failures and number of successes in the i-th data set 
respectively. With the traditional Bayesian process, we obtain 
the Beta posterior, Named Beta( ).  Using Eq (1), we get  **,βα
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        Remember that and are calculated without 
evaluating the data inconsistency and contradictions among 
(F0, S0), (F1, S1), (F2, S2),…, (Fk, Sk).  Now the question is how 
we assess the data consistency and provide a measure of it.  We 
define a consistency statistic with a probability associated with 
a  as follows 

*α *β

statistic2χ
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        The formula is originated from the statistic of the 
traditional hypothesis testing for 2 x (k+1) contingency table 
[20-21].  has a degree of freedom k.  Therefore, the 
consistency for the data sets (F0, S0), (F1, S1), (F2, S2),…, (Fk, 
Sk) is defined as   

2
Cχ

2
Cχ

2χ

                    C ≡ Consistency =                     (11)             )( 22
CP χχ >                                                                           

Where  in Eq. (10) is a random variable with degree of 
freedom k. 

2
Cχ

2χ

        The motivation of the consistency formulas defined by Eq. 
(10) and (11) is that F0+S0 ( )βα +≡  of the prior, per the 
Bayesian process, represents the prior’s sample size, embedded 
in the prior knowledge in processing the posterior distribution 
[4]. F0 )( α≡ and S0 ( )β≡  approximately represent the 
number of failures and successes respectively, afforded by the 
prior. The mean of the prior is
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        The consistency measure C, calculated by Eq. (10) and 
(11), represents the prior and data validation result.  C is a 
value between 0 and 1. When C = 1 or close to 1, we believe 
that the data sets, (F0, S0), (F1, S1), (F2, S2),…, (Fk, Sk),  are 
completely consistent or nearly consistent. Thereby we will 
implement the Bayesian updating unconditionally as we do in 
the traditional Bayesian process.  When C = 0 or close to 0, we 
believe that the data sets, (F0, S0), (F1, S1), (F2, S2),…, (Fk, Sk), 
are completely inconsistent or nearly inconsistent.  Thereby we 
will seriously challenge the assumption embedded in Bayesian 
that all data sets, (F1, S1), (F2, S2),…, (Fk, Sk), are generated 
from the same Binomial sampling with p as the parameter.   

        Now the question is that what do we do when the 
consistency C by Eq. (11) is between 0 and 1? We propose the 
following data adjustment algorithm as part of the Bayesian 
updating. This is the substantiation of Step 4a in our proposal 
of the altered Bayesian updating process presented in Figure 3. 
Figure 4 shows the algorithm and Figure 5 presents the data 
adjustment step details. Where  in Figure 5 is 

the statistic by Eq. (10) using data sets (F0, S0), (F1, S1),…, 

(Fi, Si), but excluding the data set (Fm, Sm).  Therefore  

has a degree of freedom of i-1. Cm is the consistency measure 
among data sets (F0, S0), (F1, S1),…, (Fi, Si), excluding (Fm, Sm), 
therefore, .  The data adjustment step 

(Step 3) in Figure 4 and the adjustment details (Steps 3.1 – 3.3) 
in Figure 5 basically detect the inconsistency sources and 
adjust the data sets to make them consistent.  The targeted data 
set ((Fv, Sv) in Step 3.2 and 3.3) for the data adjustment is the 
one with the biggest consistency value after it is excluded from 
the consistency calculation, therefore it is identified as the 
source of inconsistency. It is noted in Figure 4 that the data 
validation and adjustment starts from the second Bayesian 
updating since for the first update, we only have the initial prior 
and the first data set which won’t provide us any direction how 

2
,mCχ

2χ
2

,mCχ

)( 2
,

2
mCm PC χχ >=
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we can adjust the data.  Step 2 and Step 3 in Figure 4 are in an 
iteration loop.  Therefore there is a convergence issue.  We will 
discuss this in next section. Step 3.3 is to adjust the data set (Fv, 
Sv), when it is found that it is the source of the inconsistency.  
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Figure 4. Bayesian Updating Prior and Data Adjustment 
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Figure 5. Details of the Data Adjustment Step 

