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ABSTRACT 

There are many reliability prediction methods applicable to 
mechanical systems design. This paper specifically discusses 
the methods of probability or failure rate generation for 
reliability prediction. The paper consists of three parts. The 
first part is to survey the methods. We survey five most 
frequently used failure probability generation methods: 
statistical frequency and modeling method, similarity and 
comparative assessment method, physics based failure 
modeling, Monte Carlo simulation, and expert elicitation. We 
discuss the technical rationale and scientific foundation of each 
method and illustrate them with application examples. The 
second part is to evaluate and compare the methods. We 
identify the following attributes for evaluating and ranking the 
methods: the closeness of the method to the design; the validity 
and fidelity of the prediction results; the extensiveness of the 
analysis effort involved and data needs; the applicability of the 
methods at different product life cycle stages; and the 
limitations and cautions of using the prediction results to assist 
design-for-reliability. The third part is to establish a selection 
framework from applicable methods based on the ranking 
result of the second part, to assist practical use of the methods 
for mechanical design-for-reliability.   
 
Key Words: Reliability Prediction, Reliability Modeling, 
Design-For-Reliability (DFR), Statistical Methods, Similarity 
and Comparative Assessment Method, Physics Based Failure 
Modeling, Monte Carlo Simulation Modeling, Expert 
Elicitation 

1 INTRODUCTION

Reliability has been considered as one of the key design 
parameters in many products. Reliability is defined as the 
probability that a system or component performs its intended 
functions under a set of specified operation conditions for a 
specified period of time [1-3]. The strong global competition 
environment has pushed many companies and government 
agencies to proactively address reliability issues of their 
products. To treat reliability as a design parameter, reliability 
consideration has to be incorporated into early stages of a 
design. To support this mission, the concept of design-for-
reliability has been re-introduced and was defined in our 
previous papers as a structured design methodology that guides 
design decision making with parametric reliability models to 
meet quantitative reliability requirements or goals during all 
design phases [4-5].  
 
Reliability modeling and prediction are the core tasks necessary 
to support design-for-reliability.  Reliability modeling is 
referred as the collection of analytical modeling techniques that 
use engineering and mathematical principles to analyze 
reliability.  Reliability prediction is the exercise of estimating 
and predicting the probability of success or failures of a part, 
component, sub-system or system. Reliability modeling and 
prediction go hand by hand as the modeling generates the 
analytical structure while prediction produces numerical 
reliability values. As one of the key modeling steps, the 
reliability modeling takes a set of probability values associated 
with its basic modeling elements, to derive the system, or 
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subsystem or component failure probability according to the 
specific modeling logic, structure and techniques. For example, 
a Fault Tree Analysis (FTA) model [6] takes probability inputs 
associated with each of its basic events to derive the probability 
of the occurrence of a system undesirable event according to 
the fault tree structure and Boolean algebra logic.  
 
Various reliability modeling techniques can have different 
modeling logics, techniques and mathematical treatments. But 
there is one thing in common, that is all need a set of 
probability inputs associated with their basic modeling 
elements and key events, and then derive the system reliability 
or failure probability by following the modeling logics and 
associated mathematical equations. This set of probability 
inputs is usually obtained separately and off-line outside of the 
modeling boundary. For example, a quantitative Fault Tree 
Analysis requires to have probability inputs for all its basic 
events; an event tree analysis [7] requires to have probability 
inputs for its initiating events and pivotal events; a reliability 
block diagram requires to have probability inputs for all the 
blocks of the diagram.   
 
It can be seen that obtaining this set of probability inputs is 
essential for the viability of the reliability modeling and 
prediction. It is also extremely important for the inputs to be 
correct and meaningful so we can avoid the situation of 
garbage-in and garbage-out. From the reliability discipline 
aspect, the generation of these probability inputs is part of the 
scope of the reliability prediction though the process of 
generating the probability or failure rate may involve some 
localized reliability modeling effort.  
 
It has been observed that much more research has been 
conducted in the area of system reliability modeling, and 
probability net creation than in the area of generating basic 
probability or failure rate for the basic events of a reliability 
model. There has not been much research that systematically 
addresses how various methods of the probability input or 
failure rate generations are compared, and their roles and 
values in assisting mechanical design-for-reliability are studied. 
This paper focuses on surveying the widely used probability 
generating methods and techniques, categorizing them and 
analyzing the merits and the applicability of these techniques 
under the context of design-for-reliability for a reliability 
modeling. It should be emphasized that this paper is not about 
the system reliability modeling but about the generation of 
failure or fault probability, in some instance, the failure rate for 
a localized part or component.   
 
The rest of the paper consists of three parts. The first part is to 
survey the methods. In Section 2, we survey five most 
frequently used failure probability generation methods: 
statistical frequency and modeling method, similarity and 
comparative assessment method, physics based failure 
modeling, Monte Carlo simulation, and expert elicitation. We 
discuss the technical rationale and scientific foundation of each 

method and illustrate each with application examples. The 
second part is to evaluate and compare the methods presented 
in Section 3. We evaluate and rank the methods from the 
following attributes: the closeness of the method to the design; 
the validity and the fidelity of the prediction results; the 
extensiveness of the analysis effort involved and data needs; 
the applicability of the methods at different product life cycle 
stages. We pin-point the limitations of, and cautions for, using 
the prediction results. The third part, presented in Section 4, is 
to establish a selection framework of the methods based on the 
ranking results of the second part, to assist a practical 
application of the methods for design-for-reliability. We 
summarize our work and discuss potential future research 
activities in Section 5. 

