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ABSTRACT 
Conceptual design is important but complex. Its success 

heavily depends on a designer’s individual experience and 
intuition. Design support tools are in need to assist designers to 
improve design quality and efficiency. However, to date there 
are few computational tools that are mature enough to provide 
effective assistance for design concept generation. One of the 
major reasons is that design information is inherently 
incomplete and subjective at the early stage of design. No 
effective evaluation methods have been devised to assess the 
connectivity between means (i.e., sub-solutions or function 
carriers) although it has an impact effect on system 
performance. In this paper, we propose a fuzzy reference model 
for conceptual design evaluation as part of our hierarchical co-
evolutionary design concept generation based on function-
means connectivity. An example of designing a simple 
mechanical transporter is presented to demonstrate the 
proposed approach. 

1 INTRODUCTION 
Conceptual design is an important early stage activity of 

engineering design. It has been recognized that almost 60% of 
a product’s functional features, performance, manufacturability 
and cost, are determined at this stage [1]. Despite its 
importance, our ability to provide computational support for 
conceptual design is relatively limited primarily due to the 
limited understanding of the design concept generation process 
and the lack of quantitative information at the early stage of 
design. While various design methods have been proposed [2] 
[3][4][6], generating design concepts still largely depends on 
designers’ experience. There is a need for effective design 
support tools that can help designers generate and evaluate 
design concepts at the conceptual design stage. 

Efforts have been made with the intent of improving 
conceptual design. The design methods proposed thus far [2-7] 
attempt to prescribe how design should be represented and 
conducted. Using these methods as a foundation, automated 
design tools [8-13] have been devised to assist designers in 
design concept generation. However, few of these tools are 
mature to date. One of the major reasons is because the 
available information at the conceptual design stage is mostly 
imprecise or vague. As a result, evaluating the generated design 
concepts becomes difficult. Design evaluation is often heavily 
weighted by a designer’s experience and intuition. 

Conceptual design of mechanical systems is especially 
complex. It is usually impossible to directly find solutions or 
means to realize the abstract top-level functions. A practical 
approach to complex system design is to decompose higher-
level functions into lower level ones and then identify 
implementable means to fulfill the higher-level functions. In 
either “zigzag” approach [2] or “function first” [3] method, 
making decisions on “what combination of means should be 
adopted” requires effective design concept evaluation. 
However, the available information is inevitably ambiguous 
and even inconsistent because of the qualitative nature of the 
information at the idea generation stage. In practice, the 
evaluation at the conceptual design stage is more focused on 
what concepts are acceptable rather than what concepts are the 
“best”. Design concepts cannot be assessed effectively until 
they are transformed into more concrete forms. The poor 
evaluation can cause more redesign cycles to be undertaken 
when inconsistencies are identified at the later design stages, 
such as embodiment design or detail design [3]. 

Much research has been conducted for design concept 
evaluation. Wang and Jin [14] proposed an analytical approach 
to analyzing the consequence of a given function structure. 
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Two design axioms, namely the Independence Axiom and the 
Information Axiom, were introduced as a rational basis to 
evaluate solution candidates [2, 15, 16]. In the systematic 
approach [3], a morphological matrix is proposed to compose 
variants and a schematic chart of seven evaluation criteria is 
used to evaluate and select the mostly desired variant [17]. 
Evolutionary methods [9, 18-20] have been developed to 
support a range of design activities from conceptual 
exploration, decision making, to final product definition. 
Another approach to design evaluation is fuzzy set analysis. 
Wang [21] proposed a fuzzy outranking model for conceptual 
design evaluation, and Vanegas [22] employed a fuzzy-
weighted average method in the multiple criteria evaluation of 
several design alternatives. Another application of fuzzy set 
theory includes imprecision representation and manipulation in 
engineering design [23][24]. However, these methods are 
effective only under the specific design conditions where the 
design performance can be determined by certain individual 
design properties, such as weight, cost, etc. They do not take 
into account the impact of means connectivity on design 
results. 

It has long been recognized that means connectivity plays 
an important role in design performance [25]. Four structural 
interactions [24] have been identified in an effort to outline an 
assembly model method that is repeatable. Bryant [27, 28] 
presented an automated design tool that makes use of the 
repository of existing design knowledge for concept evaluation 
based on a function-component connectivity matrix. In his 
research, means connectivity is explicitly determined by the 
repository [29]. However, in reality, the resources may not be 
accessed by designers or designers may have a different 
understanding because the information is usually subjective or 
incomplete. Therefore, function-means connectivity is better 
treated as fuzzy variables rather than as crisp ones.  