        Next we discuss the data adjustment formula. We first 
define a data adjustment as a mapping from the consistency 
measure to the data adjustment score, denoted as SDA. 
                    SDA = f(Consistency)                                          (12) 
         The exact form of f function in Eq. (12) will be 
determined in Section 4. The SDA also takes values in the range 
of [0, 1].  We then apply the SDA  to the data set (Fv, Sv) in the 
following discounting manner to obtain the discounted values 

of and , namely,vF vS vF~  and vS~ , respectively. 

                   vDAv FSF =~
 and vDAv SSS =

~
                         (13) 

        So far, we haven’t defined the detailed f functional forms 
of SDA yet.  But we know SDA should satisfy the following 
conditions 
                    SDA(0) = f(0) = 0                                                (14) 
and              SDA(1) = f(1) = 1                                                (15) 

and  SDA(consistency2) ≥ SDA(consistency1) when 
       Consistency2 > Consistency1    (monotone increase)      (16) 
        Eq. (13), (14), (15) and (16) basically state that when the 
consistency measure is zero, we completely ignore the data set 
(Fv, Sv).  When the consistency measure is one, we completely 
accept the data set (Fv, Sv) which is what the traditional 
Bayesian updating process does.  The bigger the consistency 
measure, the less we discount the data.  Recall that Step 1 of 
Figure 4 asks for defining a threshold value of the consistency 
measure (Tc).  The role and the interpretation of this threshold 
are similar to the concept of the significance level in a 
traditional statistical hypothesis testing.  But the rejection 
criterion in hypothesis testing is a step function that is when the 
probability value (p-value) of observing certain data sample is 
below the significance level, the null hypotheses will be 
rejected.  In the context of the PDVAS application, we extend 
this step function to a set of smooth curves, which can 
incorporate engineering design and analysis knowledge for data 
adjustment. In this section, we present a general forms of SDA 
Curves first.  In next section, we will provide recommendations 
how a specific curve can be selected based on available 
engineering design and analysis data. 

        Figure 6 depicts various possibilities of SDA curves with Tc 
= 0.05.  For all the curves in the figure, SDA = 1 when the 
consistency measure ≥ 0.05. The curve A in the figure is very 
close to taking all SDA values of 1 for any consistency measure. 
So it is, if adopted, leading to the traditional Bayesian updating 
process. The curve G takes almost all SDA values of 0 for the 
consistency measures ≤ 0.05, which leads to the nearly 
complete rejection of the data set (Fv,Sv), similar to the situation 
of a traditional hypothesis testing with a significance level of 
5% of rejecting a null hypothesis. Section 4 will discuss the 
details how to select a Tc and SDA curve. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

A

B

C

G

F

E

D

Consistency Measure

S D
A

C
ur

ve
s
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3.  Discussion of Properties of PDVAS 
Proposition 1.  For the data set (Fv,Sv) being adjusted in Eq. 
(13), PDVAS does not change the mean of the data set but 
increases its standard deviation σ. 

        The proof of Proposition 1 is given in Appendix A. 
Proposition 1 reflects a key PDVAS strategy, that is to maintain 
the mean of the adjusted data set but increase the spread of the 
data distribution. In another words, PDVAS takes the face 
value embedded in the data regarding to the knowledge of 
central tendency but discounts the value of the data set by 
increasing its variance.  The rationale of doing so is that when 
the prior or the data are collected, usually the uncertainty 
associated with the variability is much bigger than the one 
associated with the central tendency. Therefore the variability 
of the data is more doubtful than the mean.  PDVAS focuses on 
the adjustment of the variability to achieve the data consistency. 

Proposition 2. At the i-th Bayesian updating with the data sets 
(F0,S0), (F1,S1), ..,, (Fi,Si),  If   
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all inequality signs reversed.  
        The proof of Proposition 2 is given in Appendix A.  
Proposition 2 indicates that when PDVAS detects a data 
inconsistency with the data set (Fv,Sv) as the source of the 
inconsistency, it adjusts (Fv,Sv) to reduce its weight in the 
posterior distribution such that the posterior mean is moving 
away from the mean of the data set (Fv,Sv) toward the mean of 

. Under the extreme case, that is SDA is zero or 

close to zero, (Fv,Sv) is completely or nearly completely 
ignored, and the posterior mean is the mean of .           