2 SURVEY OF PROBABILITY GENERATION 
METHODS

2.1 Statistical Frequency and Modeling Methods 

Method description
The probability generation method based on the statistical 
frequency and modeling is the most intuitive and 
straightforward method. It is an empirical and data driven 
approach based on the statistical data collected from the 
product under the field use environment or controlled lab test 
conditions.  The steps of the method include gathering the 
product data relevant to the events of interest, and analyzing 
the data using statistical and probability modeling techniques to 
predict the probability of the event occurrence.  The simplest 
case is using the frequency of the binary events, success or 
failure from the product operating history, to predict the 
probability of the success or failure.   
 
There are many probability models being used to model the 
probability prediction.  Most reliability text books have one or 
more chapters discussing probability models for reliability 
applications [1-3, 8-14].   
 
For discrete outcome data, Binomial, Geometric and Poisson 
probability distributions are the most frequently used 
probability distributions to predict an outcome probability. For 
continuous data, Exponential, Weibull, Normal, Log-normal, 
Extreme Value, Gamma, Beta, Uniform and Triangular 
distributions are the frequently used ones.   
 
Illustrative examples
Example 1: For the binary outcome data (success or failure), 
we have 5 failures among 100 independent and identical trials 
for a specific failure consequence of a component, the 
probability of the failures, pf, is estimated to be fp̂ ith hat on 
top indicating an estimator of pf), given by 

(w

         05.0
100

5ˆ ��fp                                                       (1) 
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Eq. (1) simply represents the frequency of the occurrences of 
the failure events among total trials. is a point estimate of 
the failure probability pf of the binomial distribution.   

fp̂

 
Example 2:  For the continuous outcome data (time to failure), 
we have 10 time-to-failure data points for the part: 100 hours, 
150 hours, 200 hours, 260 hours, 400 hours, 650 hours, 800 
hours, 1100 hours, 1300 hours and 1800 hours. Assume the 
time to failure distribution is an exponential distribution with 
the distribution mean �. From the exponential distribution 
modeling technique, the estimate of �, denoted as �̂ , is given 
by 

 

Hours676
10

180013001100800650400260200150100ˆ

�

���������
��       (2) 

 
Therefore, according to the accumulative distribution function 
(CDF) of the exponential distribution, the probability of failure, 
pf, from the time zero to t hours, is predicted to be 

        �̂1ˆ
t

f ep
�

��                                                           (3) 
 
For example, if we want to predict the probability of failure 
between zero and 500 hours, using Eq. (3), we obtain 

       52.01)500(ˆ 676
500

���
�

ep f  
 
Technical rationale and scientific foundation
The statistical frequency and modeling method is built on the 
frequency probability definition and the associated probability 
and statistical theories. The frequency probability definition 
states that the probability of an event is the proportion of times 
that it occurs if we conduct infinite number of repetitions. In 
real life, it is impossible to repeat the trials infinite times. 
Therefore, the probability and statistical estimation theory and 
modeling techniques come to play to predict the probability of 
the event occurrence as the illustrative examples have shown. 

2.2 Similarity and Comparative Assessment Method

Method description
The similarity and comparative assessment method consists of 
two major steps.  The first step is to collect failure probability 
or failure rate values on a set of standard parts as the 
comparison base. The second step is to conduct a comparative 
assessment and make adjustments by applying adjustment 
factors, called �   factors, to the base set probability values to 
arrive at new failure probability values as the prediction for the 
new component. The adjustment factors are derived based on 
the comparisons of some parameters, such as severity of the 
operating environment, complexity of the design, 
manufacturing and assembly methods, quality level of the 
parts, and other factors considered to be relevant. The methods 
of deriving adjustment factors are based on some empirical data 

with interpolation or extrapolation, or simple and approximate 
physical relationships. 
  
The reliability prediction methods, based on the United States 
military standards, are basically similarity and comparative 
assessment method [15-16].  MIL-STD-756B [15] stated in its 
forward that “Reliability predictions are generally based on 
experience data from similar items, or their components, used 
in a same or similar manner.”  MIL-HDBK-217 [16] collected a 
baseline set of failure rates for standard electronic components 
such as resistors, capacitors, diodes and transistors then 
recommended various�  factors as adjustment factors to obtain 
a new predicted failure rate for a specific application of certain 
component.   
 
As the US military standards laid down the ground for this 
methodology, several software packages have been developed 
by commercial companies to implement the method, such as 
Relex [17], PRISM [18] and ITEM [19].  These software 
packages typically include the failure rate databases for a set of 
standard parts, and�  factors for the user to adjust the baseline 
failure rate for a specific application. There have been failure 
rate books published to assist this effort such as NPRD [20] 
and EPRD [21]. 
 
Illustrative example
Example 3. This example is to predict the failure rate of various 
types of connections of two pieces of materials [16]. The 
failure rate model for a connection is calculated by 
    Ebp ��� �                                                               (4) 

Here, p� represents the predicted failure rate for the connection 

being evaluated, b� represents the failure rate for a baseline 

standard connection type, and E� represents an adjustment 

factor depending on the application environment. b� values are 

given by Table 1 for various types of standard connections. E�  
values are given by Table 2 for various application environment 
conditions. Therefore, for a crimp type of connections used for 
missile flight, the connection failure rate is predicted to be   

�� Ep b��� 0.00026 failures /106 hours x 9.0 = 0.00234 
failures /106 hours. 
 