This paper proposes a fuzzy evaluation approach to 
conceptual design based on function-means connectivity. Our 
method considers the means connectivity as a linguistic term 
related to a fuzzy set. An algorithm is proposed to transform the 
fuzzy function-means connectivity into an imprecise 
preference. As a result, the alternatives are ranked based on the 
preference models. The most preferred candidates can then be 
used for further development.  

The paper is organized as follows. Section 2 reviews the 
related work on the applications of fuzzy set theory in design 
evaluation and our previous work on hierarchical co-
evolutionary approach to conceptual design (HiCED). Section 
3 introduces our fuzzy preference models for the design 
evaluation in HiCED. An example illustrating the model is 
presented in section 4, and section 5 concludes the paper. Some 
concepts frequently used for design evaluation in fuzzy set 
theory are described in Appendix A. 

2 RELATED WORK 
The compatibility of means connection relations has a 

direct impact on design success. Incompatible connections 

introduced at the conceptual design stage can cause serious 
problems at the later stages of design. However, because of the 
imprecise or incomplete information at the early stage of 
design, the connection relations among means are vague. In 
this research, we aim to provide an evaluation method in our 
HiCED model based on vague connections. In this section, we 
first review the applications of fuzzy logic in design evaluation 
and then briefly introduce our HiCED model [13]. 

2.1 Application of Fuzzy Set Theory 
Fuzzy set [30-32] is an extension of classic set theory and 

uses the grade of membership for all its members. It has been 
widely applied in the fields of design evaluation [21, 22, 33] 
and business decision-making [34, 35], where solutions must 
be derived from a substantial amount of imprecise or vague 
information. 

As development progresses, engineering design becomes 
more and more complex. A design task usually involves 
multiple objectives to be optimized, whereas these objectives 
are often in conflict with each other. Fuzzy logic provides a 
more natural way to represent the various multi-objective 
optimization problems. That is, when we cannot select each 
criterion maximally due to the conflicts, we can optimize each 
of them to a certain extent. Thurston and Carnahan [36] 
proposed the usage of fuzzy set theory in multiple criteria 
engineering design evaluation. Fuzzy weighted average (FWA) 
was applied to find the overall desirability of the alternatives. 
Other similar applications can be found in bearing selection 
[37], bumper beam material selection [22], valve selection 
problem [21] and handle for closing a window [38]. 

Fuzzy weighted average (FWA) is commonly used to 
compute the overall desirability of the alternatives in a design 
evaluation in terms of fuzzy rating criteria and the weights of 
their corresponding importance. Dong and Wong [39] first 
proposed an algorithm to compute FWA based on the α-cut 
representation of fuzzy sets and interval analysis. Later, Liou 
and Wang [40] suggested an improved fuzzy weighted average 
algorithm to simplify the computational process. Lee and Park 
[41] improved the calculation process by reducing the number 
of comparisons and arithmetic operations to ( )nnO log . 
Nevertheless, operations on FWA tend to increase unnecessarily 
the imprecision. A new FWA (NFWA) [22][38] is proposed to 
obtain overall desirability levels less imprecise and more 
realistic than the conventional FWA. 

One of the major challenges of conceptual design is to 
determine how to select the “best” design concepts against 
others for further development in the later design stages. 
Researchers have proposed different ranking methods for the 
selection of alternatives based on the design desirability, which 
is represented as a fuzzy number. Wang [21] suggested three 
preference modes based on the outranking approach to 
discriminate the alternatives. In [39], fuzzy preference relation 
is defined as a degree of outranking associated with each pair 
of alternatives A and B. While in the research [22][38], an 
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equivalent crisp number for each fuzzy number is determined 
so that the fuzzy ranking problem becomes a simple ordering of 
real numbers. 