Proposition 3. For the data sets (F0,S0), (F1,S1), ..,, (Fi,Si),  
there always exists a set of SDA values such that Step 2 and 3 of 
Figure 4 will converge. 
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        The proof of Proposition 3 is given in Appendix A. 
Proposition 3 confirms that there is always a data adjustment 
solution for PDVAS when a data inconsistency is detected, and 
that Step 2 and 3 of Figure 4 will not fall into a dead loop.  In 
reality, Step 2 and 3 often take as a few as one or two iterations 
as the illustrative examples will show in Section 5.  
 
Proposition 4. For no failure situation, that is, in (F0,S0), 
(F1,S1), ..,, (FkSk), all Fi=0 except F0,  by Eq. (10), after 

substituting F0 by

2
Cχ

00
~ FSF DA=  and S0 by 00

~ SSS DA= , is a 

monotone increase function of SDA,  ∑
=

=+

ki

i
iS

S 10

0≥
F

F

0
C
2χ  and 

∑
=

=+
→

ki

i
iC S

SF
F

100

02χ when SDA → 0.   

        The proof of Proposition 4 is given in Appendix A. 
Proposition 4 addresses a special data situation, that is, there is 
no failure in the data.  Therefore, there is no evidence of data 
inconsistency among (F1,S1), ..,, (FkSk), since all data means = 
Fj/(Fj+Sj)=0 (j=1,2,…,k). For the same reason, the failure ratio 
of the data can not be compared with the prior’s.  If we attempt 
to adjust (F0,S0), the proposition states that the adjusted 

value, , has a lower bound limit. Therefore the data 

adjustment won’t make 
 
go to zero even SDA=0. Thereby the 

prior and data validation and adjustment can not be performed 
meaningfully.  PDVAS will not make any data adjustment 
under “no-failure” situation. PDVAS will default to the 
traditional Bayesian result under no-failure situation.   

2χ 2
Cχ

2
Cχ

Proposition 5. The final posterior in a repeated Bayesian 
updating with multi-data sets using PDVAS is update sequence 
dependent.                        

        Proposition 5 indicates that PDVAS eliminates the nice 
feature of the updating sequence independence possessed by 
the conjugate prior Bayesian process.  To prove the 
proposition, we only need to provide an example illustrating 
the posterior distribution will vary from different updating 
sequences in a multi-data set Bayesian updating process using 
PDVAS. This example will be given in Section 5 (Example 4).  
We will also show in Section 5 through simulated examples, 
that stochastically, PDVAS is unbiased with different updating 
sequences. That is  
              and  )()( 2_,1_, sequenceksequencek EE αα =

             )()( 2_,1_, sequenceksequencek EE ββ =                         (18)                

Here, E represents the expectations; 1_,sequencekα and 

1_,sequencekβ  are the Beta parameters of the posterior through k 

updating times for the updating sequence 1, and 

2_,sequencekα and 2_,sequencekβ  are the Beta parameters through 

a different k updating sequence.  We will also show through 
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simulations in Section 5 that the mean of the PDVAS posterior 
converges to the true data mean. 

4.  Selection of Data Adjustment Formulas  
        In Section 2, we discussed some general forms of the 
formulas being applied to data adjustment after PDVAS detects 
a data inconsistency.  Proposition 3 in Section 3 indicates that 
we can always find a data adjustment score value, SDA that 
discounts the data to make the data consistent.  However, the 
intention of PDVAS is to discount the data as less as possible, 
especially be careful not throwing out good data. Therefore, the 
selection of SDA value and its function is essentially important.  
If SDA is too small (close to 0), we tend to disregard good data 
which defeats the original intention of the Bayesian analysis. If 
SDA is too big (close to 1), we are accepting the data blindly 
which may ignore possible data inconsistency and lead to 
misleading inference.  In this section, we first provide a family 
of SDA functions then recommend some criteria for selecting a 
specific one for general engineering design applications.   
 