Technical rationale and scientific foundation
The adequateness of the similarity and comparative assessment 
method relies on the extent of the similarity of the assessed 
parts to the standard parts in the archived databases, and the 
reasonableness of the adjustment factors. The similarity is often 
judged by the reliability analyst subjectively, based on the 
characteristics of the design, functionality, material selection, 
manufacturing and assembly, application environment, and 
supplier’s capability. The reasonableness of the adjustment 
factors depend on how they are derived. They can be derived 
based on some physical scaling parameters, average failure 
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probability or failure rate ratios from the history of the part 
family, or expert suggestions. At the best, an adjustment factor 
approximates the average ratio between the failure rate of the 
predicted part and the failure rate of the standard part.    

Table 1. Baseline Failure Rate ( b� ) for Standard 
Connections [16] 

Connection Type b� (baseline failure rate, 
failures/106 hours

Hand Solder, w/o Wrapping 0.0013 
Hand Solder, w/Wrapping 0.000070 
Crimp 0.00026 
Weld 0.000015 
Solderless Wrap 0.0000068 
Clip Termination 0.00012 
Reflow Solder 0.000069 
Spring Contact 0.17 
Terminal Block 0.062 

Table 2. Failure Rate Adjustment Factor ( E� ) for Different 
Application Environment [16] 

Environment Descriptions 
Failure Rate 
Adjustment
Factor, E�

GB, Ground, Benign 1.0 
GF,  Ground, Fixed 2.0 
GM, Ground, Mobile 7.0 
NS, Naval, Sheltered 4.0 
NU, Naval, Unsheltered 11.0 
AIC, Airborne, lnhabited, Cargo 4.0 
AIF, Airborne, Inhabited, Fighter 6.0 
AUC, Airborne, Uninhabited, Cargo 6.0 
AUF, Airborne, Uninhabited, Fighter 8.0 
ARW, Airborne, Rotary Winged 16.0 
SF, Space, Flight 0.5 
MF, Missile, Flight 9.0 
ML, Missile, Launch 24 
CL, Cannon, Launch 420 

2.3 Physics Based Failure Modeling  

Method description
The physics based failure modeling method is the most 
appealing method to the designers and engineering analysts 
since it is the closest to the engineering design.  The physics 
based failure modeling comprises several steps. The first step is 
to understand the failure mechanisms of the component being 
analyzed such as crack initiation and propagation, corrosion, 
temperature effect on a component. The second step is to 
establish mathematical equations base on relevant physics 
principles and laws that relate all key engineering parameters 
together. The engineering parameters can include duty cycle 
environment parameters (temperatures, pressure, flow rate, 
dynamic loads, etc.) and material properties. The third step is to 
define the failure boundary in the multi-parameter domain of 
the math equations.  The last step is to quantify the randomness 

of the engineering parameters and calculate the failure 
probability which equates to the probability that the 
engineering parameter values fall within the failure domain.   
 
The physics based failure modeling is the basic element and 
founding block for the probabilistic design analysis and 
reliability based design optimization (RBDO) [22-24].  There 
have been many research articles and textbooks published in 
this area, and software packages have been developed to 
support the effort [13-14, 22, 25-28] 
 
Illustrative example
Example 4. In this example, the failure mode of a given part is 
structural break, and the failure mechanism is over load 
rupture. The strength of the part is a normal random variable 
with a mean value of 400 MPa and standard deviation of 70 
MPa.  The stress applied to the part is also a normal random 
variable with a mean value of 250 MPa and standard deviation 
of 100 MPa.  We calculate the failure probability of the part 
due to over-loading. We denote stress� as the mean of stress, 

stress� as the standard deviation of the stress, strength�  as the 

mean of strength, strength�  as the standard deviation of the 
strength.  The stress random variable is represented by STre and 
the strength random variable is represented by STrn.  The failure 
probability, Pf, is given by 

        )(Pr rnref STSTobabilityP 	�                                   (5) 

Since both stress and strength variables are normally 
distributed, we can convert Eq. (5) to a standard normal 
distribution (with mean=0 and standard deviation =1) 
probability calculation as follows 
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 Here, Z represents the standard normal random variable with 
mean 0 and standard deviation 1.  For the situations that the 
stress and strength random variables are subject to other types 
of distributions, Eq. (5) can be evaluated either by numerical 
approximation or Monte Carlo simulation. 
 
Technical rationale and scientific foundation
The physics based failure modeling is founded on the stress and 
strength interference theory (SSIT) [29, 13]. SSIT basically 
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states that a failure occurs, when the stress, in general, exceeds 
or equals the strength. Mathematically, the theory presents the 
failure probability (Pf) of the component or the system as the 
probability that the stress exceeds or equals the strength: Pf = 
P(Stress  Strength). Figure 1 illustrates SSIT for one 
dimensional stress and one dimensional strength case. Huang 
and Jin [4-5] extended the traditional mechanical stress and 
mechanical strength concepts to the conceptual stress and 
conceptual strength, developed the conceptual stress and 
conceptual strength interference theory (CSCSIT), and applied 
it to the conceptual and functional design. In many physics 
based failure modeling situations, the stress and strength 
interference equation involves multi stress and multi strength 
parameters and can be very complex. The failure probability 
only can be solved approximately or through a Monte Carlo 
simulation.   

	

            

 
Figure 1. Stress and Strength Interference Diagram 

2.4 Monte Carlo Simulation Modeling 

Method description
The basic steps of a Monte Carlo simulation are as follows: 1) 
establish a system mathematical model based on physics 
principles and laws, and system concepts of operations, which 
contain various parameters and variables; 2) select a sub set of 
the parameters and variables as random variables and assign a 
probability distribution to each of the random variables; 3) 
sample random values from a pseudo-random number 
generator according to the probability distribution of the 
assignment as a representative value for that parameter or 
variable; and 4) plug the random values sampled from all 
random variables into the system math model to characterize 
the stochastic behavior of the system parameters interested.     
 