2.2 Hierarchical Co-evolutionary design 
Our long term research objective is to develop an effective 

support tool for design concept generation and evaluation. With 
this objective in mind, a hierarchical co-evolutionary approach 
to conceptual design (HiCED) has been proposed [13]. The 
basic idea underlying this approach is that the conceptual 
design process can be seen as a process of co-evolution of both 
function structures and solution means across different levels of 
decomposition hierarchy. At each decomposition level, 
functions and their structures serve as a basis for identifying 
desired means, and in turn, the means can help function 
structuring and decomposition until satisfactory design 
concepts are generated. In the HiCED model, a design concept 
is specified as a function structure together with a set of 
combined means to fulfill the functions in the function 
structure. Means (i.e., working principles in Pahl & Beitz’s 
term or design parameters in Axiomatic Design) are defined as 
the possible technologies or solutions for the required 
functions.  

The exploration process of conceptual design begins with a 
given overall function to be achieved and its associated 
requirements and constraints. The steps of this process are as 
follows (see Figure 1): 
1. Based on the grammar rules, the overall function is 

decomposed into lower level sub-functions that are more 
specific and form a partially feasible function set (PF-FS).  

2. At every level of the decomposition hierarchy, for every 
function in PF-FS, all its feasible means in the means 
library are identified and they form a partially feasible 

means set (PF-MS). Since the number of feasible means 
for each function can be so numerous for mechanical 
design problems, the PF-MS set can be very large.  

3. A co-evolutionary algorithm is devised here to search for 
the optimal solutions from the means space (i.e., PF-MS) 
and the function space (i.e., PF-FS).  
o First, the genetic programming (GP) is employed to 

develop a set of partially feasible function structures 
(PF-FsS).  

o After the PF-FsS are developed, their information is 
used to identify feasible combinations of the partially 
feasible means by a genetic algorithm (GA). 

o In light of the information of the identified feasible 
combinations of the partially feasible means, the 
system goes back to further evolve better PF-FsS.  

o The search focus switches between the function space 
and means space until a satisfactory feasible function 
structure and means pair set (F-FsMS) is found.  

4. Select the best function structure and means pairs whose 
fitness values are higher than an allowable threshold. If the 
selected pairs contain means that need further  
implementation, then go to Step 1. 
The design process of HiCED is shown in Figure 1. The 

details of the grammar-based function decomposition and GA-
GP based design concept evolution can be found in [13][42]. 

3 FUZZY EVALUATION ON MEANS CONNECTIVITY 
Means connectivity reflects the physical or logical 

relations between the two or more means needed for the 
fulfillment of the corresponding functional relations in a given 
function structure. For example in the function structure shown 
in Figure 2, the means to be selected to fulfill the functions 
<generate><ME> and <stop><ME> must satisfy the 
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Figure 1:  Design Process of HiCED 
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connection relation between the two functions both physically 
and logically. 

Figure 2: An Example of Function Structure  

The connection relations among means have an important 
effect on the quality of the design. Research studies [23][24] 
have addressed the importance of this connection. However, 
few efforts have been made to evaluate how the connections 
affect final solutions because the relationship between the 
means connections and the system performance is very much 
unknown. Most evaluations about means connections are only 
experience-based or experiment-based. Especially at the early 
stage of design, the connectivity is vague or imprecise, which 
poses more difficulties for designers to make appropriate 
decisions. 

In the HiCED model, means evolve in parallel with 
functions at the early stage of design [13]. The results of 
function evolution are function structures. The relationships 
among the functions in a function structure can provide logical 
and/or physical information for means selection. However, the 
connection relations of means are usually vague at conceptual 
design stage. For example in the function structure shown in 
Figure 2, we have the means “hand brake” to implement the 
function <stop> <ME>. If a designer selects “human” for the 
function <generate><ME>, then the connection between the 
two means is acceptable. But if he/she decides to use a motor as 
the energy source, the connection becomes unclear because the 
designer cannot determine how powerful the motor is at this 
stage. 

The vagueness in means connections can usually be 
described with some linguistic terms, such as “impossible”, 
“possible”, “very possible,” etc. Those linguistic terms can be 
represented and manipulated with fuzzy set theory. In this 
section, we propose an approach to evaluating designs based on 
the fuzzy connectivity of means at the conceptual stage of 
design. 

3.1 Weight of Means Connectivity 
In HiCED, a functional connection between two functions 

is introduced in one of the three ways: inherited from the 
higher-level function structures, generated by executing 
functional grammar rules, or generated randomly through 
genetic operations. In a valid function structure, the lower level 
function structures must be consistent with the higher level 
ones. For example in the following function structure shown in 
Figure 3, the connection from 1f  to 2f  in the lower-level 
function structure (b) is directly inherited from its higher-level 
function structure (a), meaning that the connection has already 
been established at the higher level (i.e., level (a)) and thus 
needs to be maintained at the current level (i.e., level (b)). 