4.1 A Family of SDA curves 
        We select the incomplete Beta function within the range 
[0, Tc] to represent the SDA functions. Here Tc is the threshold 
value defined in Step 1 of Figure 4.  When the consistency 
measure C, calculated by Eq. (11), meets C ≥ Tc, we accept all 
the data as-is without any adjustment. When the C values fall 
within (0, Tc), we calculate SDA using an incomplete Beta 
function as follows.  
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        Beta(m,n) in Eq. (19) is a complete Beta function given by 

.  The rationale of selecting the incomplete 

Beta function for SDA is its versatility in its shapes and the easy 
interpretation of the parameters m and n in Eq.(19) related to 
the engineering design knowledge.  To illustrate the merit of 
the Beta function, we present an example of a set of Beta 
curves in Figure 7 with Tc = 0.05. All the curves have the 
saddle points (the second derivative=0) near 
m/(m+n)0.05=0.0125 on the x-axis. As m and n get bigger, the 
curves get steeper around the saddle point, approaching the 
situation either PDVAS completely rejects the data or 
completely accepts the data depending on whether C is bigger 
than or smaller than 0.0125.  It is recognized from probability 
theory that the consistency measure C by itself is a random 
variable with Uniform(0,1) as its distribution, since it is a value 
on the accumulative probability function of the random 
variable by Eq. (11). Therefore, when C falls within (0, 0.05), it 
uniformly takes a value between 0 and 0.05.  The family of the 
curves in Figure 7 basically states that there is on the average 1 
out of 4 or 25% (=0.0125/0.05) chance to significantly reject 
the data. At the extreme case that we are certain 1 out of 4 

times that the data are bad, we completely reject that data (SDA 
= 0 or close to 0).  However, in reality we make the statement 
“1 out of 4” with uncertainty, so we only reject data partially 
which is quantified by the C value with various curves.  Now 
the question is how we select Tc, m and n for the SDA function 
for our PDVAS implementation? 

∫ −− −
1

0

11 )1( duuu nm

2χ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05

Beta(2,6)

Beta(4,12)

Beta(8,24)

Beta(16,48)

Beta(32,96)

Consistency Measure C

S D
A

0.0125
Saddle point ≅
0.05 m/(m+n)  

Figure 7. A Family of Beta Curves as Potential SDA 
Functions 

4.2 Selection of Tc , m and n 

4.2.1  Tc selection 
        Tc represents a screening criterion which is conceptually 
similar to the significance level or α value in a traditional 
statistical hypothesis testing. The α value is always set to be 
small (≤0.1) to avoid unacceptable false positive in the 
hypothesis testing.  From engineering design point view, when 
we use Bayesian analysis to aggregate the data to predict 
reliability, data often come from various sources therefore big 
uncertainty can be expected.  While we want data inconsistency 
to be detected, we don’t want to go through the data adjustment 
step when the evidence of data inconsistency is not strong.  
Therefore, we recommend using Tc value of 0.05 as a standard 
value for the inconsistency screening. For the case that we want 
to closely mimic traditional Bayesian analysis result without 
concerning too much about data inconsistency, we can use a Tc 
value of 0.01 or smaller.   

4.2.2 m,n selection 
        As we mentioned in Section 4.1 that the ratio of m/(m+n) 
approximately represents our knowledge and judgment based 
on engineering design and analysis data, on the possible 
percentage of inconsistent data. While keeping m/(m+n) 
unchanged, the more certain we can pinpoint the source of data 
inconsistency, the bigger the m and n we can assign to. As one 
of our early research papers surveyed [14], reliability data for a 
Bayesian Analysis can come from the following 4 sources: 1) 
Statistical frequency method (SF); 2) Similarity and 
Comparative Assessment (SCA); 3) Physics Based Modeling 
and Simulation (PBMS); and 4) Expert Elicitation (EE).  
Usually, SF data, which are generated from field or lab 
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simulated operating environment, have the smallest modeling 
uncertainty for the reason that fitted statistical inference model 
partially addresses the sampling modeling uncertainty. 
Uncertainty in other three data sources (SCA, PBMS and EE) 
can vary widely but data from EE probably have the biggest 
modeling uncertainty since they are purely based on expert 
judgment. With the above assessment, we use Table 1 as the 
selection frame work for m and n which also serves as an 
illustrative example. 
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        Col (1) in Table 1 classifies the data source categories. We 
use our research result in [14] to divide all possible data 
sources into 4 categories (SF, SCA, PBMS and EE).  Users of 
PDVAS can create their own data source categories.  Col (2) is 
the engineering judgment of the analyst based on their 
knowledge on the design and analysis for what the average 
percentage of the inconsistent data can be. Col (3) is to assess 
the uncertainty of Col (2) which asks approximately how many 
times the analyst has experienced the data inconsistency 
instances in the past.  Col (4) just takes Col (3) as m. Col (5) is 
to back-calculate n using Eq.(20). Col (6) completely defines 
the SDA Beta function used in Eq.(19). Figure 8 creates the SDA 
Beta curves based on the data from Table 1.  