We can classify the Monte Carlo simulations into several types 
according to what is being simulated. The first type is to 
simulate the physical behavior of the system being studied. One 
of the examples is to simulate the crack growth of a part due to 
environment factors, material properties and geometric 
variables. The second type is to use Monte Carlo simulation to 
find a probability solution in a complicated probabilistic 
equation with multi-parameter joint probability distributions. 

One of the examples of this type is to determine a stress and 
strength interference probability as mentioned in the last 
section. The last type is to simulate the probability behavior for 
a pre-established probability net. One of the examples of this 
type is to simulate the probability propagation through a fault 
tree model with probability inputs defined for all its basic 
events. The first type overlaps the physics based failure 
modeling method. It basically simulates the physical behavior 
of the system, and counts the frequency of the failure 
occurrence during the simulation according to some pre-
defined failure criteria. It usually requires much less intensive 
effort of the mathematical modeling than the physics failure 
based method since it avoids the explicit mathematical 
descriptions of all physical states, capturing instead the 
physical behavior and inter-relationships of individual variables 
as a result of the simulation. Therefore, it is more appealing in 
certain applications, especially in the case that analytical 
mathematical models are complicated and difficult to obtain 
and to solve. The second type can be considered as an 
extension of the physics failure based modeling since it helps 
determine the probability of the stress and strength interference 
which is the theoretical foundation of the physics based failure 
modeling. The third type is usually used for a system reliability 
modeling which is not what we discuss here for the failure 
probability generation of a localized part or component.   
 
Illustrative example
Example 5. In this example, the problem is to predict failure 
probability for a part with shared load sub-components. 
Suppose we have a part with two sub-components with a 
shared load. The part failure occurs when both sub-components 
fail.  When both sub-components are working, each is subject 
to a mechanical load and the time to failure is characterized by 
a Weibull distribution with shape parameter 1.4, scale 
parameter 150 and location parameter 0. When one of the two 
sub-components fails, the other takes the full load, and the time 
to failure is accelerated which is characterized by a Weibull 
distribution with shape parameter 1.7, scale parameter 90 and 
location parameter 0. The required part operation time is 50 
hours. What is the failure probability of the part ? We use the 
Monte Carlo simulation method to solve this problem. 
 
We set up a Monte Carlo simulation framework as follows: 

� Let t1 be the time to failure for the first failed sub-
component which is subject to the shared load time to 
failure Weibull distribution, denoted as Weib(1.4, 150, 
0). 

� Let t2 be the time to failure for the second sub-
component which is subject to the accelerated load 
time to failure Weibull distribution, denoted as 
Weib(1.7, 90, 0). This is the time on the second failed 
unit after the first one has failed and an equivalent 
consumed time on the second unit has been counted.   

 
We then sample the random variable values for t1 and t2
respectively according to the assigned Weibull distributions, 
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and count the number of times that t1+ t2 � 50 as N. We ran the 
Monte Carlo simulation using the Crystal Ball simulation tool 
[50] and obtained N =1580 among 50,000 trials. Since either 
one of the two subcomponents can fail first, therefore the 
failure probability for the part is  

               0632.0
000,50
580,12

_
2

���
x

trialsTotal
Np f

  

Kececioglu [12] presented an exact formula which gives Pf = 
0.06199. Volovoi [30] used a Petri Net modeling method which 
gives Pf =0.06205. 

Technical rationale and scientific foundation
The adequateness of the Monte Carlo simulation method relies 
on several factors. The first factor is the ability to correctly 
model the system behavior resembling the reality closely. The 
second factor is to correctly select random variables and assign 
proper probability distributions to them. The third factor is to 
simulate the random variables with adequate randomness 
through a sampling of a pseudo-random number generator. 
Marseguerra and Zio [31-32], Kennedy and Gentle [33], 
Rubinstein and Kroese [34], Johnsom [35] provided extensive 
discussions for the theory and applications of Monte Carlo 
simulations.   

2.5 Expert Elicitation  

Method description
Expert elicitation method can be considered as the most doable 
but the most controversial method for failure probability or 
failure rate generation. It is doable because experts exist in 
every field and expertise itself is a relative term so one can 
always obtain an expert’s opinion on the probability of an event 
as well as the probability distribution of it. However, it is also 
very controversial because it is by nature subjective, and 
represents only a snapshot of the expert’s state of knowledge at 
the time of solicitation [36]. It is considered a practice of 
quantifying the unquantifiable [37]. Despite the controversies 
surrounding the practice, it has been widely used in the design 
and management of large, complex engineering projects where 
the projects are often unique, the data about the similar 
products or projects are sparse or do not exist [38]. There have 
been many research efforts in the area of soliciting, 
quantifying, analyzing and using expert opinions. There have 
been attempts made to make the practice as scientific and 
logical as possible. Some representative works are O’Hagan et 
al. [38], Meyer and Brooker [39], Ayyub [40], Tetlock [37], as 
well as many research papers in the area of nuclear engineering 
risk assessment.   
 
The basic steps of an expert elicitation on probability involve 
the following: 1) define the events of interest; 2) select experts;  
3) train the experts on the elicitation methodology; 4) prepare 
and present elicitation questionnaire to the experts; 5) obtain 
questionnaire answers from the experts; 6) analyze and 
aggregate the elicited results; 7) confirm the results with the 

expert; and 8) use the results for a particular project. O’Hagan 
[38] and Meyer and Brooker [39] provided detailed 
descriptions of various elicitation processes and their variations 
as well as the reference materials. 
 