Therefore, it is more important for the means that implement 
function 1f  and 2f to maintain the connectivity defined 
by 1f and 2f . 

 Figure 3: An Example of Function Decomposition 

Second, when the grammar rules are applied in 
decomposing higher level functions, specific functional flow 
relations may be introduced. In HiCED, three sets of function 
grammar rules, namely action-based function decomposition 
rules, action specific expansion rules and requirement-based 
function decomposition rules [13] have been identified to 
facilitate function decomposition. Since these rules encode both 
formal and experiential knowledge, it is important for the 
implementing means to respect the corresponding function 
relations. For example, an action specific expansion rule is 
presented below. The means to be selected should satisfy the 
connection prescribed by the rule consequently.  

 
{ }MEgenerateEsupplyMEgenerate ASE ,⎯⎯ →⎯  

 
Compared to the connections produced by random 

generation by genetic operations in genetic programming, the 
connections generated from the higher-level function structure 
and the function grammar rules have more “knowledge” 
embedded. It is more important to make sure that the 
corresponding means connections respect these functional 
connections. 

3.2 Preference Model for Design Evaluation 
In terms of the fuzzy means connectivity and fuzzy weight 

of connections at the conceptual design stage, we propose a 
fuzzy preference model for design evaluation based on the 
means connectivity, which is inferred from the corresponding 
function structure. 

From the topological point of view, there are two basic 
topological relationships in a function structure: serial and 

f1 f2 

f3 

f4

(a) Higher-level function structure 

f1 f2

f31 f41 

f32 

f42

(b) Lower-level function structure 
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parallel. Serial is a configuration where two or more functions 
are connected one by one via functional flows, whereas parallel 
indicates that two or more functions (or sub function structures) 
have no direct interactions via functional flows (Figure 4). 

 
Figure 4: Topological Relationships in Function 

Structure 

The relationships reflected in the physical domain are the 
means connections (Figure 5). In Figure 5, x is a fuzzy number 
for means connectivity and w is the corresponding importance 
of the connection. 

 
Figure 5: Means Connectivity Based on Function 

Structure 

A design evaluation based on these relationships is 
conducted as follows. 

Step 1: Evaluate overall connectivity 
Designers want to select solutions with the most 

compatible connection. With this objective in mind, we apply 
fuzzy weighted average (FWA) to calculate the connectivity 
level for serial connection and fuzzy intersection operation for 
parallel relationship of means. For example, the total 
connectivity for Figure 5(a) is 

 

21

2211

ww
wxwxc

+
+

=     (1) 

 
and the connectivity level for Figure 5(b) is: 

 

43 xxc ∩=     (2) 
 
The detail of how to compute FWA is described in 

Appendix A. 
The underlying idea of this approach is to evaluate how 

successful the design could be based on the means connectivity. 
For the serial connection of means, the FWA represents the 
average degree of success based on the designers’ knowledge 
of the design. But for the parallel structure, design success is 
restricted by the poorest branches. 

Step 2: Determine fuzzy preference relation of alternatives 
In the area of mechanical engineering, the desired 

functions can be fulfilled by numerous means. Thus, the 
number of alternative solutions generated from HiCED is large.  

After the first step, each alternative has a fuzzy number to 
represent its degree of success based on the connectivity, for 
example nsss ,...,, 21 . Then we use a fuzzy preference relation 

[21][29] to determine their preference ( )ji ssP , . 

( ) ( ) ( )
( ) ( )0,0,

0,,,
21

2121
21 sDsD

ssDssDssP
+

∩+
=    (3) 

where ( )21, ssD  is the area where 1s  dominates 2s (area 
5 and 3 in Figure 6); ( )0,1sD  is the area of 1s  (area 1, 4 and 5 
in Figure 6); ( )0,2sD  is the area of 2s  (area 2, 3, and 4 in 
Figure 6) and ( )0,21 ssD ∩  is the area where 1s  and 2s  are 
indifferent (area 4 in Figure 6). 