Figure 8. SDA Curves for the Data in Table 1 
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        Figure 8 indicates that we rarely reject SF data in a 
dramatic manner shown in Curve (1).  This is in line with our 
recognition that SF data often is the most reliable data source. 
Comparing Curve (2) (Beta (2,2)) and Curve 3 (Beta(1,1)), 
both of them partially discount the data in a prorated fashion. 
Curve (3) is strictly liner. Curve (2) discounts the data less 
when C > 0.025 and discounts more when C < 0.025 than 
Curve (3) does.  This is because we are more confident on 
Beta(2,2) than on Beta(1,1), which by derivation, indicates we 
have experienced more bad data instances in Beta(2,2) situation 
than in Beta(1,1).  For Curve (4) in the figure, we discount the 
majority of the data (more than 50%) when C falls below 0.035 
(70% of 0.05).   

Figure 9. Linear SDA curve 
5. Illustrative Examples of PDVAS Applications  
        In this section, various examples are presented to illustrate 
PDVAS applications. The results from Example 1 to 4 are 
obtained through Monte Carlo simulations that assume certain 
Bayesian prior and data sampling distributions. Example 1 to 3 
show the effectiveness of PDVAS that detects data 
inconsistencies and adjusts the data adequately. Example 4 
shows the updating sequence dependency of PDVAS. Example 
5 is to apply PDVAS to a rocket engine reliability analysis with 
various data sources.   

        Understanding the assessment on the data merits based on 
the data categories is subject to debate and assignment of m and 
n are subjective, the above approach is only considered to be a 
framework. Users of PDVAS can create their own data source 
categories, and assign m and n with their own knowledge and 
judgment. We recommend, for a quick analysis or for the 
situations that not much information is available about the data 
sources, the user uses the linear curve (Beta(1,1)) as the SDA 
function as Figure 9 shows, which basically discounts the data 
in the linearly pro-rated manner when C ≤ Tc without assessing 
the fraction of possible bad data.  In many of our PDVAS 
simulation runs, this approach is proven to be reasonable.   

        Example 1. We assume the initial prior distribution is 
Beta(1,99) but the sampling distributions all come from 
Binomial with p = 0.10.  Intuitively, there is a data 
inconsistency between the prior and the data sets because the 
mean of prior is 1/(1+99)=0.01 while sampling p=0.10. We run 
20 Bayesian updates following the process outlined in Figure 3. 
The results are obtained through a computer simulation using 
the PDVAS algorithm presented in Figure 4 and 5. We use Tc = 
0.05 and the linear curve for SDA as in Figure 9 to execute 
PDVAS.  Figure 10 presents the mean comparison.  Line (1) in 
the figure is the true sampling mean (p=0.1). Curve (2) is the 
Monte Carlo simulated average means from 10,000 Monte 
Carlo runs using PDVAS. Curve (3) is the average means of
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Table 1.  m and n Selection Framework with an Example 

(1) (2) (3) (4) (5) (6) 

Data category Estimated % of 
inconsistent data 

Number of Analyst’s 
experiences on bad data m n 

SDA Beta 
Function in 

Eq. (19) 
Statistical 

Frequency (SF) 
5% 1 1 19 Beta(1,19) 

Similarity and 
Comparative 

Assessment (SCA) 

50% 2 2 2 Beta(2,2) 

Physics Based 
Modeling and 

Simulation (PBMS) 

50% 1 1 1 Beta(1,1) 

Expert Elicitation 
(EE) 