Illustrative example
Example 6. A rocket engine design team was assessing 
reliability of a new component. The component was designed 
with a new design concept, new materials and new 
manufacturing processes therefore the history of similar 
functional components and data did not exist. An expert 
elicitation method was used to obtain the initial estimate of 
failure probability of the component during the conceptual 
design to assist the design-for-reliability effort and trade study. 
Three experts were surveyed separately and independently, and 
the most likeliest, worst and best case failure probability 
estimates were provided from each expert. The rationale of the 
estimates, including the experts’ opinions on the challenges and 
concerns on the design complexity, material property 
uncertainty, analysis technique difficulties, and manufacturing 
process and supplier capability readiness, were documented. 
The data collected from the three experts were fitted to three 
truncated triangular distributions which were then aggregated 
to a single probability distribution representing the failure 
probability distribution of the component. This probability 
distribution was entered into a system reliability model to assist 
design-for-reliability and trade studies. It was noticed that in an 
industry integrated product team (IPT) setting, the rigor of the 
elicitation process is much less emphasized than the 
documentation of the assessment reasoning and rationales of 
the experts behind all numerical probability values. These 
rationales become a key data source for design-for-reliability 
and trade decisions, and also serve as an important data source 
for the reliability prediction update and verification.  

Technical rationale and scientific foundation
The technical rationale and scientific foundation of the expert 
elicitation method resides in the psychology, organizational and 
human behavior study, human decision process, probability and 
statistics science, and system engineering. Psychology science, 
particularly in the areas of human judgment, logical reasoning 
and environment influence, provides the foundation for 
evaluating the validity and credibility of the experts’ opinion 
[38-39, 41]. Decision process provides framework and detailed 
techniques for elicitation consistency and rationality [42-45]. 
Probability theory builds a scientific base for the interpretation 
of probability as personal belief [38, 46] and establishes 
Bayesian theorem and inference procedure. Probability and 
statistics theory and techniques provide many detailed 
treatments for the elicitation data aggregation and deduction 
[38-40,46]. System Engineering process and practice 
supplements the expert elicitation process development and 
applications [47].   
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3 EVALUATION AND COMPARISONS OF THE 
METHODS

There have been survey studies on reliability prediction 
methods and procedures for electronic components. Bowles 
[48] reviewed six prediction procedures for microelectronic 
devices, examined the assumptions behind each, and compared 
the prediction results for a computer component. All these six 
procedures assumed the constant failure rate for the device (the 
exponential failure rate model) and invoke the same type of 
math formula, i.e., a summation of baseline failure rate 
multiplied by adjustment factors for the failure rate calculation. 
Therefore all these procedures fall under the category of 
Similarity and Comparative Assessment method in our 
prediction method categorization. Denson [49] reviewed 
reliability prediction history and methodology evolvement 
focusing on electronic components, compared pros and cons of 
various methods including empirical based, physics failure 
based, and test data based.   
 
In this paper, we evaluate and compare the prediction methods 
by focusing on assisting mechanical design-for-reliability. As 
we have defined in Section 1, the design-for-reliability is a 
structured design methodology that guides design decision 
making with parametric reliability models to meet quantitative 
reliability requirements or goals during all design phases. As 
such, failure probability or failure rate prediction data have to 
be closely related to, or better linked with, or best to be 
generated from and evolved along with the design synthesis 
and analysis model development. Thereby reliability modeling 
can be truly formulated in parallel with the design synthesis 
and design analysis models, and design-for-reliability decisions 
can be an integral part of the design decisions. Such parallel 
reliability model development and integrated reliability 
decision-making fundamentally change the way of currently 
prevailing reliability modeling practices as a post-design 
assessment tool. Based on these considerations, we evaluate 
and compare the five prediction methods surveyed in Section 2 
from the following five attributes: 1) the closeness of the 
method to the design; 2) the validity of the prediction results; 
3) the fidelity of the results; 4) the extensiveness of the analysis 
effort involved and data needs; 5) the applicability of the 
methods at different design and development stages. We also 
discuss the limitations and cautions of using the prediction 
results to assist design-for-reliability.  

1) Closeness of the method to the design 

We define the closeness of a reliability prediction method to the 
design as the extent to which the reliability prediction data 
generation process is connected with the design synthesis and 
design analysis process. According to this definition, we 
consider the physics based failure modeling and the Monte 
Carlo simulation method are the closest among the five 
prediction methods.  This is because these two methods use the 
same data sources as in design, such as physics principles and 
laws, and system concepts of operations, to derive reliability 

prediction data. Among the rest three methods (statistical 
frequency and modeling, similarity and comparative 
assessment, expert elicitation), the expert elicitation is 
potentially the most closest to the design since whatever data 
and knowledge extracted from the experts should have lot of 
relevance to the design at hand due to the experts’ expertise. 
The statistical frequency and modeling method is purely an 
empirical data driven method which does not explicitly relate to 
the design synthesis and design analysis. The similarity and 
comparative assessment method starts with a set of empirical 
data from similar products then adds an adjustment step to 
arrive new probability prediction. Therefore, it can be the least 
closest to the design. We summarize the ranking assessment in 
Table 3 with the score 1 as the closest to the design (the most 
desirable). 