Fuzzy Preference Relation

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

u(x)
s2
s1

1 2

3 4 5

 
Figure 6: Example of Fuzzy Preference Relation 

The detail of the fuzzy preference relation is introduced in 
Appendix A. 

Step 3: Select “best” alternatives 
One disadvantage of the fuzzy weighted average is that it 

unnecessarily increases the level of imprecision [22]. So it is 
not appropriate to rate the final solutions directly based on 
fuzzy preference relations from step 2. Two fuzzy preference 
models are used to discriminate the alternatives into preference 
and indifference sets. Assume a and b are connectivity levels, 
and the two models are:  

f1 f2 f3 

(a) Serial 

f4 f5 

f6 f7 

(b) Parallel 

m1 m2 m3 
x1/w1 x2/w2 

(a) Serial 

m4 m5 
x3/w3 

m6 m7 
x4/w4 

(b) Parallel 
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Strict preference S  
 

0    ,, >∈∀ αandAba    
( ) α>⇔ bapbSa ,     (4) 

 
Indifference preference I 
 

0    ,, >∈∀ αandAba    
( ) α≤⇔ bapbIa ,     (5) 

 
The threshold α is used to discriminate two alternatives 

between strict preference and indifference. If the difference 
between a and b is greater than α, then it is convincing that 
candidate a is better than b. That is, designers have sufficient 
evidence to believe a, and b can be removed. But if the 
difference between a and b does not exceed α, then it is 
considered that solution a and b are of the same level of 
importance in terms of connectivity. If there are no other 
evaluation criteria available for further ranking, then both 
solution a and b must be kept until enough information is 
obtained.  

The selection of threshold α expresses the degree of 
imprecision that a designer believes that solution a is preferable 
to b. If he (or she) is confident in the connectivity among the 
means he (or she) has selected, a lesser value is set. In our 
model, only the condition that alternative a is better than b is 
taken into account, that is, ( ) .5.0, ≥bap  An interactive 
method in our preference model allows designers to provide 
their belief in means connection level for design concept 
evaluation. 

In the following section, a case of designing a simple 
mechanical transporter is presented to illustrate how the fuzzy 
preference model is applied for design concept evaluation in 
HiCED based on means connectivity. 

4 CASE STUDY 
The case study presented in this section is based on the 

example of a simple mechanical transporter design [13]. In the 
model of HiCED, means evolve in parallel with functions at 
each level of the decomposition hierarchy. Function structures 
provide connection information for means evaluation. At the 
conceptual design stage, the means connectivity is fuzzy. The 
case study shows how means are assessed by fuzzy preference 
models based on their connectivity with respect to their 
corresponding functional connectivity introduced in the 
function structure. 

4.1 Function Structure 
Function structures are generated by GP after function 

decompositions. In this case, let us take a look at the function 
structures at decomposition level 5 (Figure 7b). 

<secure>
<X>

<supply>
<E>

X

X

X

E
<guide>
<ME>

<stop>
<ME>

<transmit>
<ME>

ME
ME

ME

X

<generate >
<ME>

E

X
ME

TE

 
(a) Function structure at decomposition level 4 

 
(b) Function structure at decomposition level 5 

Figure 7: Function Structure Solution  

The connection relation between Econtrol and 

Einput is prescribed by the action-based function 
decomposition rule (rule 4 in [13]). The connection relations 
between function MEtransmit  and MEguide , and 

between MEtransmit  and MEstop  are determined by 
the higher level function structure (Figure 7(a)). In the lower 
level of decomposition, these relations must be maintained 
when appropriate means are selected. They are more important 
than other connections produced by genetic programming. The 
weight (importance) of connections is expressed in the 
linguistic terms of “important” and “normal” (Figure 8). 

Fuzzy weight number

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

u(x)
Normal
Important

 
Figure 8: Linguistic Scale of Weight Value 

4.2 Alternatives 
In mechanical design, the number of applicable means for 

each function is numerous. Due to mental limitation or 
incomplete information, their connection relations can be 
vague. A finite set of fuzzy numbers is used to express these 
imprecision connection levels among means, namely, “very 
impossible”, “impossible”, “fairly impossible”, “neutral”, 
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“fairly possible”, “possible” and “very possible”. The linguistic 
scale is used to transform a linguistic term into a fuzzy number 
(Figure 9). 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

u(x)

Very impossible Impossibler Fairly impossible
Neutral Fairly possible Possible
Very possible

 
Figure 9: Linguistic scale of Fuzzy Connection 

In HiCED, the means library provides a knowledge base of 
what can be specified as required function [13]. In this 
example, four candidate solutions are generated (Table 1) and 
the connection relations (7 means very possible, and 1 means 
very impossible) among means requires designers to input for 
fuzzy analysis later (Table 2). 