70% 3 3 1.29 Beta(3,1.29) 
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illustrates that PDVAS is effective in correcting the data for the 
case initial prior is too optimistic.  The figure also indicates that 
all three curves tend to converge together eventually when i 
(number of updates) goes to infinite.  However, PDVAS mean 
is much closer to the true sampling mean for the small number 
of updates. Therefore, PDVAS is very useful for the practical 
situations with small number of Bayesian updates. Figure 11 
presents the variance comparisons, which also indicates that 
PDVAS predicts the posterior variance much closer to the true 
sampling variance than the traditional Bayesian does. This is 
because the traditional Bayesian blindly takes the initial prior 
Beta(1,99) as part of the posterior updating which significantly 
increases total sample size in the final posterior distribution, 
therefore under-estimates the variance. 
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Figure 10. Mean Comparisons of PDVAS and  

Traditional Bayesian for Example 1 
 

 
Figure 11. Variance Comparisons of PDVAS and 

Traditional Bayesian for Example 1 

        Example 2.  Similar to Example 1, we assume the 
sampling distribution is a Binomial with p = 0.10.  Initial prior 
is the non-informative prior Beta(0.5, 0.5).  However, in this 
example, we insert a data inconsistency anomaly by randomly 
generating 10% of the data sampling with Beta(3,97) as the 
sampling distribution. Notice Beta(3,97) has a much smaller 
mean than the Binomial Sampling’s with p = 0.10.  This is, in a 
simulated practical application, to test whether PDVAS can 
detect the data inconsistency as a multiple Bayesian updating is 
executed to incorporate newly obtained data. Again we use Tc = 
0.05 and the linear SDA curve.  Figure 12 and 13 present the 
mean and variance comparisons respectively.  The Results from 
the figures show PDVAS is superior to the tradition Bayesian 
since both means and variances of PDVAS posteriors are closer 
to the true mean and variance than the tradition Bayesian 
posteriors.  It is interesting to notice that both PDVAS and 
traditional Bayesian means diverge from the true sampling 
mean.  This is because there is always 10% of the sampling 
data with Beta(3,97) as their distribution with a significant 
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smaller mean (3/(3+97) = 0.03) than the sampling mean (0.10).  
PDVAS for this case is not detecting all data inconsistency 
which is intentional in the design of PDVAS that is to avoid 
over-correcting of the data.   
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Figure 12. Mean Comparisons of PDVAS and Traditional 

Bayesian for Example 2 
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Figure 13. Variance Comparisons of PDVAS and 

Traditional Bayesian for Example 2 

        Example 3.  All simulation set up in this example is the 
same as in Example 2 except the difference in 10% data 
inconsistency anomaly. Instead of inserting 10% of sampling 
data with Beta(3,97), we insert 10% of sampling data with 
Beta(30, 70).  Mean comparison in Figure 14 shows again the 
superiority of PDVAS over the tradition Bayesian.  Variance 
comparison in Figure 15 shows PDVAS is worse (bigger 
variances which are further away from the true sampling 
variance than the traditional Bayesian’s).  A detailed 
examination of the simulation data indicates that the PDVAS 
algorithm defined in Fig. 3 and 4 does not differentiate the bad 
data from good well, therefore sometimes throwing away good 
data that consequently increases the variances. A further 
research is needed to improve the algorithm to correct this 
problem. 

  

Normalized true Binomial sampling mean

Normalized means of the posteriors
from traditional Bayesian analysis

Normalized means of
the posteriors from PDVAS

i-th Update

N
or

m
al

iz
ed

 P
os

te
ri

or
 M

ea
ns

(M
ea

ns
 o

f B
ay

es
ia

n 
or

 P
D

VA
S/

Sa
m

pl
in

g 
m

ea
n)

(1)

(2)

(3)

0.9

1.0

1.1

1.2

1.3

1.4

2 4 6 8 10 12 14 16 18 20

 
Figure 14. Mean Comparisons of PDVAS and  

Traditional Bayesian for Example 3 

Normalized True Binomial
Sampling variance

Normalized mean variances of the 
posteriors from traditional Bayesian analysis

Normalized mean variances of
the posteriors from PDVAS

i-th Update

N
or

m
al

iz
ed

 P
os

te
ri

or
 V

ar
ia

nc
e

(M
ea

n 
Va

ri
an

ce
s o

f B
ay

es
ia

n 
or

PD
VA

S/
Tr

ue
 S

am
pl

in
g 

Va
ri

an
ce

)

(1)

(2)