2). Validity of the prediction results 

We define the validity of a model or prediction as its 
truthfulness. In reliability prediction discipline, we probably 
never know the true failure probability values. Therefore, we 
pursue the soundness of the prediction process that can 
potentially produce prediction values close to the truth. The 
statistical frequency and modeling method should be ranked 
number 1, for the reason that the empirical data, unbiased 
collected from the product under the field usage environment, 
truly reflects the intended design conditions. It also implicitly 
includes the system interaction, interface and human error 
related failures which are likely to be ignored by other 
methods. The physics based failure modeling and Monte Carlo 
simulation modeling methods usually only predict inherent 
reliability of the product. The filed usage and manufacturing 
introduced failure causes, such as human and process errors, 
are often not counted in these methods. The expert elicitation 
method has potential to count both inherent and filed usage 
failure causes, but after all, the result from the method only 
represents a snap shot of the expert knowledge and judgment. 
The validity of the results from the similarity and comparative 
assessment method depends on the nature of the “similarity” 
and soundness of the adjustment factors applied. We should 
point out that all methods are valid to some extent.  The 
ranking assessment is a relative comparison on the methods.  
We assign the validity ranking scores in Table 4 with 1 as the 
highest validity for the method (the most desirable) 

3). Fidelity of the prediction results 

We define the fidelity as the roughness of the prediction details. 
The physics based failure modeling and Monte Carlo 
simulation modeling methods involve detailed physics laws and 
corresponding parametric equations. The statistical frequency 
and modeling method is basically built upon the field empirical 
data which are usually collected with intensive data collection 
and documentation effort. The similarity and comparative 
assessment method involves similarity analysis and adjustment 
factor derivation.  The expert elicitation method involves an 
expert elicitation process that can range from very formal to an 
ad-hoc process. Both similarity and comparative assessment



 

Table 3. Ranking of Closeness of the Reliability Prediction Methods to Design 

 
Statistical 

Frequency and 
Modeling Method 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Closeness to the 
design 4 5 1 1 3 

 
method and expert elicitation method can have varying degree 
of fidelity. Based on the above discussion, we assign the 
fidelity ranking scores in Table 5 with 1 as the highest fidelity 
(the most desirable).   

4). Extensiveness of the analysis effort involved and data 
needs

The expert elicitation method collects expert opinion data then 
aggregates them using statistical and probability modeling to 
arrive the prediction. Relatively speaking, it requires the least 
mount of analysis and data. We assign the ranking score 1.  The 
similarity and comparative assessment applies a set of pre-
developed adjustment factors to the baseline similarity data set 
to arrive new prediction. We rank it after the expert elicitation 
method. The statistical frequency and modeling method is built 
on analyzing the field data using statistical and probability 
models so we rank it next. The physics based failure modeling 
and Monte Carlo simulation modeling methods involve detailed 
physics failure modeling, and parametric model development 
and quantification. Therefore they are the most extensive from 
the analysis effort and data need perspective. We summarize 
the ranking assessment for this attribute in Table 6 with 1 as the 
least extensive (the most desirable).  

 5). Applicability of the methods at different product life 
cycle stages 

We examine the applicability of the reliability prediction 
methods at the different design and development stages of a 
product, particularly, conceptual design, embodiment design, 
detailed design, manufacturing and testing (lab testing, 
prototype testing and field testing), and field usage. Not all 
reliability prediction methods are applicable at every stage of a 
product design and development. For example, during a 
conceptual design, the statistical frequency and modeling 
method is not applicable because the field empirical data do not 
exist at that time. Table 7 summarizes the applicability of the 
reliability prediction methods. In several places, we use 
“partially” to indicate the method is partially applicable 
depending on the data available and the approach taken. For the 
statistical frequency and modeling method, we designate 
“partially” applicable at the stage of manufacturing and testing 
for some data obtained at that stage can be considered 
applicable for the empirical statistical data quantification. For 
the physics based failure modeling and Monte Carlo simulation 
method, we consider they are “partially” applicable at the 
conceptual design stage since function structure design data 
may provide  the modeling  possibility, even though  the  form 

Table 4. Ranking of Validity of the Prediction Results 

 
Statistical 

Frequency and 
Modeling Method 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure 

Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Validity of 
prediction results 1 4 2 2 4 

Table 5. Ranking of Fidelity of the Prediction Results 

 
Statistical 

Frequency and 
Modeling Method 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure 

Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Fidelity of 
prediction results 1 4 1 1 4 

Table 6. Ranking of Extensiveness of the Analysis Effort and Data Needs 

 
Statistical 

Frequency and 
Modeling Method 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure 

Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Extensiveness of the 
Analysis Effort and 

Data Needs 
3 2 4 4 1 
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structure data do not exist at that time. For the expert elicitation 
method, we consider it is “partially” applicable during the 
manufacturing, testing and field usage for the reason that it 
gradually loses its usefulness when the field test data become 
available. 

6). Limitations and cautions of using the prediction results 
to assist design-for-reliability 

Uncertainty of the prediction
Uncertainty is naturally embedded in the prediction process and 
results. Uncertainty can be classified in three basic types which 
are aleatory uncertainty, epistemic uncertainty, and uncertainty 
due to human error [22]. We have observed that in most 
practical application situations, uncertainty is often not 
addressed to the satisfaction of theoretically required rigor. The 
detailed treatment of uncertainty is beyond the scope of this 
paper. However, as minimal, the existence of uncertainty needs 
to be aware and cautions have to be taken for using the 
reliability prediction results for design decision making.  