(3)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 18 20

 
Figure 15. Variance Comparisons of PDVAS and 

Traditional Bayesian for Example 3 
 

        Example 4. This example is to show PDVAS is update 
sequence dependent and to provide some ideas how much 
PDVAS posterior means and variances can vary from different 
update sequences. The property of the update sequence 
independence is possessed as a nice feature by the traditional 
Bayesian process with conjugate priors.  It is lost in PDVAS 
traded with data inconsistency check and data adjustment with 
the intention to produce more valid posterior.  In this example, 
we use the non-informative prior Beta(0.5, 0.5) and assume the 
following 10 data sets are available for Bayesian updating: 
(2,12), (3,47),(3,38), (7,45), (2,9),(6,57), (1,6), (2,13), (2,10) 
and (1,99). The first 9 data sets were randomly drawn from the 
Binomial sampling with p = 0.10. The last data set represents a 
data inconsistency source which is from Beta(1,99). We 
randomly shuffled the 10 data sets 100 times and applied 
PDVAS to each of these 100 shuffles.  Figure 16 shows the 100 
PDVAS posterior means. They are all closer to the sampling 
mean than the traditional Bayesian which has a fixed mean due 
to update sequence independence.  Similar phenomenon is 
observed in Figure 17 for the simulated variances from the 
randomly shuffled data.  The noticeable scatter of the means 
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and variances in PDVAS due to update sequence variations 
brings an open research question that whether it is necessary or 
possible to further define the PDVAS algorithm to produce an 
optimized but unique posterior with some pre-defined 
optimization criteria.  
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Figure 16. Means of PDVAS Posteriors from  

100 Different Update Sequences 
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Figure 17. Variances of PDVAS Posteriors from  

100 Different Update Sequences 

        Example 5.  This example is to apply PDVAS to a rocket 
engine reliability analysis.  Table 2 presents the data that are 
assumed to be obtained chronologically as the design maturity 
evolves. The Bayesian update is performed repeatedly as the 
new data sets become available to support on-going design 
decisions.    
        For the SCA and PBMS combined data set, we interpret as 
1 failure in 1,000 trials so (F, S) = (1, 999).  If we apply the 
traditional Bayesian analysis to the above data with a non-
informative prior Beta(0.5, 0.5) as the initial prior, we get the 
final posterior 
Beta(0.5+1+1+2+3,0.5+69+13+999+4+18+147+120) ≡ 
Beta(7.5, 1370.5).  This posterior has mean of  
7.5/(7.5+1370.5)=0.0054, standard deviation of 

 1)]1370.5(7.51370.5)/[(7.57.5x1370.5 2 +++ = 0.0020, 
and COV (coefficient variation, standard deviation/mean) 

=0.0020/0.0054 = 37%.  Now we apply PDVAS to the same 
data.  Table 3 summarizes the traditional Bayesian and PDVAS 
results in the chronologically manner.  
        The final traditional Bayesian posterior has mean of 
7.5/(7.5+1370.5)=0.0054, standard deviation of  

0020.01)]1370.5(7.51370.5) /[(7.57.5x1370.5 2 =+++ and 
COV = 0.0020/0.0054 = 37%.  The final PDVAS posterior has 
mean of 2.29/(2.29+1264.42)=0.0018, standard deviation of  

1)]1264.42.292(1264.42) /[(2.29422.29x1264. 2 +++  
=0.0012 and COV = 0.0012/0.0018 = 67%.  Comparing with 
the traditional Bayesian, PDVAS posterior has a smaller mean 
but bigger COV.  The mean reduction is because PDVAS 
discounts several inconsistent data sets which have significant 
failure probability. The COV increase is because PDVAS 
discounts the total data sample size (notice for 

1
),,(

++
=

βαα
β

βα COVBeta ). All these are in line with 

engineering design and development practice that addresses 
failures when they occur so failure probability is reduced but at 
the same time, it may introduce new uncertainty and unknowns 
through redesigns or risk mitigation. PDVAS helps address 
these concerns by its data validation and adjustment algorithm. 