System failure definition and local failure probability 
generation
As mentioned in Section 1, we focus on the generation of 
failure probability for a localized part or component. These 
failure probabilities are then fed to a system reliability model to 
calculate a system failure probability.  From the reliability 
definition given in Section 1, we interpret that all failures are 
functional failures.  Now we apparently have a paradox.  On 
one hand, a system reliability model requires probability inputs 
from local part or component to address system functional 
failure probability. On the other hand, the development of local 
part failure probability is often carried out without the 
information and knowledge of the relevant system functional 
failures and associated complexity. This limitation needs to be 
aware of, and the best effort of understanding the system 
reliability modeling needs should be made when generating 
local part failure probability inputs. 

Prediction results versus prediction process
Execution of the prediction process is more important than 
obtaining the prediction results. This is because the prediction 

results are static while the prediction process can be dynamic 
and be evolving along with design progression. Design-for-
reliability, design trades, and design optimization may 
constantly require the update of failure probability inputs. 
Therefore, more emphasis should be put on establishing a 
sound prediction process than just obtaining prediction results 
for one time use. 

Analysis  results versus analysis assumptions
All analysis involves assumptions. The assumptions behind the 
reliability prediction often provide more insights than the result 
itself for understanding how the prediction results are derived 
and how valid the result is. Key assumptions need to be 
documented and constantly updated to reflect design 
knowledge and status.   

4 A FRAMEWORK FOR SELECTION OF 
APPLICABLE PREDICTION METHODS 

In this section, we develop a selection framework to assist 
practical use of the reliability prediction methods. The selection 
framework uses the ranking results on the prediction methods 
presented in the last section.  It applies a set of customized 
preference weighting factors to the comparison attributes, to 
assist the selection of an applicable prediction method for a 
specific application. We first present the selection framework 
then provide an example to illustrate its use. 

4.1 A Framework for Prediction Method Selection 

In Section 3, we ranked the five prediction methods for each of 
the 4 comparison attributes: the closeness of the method to the 
design; the validity of the prediction results; the fidelity of the 
results; and the extensiveness of the analysis effort involved 
and data needs. Notice that we didn’t rank the applicability of 
the methods presented in Table 7 since we feel as a candidate 
method of the selection, it has to be applicable to the product 
life cycle stage at hand. Therefore, before we apply the 
selection framework, we have to screen out the methods that 
are not applicable. Combining the ranking results from Table 3 
to Table 6, we obtain Table 8.  Ranked values are from 1 to 5, 
with 1 being the most desirable and 5 being the least desirable.  
 

Table 7.  Applicability of the Methods at Different Design and Development Stages 

 

Statistical 
Frequency and 

Modeling 
Method 

Similarity and 
Comparative 
Assessment 

Method 

Physics Based 
Failure 

Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Conceptual design  No Yes Partially Partially Yes 
Embodiment 

design No Yes Yes Yes Yes 

Detailed design No Yes Yes Yes Yes 
Manufacturing 

and testing Partially Yes Yes Yes Partially 

Field usage Yes Yes Yes Yes Partially 
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We can present the content of Table 8 in a spider-web diagram 
(Figure 2) to visualize the comparisons of the usefulness of the 
methods. The larger the area that is covered by the method, the 
better the method is. The diagram also provides a convenient 
way to spot the area the method covers that match our preferred 
attributes. For example, if the preference is the closeness to 
design, we would like to use the method which can cover a 
large area near the “Closeness to design” label.  For this case, 
we would select either physics based modeling or Monte Carlo 
simulation method.   
 
Though the spider-web diagram provides useful information, it 
treats all attributes equally. In real applications, we may prefer 
some attributes more than the others. Let’s examine the four 
attributes we have used. The closeness of the method to the 
design is essential to support the design-for-reliability. The 
validity and the fidelity are about data quality. The 
extensiveness of the analysis effort and data needs directly 
relates to the analysis cost. Every project that needs reliability 
prediction may have own emphasis on these attributes. Before 
the prediction task is executed, we can let the project team 

assign a fraction to each of the four attributes with a higher 
fraction indicating a more emphasis. All fractions are added up 
to 100%. For example, we can assign 25% to each of the four 
attributes, indicating the four attributes are equally important 
which is the case in Figure 2. Another example is to assign 
100% to the closeness to the design and 0% to the rest, 
indicating we want everything possible to relate the reliability 
prediction to the design. We then multiply the fraction by the 
corresponding ranking score for that method and sum all 
products for each method to get a weighted ranking value for 
that method. Table 9 presents an example of the weighted 
ranking evaluation. The weighted ranking score of 2.4 in Table 
9 for the statistical frequency and modeling method is 
calculated from 2.4 = 40% x 4 + 25% x 1 + 25% x 1 + 10% x 
3. Note that the smaller the weighted ranking value, the more 
preferred the method. Therefore, the physics based model or 
Monte Carlo simulation method is preferred when the 
weighting fraction values (40%, 25%, 25%, 10%) are given, 
since these two methods have the smallest ranking value (1.6) 
among 5 methods.   

Table 8. Rankings of Reliability Prediction Methods for the Comparison Attributes 

 
Statistical 

Frequency and 
Modeling Method 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Closeness to the 
design 4 5 1 1 3 

Validity of 
prediction results 1 4 2 2 4 

Fidelity of 
prediction results 1 4 1 1 4 

Extensiveness of 
the analysis effort 

and data needs 
3 2 4 4 1 

Table 9. Sample Evaluation of Weighted Ranking Scores for Five Prediction Methods 

Comparison 
Attributes 

% 
weighting 

factor 

Statistical 
Frequency & 

Modeling  

Similarity & 
Comparative 
Assessment  

Physics Based 
Modeling 

Monte Carlo 
Simulation  

Expert 
Elicitation 

Closeness to the 
design 40% 4 5 1 1 3 

Validity of 
prediction results 25% 1 4 2 2 4 

Fidelity of 
prediction results 25% 1 4 1 1 4 

Extensiveness of 
the analysis effort 

and data needs 
10% 3 2 4 4 1 

Weighted ranking   2.4 4.2 1.6 1.6 3.3 
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Table 10.  Weighted Rankings of Four Prediction Methods for Sub-team 1 

Comparison 
features 

% weighting 
factor 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure 

Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Closeness to the 
design 40% 5 1 1 3 

Validity of 
prediction results 10% 4 2 2 4 

Fidelity of 
prediction results 5% 4 1 1 4 

Extensiveness of 
the analysis effort 

and data needs 
45% 2 4 4 1 

Weighted ranking   3.5 2.5 2.5 2.3 
 

Table 11.  Weighted Rankings of Four Prediction Methods for Sub-team 2 

Comparison 
features 

% weighting 
factor 

Similarity and 
Comparative 

Assessment Method 

Physics Based 
Failure 

Modeling 

Monte Carlo 
Simulation 
Modeling 

Expert 
Elicitation 

Closeness to the 
design 60% 5 1 1 3 

Validity of 
prediction results 5% 4 2 2 4 

Fidelity of 
prediction results 5% 4 1 1 4 

Extensiveness of 
the analysis effort 

and data needs 
30% 2 4 4 1 

Weighted ranking   4.0 2.0 2.0 2.5 
 
4.2 An Illustrative Example of Using Selection 

Framework 

A rocket engine design team is conceptually designing a new 
rocket with several complicated components such as 
turbopump, combustion chamber and controller. Reliability is 
one of the most important programmatic requirements therefore 
design-for-reliability is highly emphasized. The reliability 
prediction task is one of the necessary tasks to support trade 
study and design-for-reliability decisions. However, the project 
team is also harshly constrained by the budget and schedule.  
The team’s reliability engineers have built a system reliability 
model which incorporated design data and information but 
needs failure probability inputs for various components to 
compute the system reliability. The team has to decide what 
prediction method(s) should be used to obtain the failure 
probability for these components. Since the design is at 
conceptual design stage, the statistical frequency method can 
not be used. The team has to select methods among the other 
four methods. To be consistently executing the reliability 
prediction tasks among several sub-teams to meet the program 
needs, the design team chooses to use the selection framework 

described in the previous section for the prediction method 
selection. Sub-team 1 considers the closeness to the design is 
important but wants to make sure the task can be executed 
within cost and schedule constraints.  The team also feels the 
validity and fidelity of the results are not essential during the 
conceptual design stage.  Therefore, the weighting fractions are 
assigned to be (40%, 10%, 5%, 45%) for the closeness to the 
design, validity, fidelity and extensiveness of the analysis effort 
respectively. Based on the weighting fractions and the ranking 
values in Table 8, Table 10 presents the weighted rankings of 
the four methods. The result of Table 10 indicates that the 
expert elicitation method is a preferred choice to meet the 
design team’s needs and constraints, since it has the lowest 
(best) ranking score.  

For Sub-team 2, the components being designed are completely 
new. The team wants to have reliability prediction fully utilize 
design data for addressing potential failure mode and cause 
concern. So the team assigns the weighting fractions to be5%, 
5%, 30%).  Table 11 presents the weighted rankings for the 
four applicable methods which show the physics based failure  
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Figure 2: Reliability Prediction Method Evaluation 
Diagram 

 
modeling and the Monte Carlo method rank the best.  
Therefore, the team decides to use a combination of the physics 
based failure modeling and Monte Carlo method as the choice 
for the reliability prediction. 

4.3 Discussion

The ranking of the prediction methods and the selection 
framework provide useful insights about how in a practical 
situation we can use the prediction methods to best execute a 
prediction task that meets the project needs and constraints. 
The selection framework also provides guidance for 
consistently selecting the prediction methods based on the 
design team’s technical and economical considerations. The 
selection framework can be applied to each individual 
prediction task within a design project since the ranking and 
economical considerations can be different for each prediction 
task.  Besides, in reality, when we perform a reliability 
prediction, we may use more than one method, or create a 
hybrid method with mixed elements from some or all of the 
five methods to increase the method merit. In this case, some 
probability and statistical techniques, such as Bayesian 
theorem, can be used to help aggregate the data generated from 
various methods. 

5 SUMMARY AND CONCLUDING REMARKS 

We surveyed five reliability prediction methods for a 
component or part failure probability prediction applicable for 
the mechanical design system, i.e., statistical frequency and 
modeling method, similarity and comparative assessment 
method, physics based failure modeling, Monte Carlo 
simulation, and expert elicitation. Every method has its own 
unique approach, technical and scientific rationales behind.  

These methods also have their own pros and cons relative to 
the comparison attributes identified, namely, the closeness to 
the design, the validity and the fidelity of the prediction results, 
the extensiveness of the analysis effort involved and data 
needs. We discussed uniqueness of the methods and presented 
the rankings of the methods in the comparison space 
characterized by the attributes. Based on these attributes and 
rankings, we developed a selection framework that can guide 
the selection of the prediction methods for a practical 
application for a mechanical design system.  
 
There are research opportunities to improve the reliability 
prediction methods to better support design-for-reliability.  One 
area of further research is to develop a hybrid method that 
integrates the existing methods which can provide better merits 
and better fit to the design needs and project constraints. 
Another research direction is to develop an integrated 
prediction method that can evolve in parallel with design 
iteration and embed itself within the design synthesis and 
design analysis process to support design decision and 
optimization. Finally, a prediction process and the prediction 
results have to be viably validated and verified that is largely an 
open research question.   
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