6. Summary and Concluding Remarks 
        A Bayesian prior and data validation and adjustment 
scheme (PDVAS) was developed for Beta-Binomial Bayesian 
model to address the two controversial issues often surrounding 
the Bayesian reliability analysis, which are the reasonableness 
of the prior and data consistency. Several properties of PDVAS 
were presented that provide insights about PDVAS data 
adjustment strategy, PDVAS posterior’s convergence, and 
update sequence dependency. The PDVAS adjustment formulas 
were related to reliability data categories from engineering 
design, and a detailed data adjustment selection framework was 
provided to assist PDVAS implementation. The PDVAS 
illustrative examples were given that show the adequateness, 
effectiveness and usefulness of PDVAS. With PDVAS, 
Bayesian Reliability Analysis will be more valid with less data 
inconsistency and contradiction to better support engineering 
design decision.  

        There are further research opportunities for PDVAS. Some 
details of the PDVAS algorithm need to be further refined to 
accommodate more versatile data situations, and to ensure its 
convergence.  Update sequence dependency of PDVAS seems 
not avoidable but the optimization of PDVAS posteriors is 
worthwhile to be explored. The PDVAS data categorization can 
be more closely defined with engineering design and analysis 
data as inputs.  The generalization of PDVAS can be potentially 
extended to other prior-data sampling model situations from the 
special case of Beta-Binomial model as defined in this paper. 
Finally, PDVAS may provide another criterion to assess the 
adequacy of the initial prior assignment which has been an 
active research area for years in Bayesian analysis.  
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Table 2. Rocket Engine Reliability Data Sets in Example 5 

Design stage Data Category Number of 
failures 

Number of 
successes 

Concept 
exploration 

Demonstrated reliability from heritage engine A 0 69 
Demonstrated reliability from heritage engine B 0 13 

Conceptual 
Design 

Combination of Similarity and Comparative 
Assessment (SCA) and Physics Based Model and 

Simulation (PBMS) 

Predicted 1 failure per 1000 
engine hot fires 

Embodiment 
Design Lab test result 1 4 

Development Sub-scale development test results 2 18 
Full scale development test results 3 147 

Certification Certification test results 0 120 
 

Table 3. Traditional Bayesian and PDVAS Comparisons in Example 5 

Design stage Data Category Number of 
failures 

Number of 
successes 

Traditional 
Bayesian 
Posterior 

PDVAS 
Posterior 

Initial Prior Non-informative 
Beta(0.5,0.5) 0.5 0.5   

Concept 
exploration 

Demonstrated 
reliability from heritage 

engine A 
0 69   

Demonstrated 
reliability from heritage 

engine B 
0 13 Beta(0.5, 

82.5) 
Beta(0.5, 

82.5) 

 
Conceptual 

Design 

Combination of 
Similarity and 
Comparative 

Assessment (SCA) and 
Physics Based Model 

and Simulation (PBMS) 

 
1 

 
999 

 
Beta(1.5, 
1081.5) 

 
Beta(1.5, 
1081.5) 

Embodiment 
Design Lab test result 1 4 Beta(2.5, 

1085.5) 
Beta(1.0, 
1081.0) 

Development 

Sub-scale development 
test results 2 18 Beta(4.5, 

1103.5) 
Beta(1.01, 
1081.09) 

Full scale development 
test results 3 147 Beta(7.5, 

1250.5) 
Beta(2.29, 
1144.42) 

Certification Certification test results 0 120 Beta(7.5, 
1370.5) 

Beta(2.29, 
1264.42) 
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Appendix A. The proofs of the propositions 

Proposition 1.  For the data set (Fv,Sv) being adjusted in Eq. 
(13), PDVAS does not change the mean of the data set but 
increases its standard deviation σ. 
Proof: The mean of the data set (Fv,Sv) is 
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≡ ),( vv SFσ ≡ standard deviation of the unadjusted data set (Fv,Sv) 

for any SDA < 1. 
 
Proposition 2.  At the i-th Bayesian updating with the data sets 
(F0,S0), (F1,S1), ..,, (Fi,Si),  If   
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monotone increase function of SDA from calculus. It is also 
easily seen that when 

This proved (A.3). 
 
Proposition 3.  There always exists a set of SDA values such 
that Step 2 and 3 of Figure 4 will converge. 
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        This is a χ2 statistic with the degree of freedom of i.  
Under the extreme case, we can have all data sets adjusted with 
the same data adjustment score SDA.  Then the adjusted  
value, named as 

2
Cχ

2~
Cχ  , becomes 
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