 

Function Solution  
(a) 

Solution 
(b) 

Solution 
(c) 

Solution 
(d) 

<secure><X> Saddle Board Board Seat 

<transmit> 
<ME> Frame Wheel Frame Wheel 

<control><E> Human Human Human Hand 

<input><E> Pedal Spring Lever Row 

<change><E> Pedal Arm Lever Gear Level 

<convert> 
<E to ME> Gear Spring Gear Friction 

<transmit> 
<ME> Chain Spring Gear Body 

<guide><ME> Steering 
Wheel 

Guide 
Wheel 

Steering 
Wheel Body 

<stop><ME> Pedal Brake Cramp 
Brake Friction Friction 

Table 1: Alternative Solutions 

4.3 Evaluation Result 
Given the function structure and means connectivity, the 

overall connection levels for solution a, b, c and d is shown in 
Figure 10. According to equation (3), we can obtain that 

 
 
 

Saddle Board Board Seat 
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6 
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4 
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6 
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6 
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6 
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7 

Friction 
4 

Gear Spring Gear Friction 

Chain 
6 

Spring 
7 

Steering 
7 

Body 
4 

Chain Spring Gear Body 

Steering 
wheel 

7 Guide 
Wheel 

2 
Friction 

4 Guide 
Wheel 

7 

Chain Spring Body 

Pedal 
Brake 

4 Cramp 
Brake 

2  
Friction 

5 

(7: Very possible; 6: Possible; 5:Fairly possible, 4:Neutral; 3: Fairly 
Impossible; 2: Impossible; 1: Very Impossible) 

Table 2: Fuzzy Connection Relations among Means 

 
Figure 10: Overall Connectivity Level 

 
( )
( )
( )
( )
( )
( ) 85.0,
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=
=
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=
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    (6) 

The overall fuzzy preference relations can be determined 
as bdca  (expression a b indicates a is preferable to 
b). When the preference threshold 6.0=α , it is observed that 
the preference for alternative a and c are indifferent, and both 
of them are preferable to alternative b. Although alternative c 
and d are indifferent, alternative a is preferable to d. Thus, 
candidate b and d can be removed, and a and c are kept for 
further refinement. 

But if the designer is more confident in his (or her) 
knowledge on the means connectivity shown in Table 2, then 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Connectivity
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he (or she) may choose a lower preference threshold, for 
example, 5.0=α . Under such an assumption, alternative a is 
obviously preferable to all other alternatives b, c, and d. 
Therefore, only a is kept for further design consideration, and 
b, c and d are dropped. 

4.4 Discussion 
Unlike the traditional evaluation methods in means 

connection, which usually consider the connection relations as 
crisp variables, our fuzzy preference model uses fuzzy numbers 
to express the connectivity level among means to accommodate 
the incomplete and subjective information at the early stage of 
design. Based on the fuzzy values of the connectivity between 
the means, the designer can compare two alternatives, based on 
connectivity, by calculating the preference relation between the 
two alternative using Equation (3). The preference relations, 
e.g., those shown in Equation (6), provide a first-hand 
comparison information based on the given fuzzy connectivity 
knowledge. 

In addition to the fuzziness of connectivity knowledge, 
there is another layer of subjectivity that makes the information 
at early stage of design imprecise, i.e., designers’ confidence on 
their knowledge about the means connectivity. Making 
decisions based on Equation (3), for example, depends on how 
confident the decision-maker is about the connection 
knowledge of Table 2. In our approach the threshold α is 
introduced to handle the issue of subjective confidence. If a 
designer is not confident in his knowledge on means 
connectivity, a larger threshold can be set. In the above 
example, with a higher threshold 6.0=α , solution b and d are 
discarded and both a and c are kept for further consideration. 
But if the designer is comfortable with means connectivity he 
or she assigned in Table 2, a lower threshold (α closer to 0.5) 
can be selected so that more alternatives are removed from 
further consideration. For example, given the 
threshold 5.0=α , only alternative a is selected for further as 
the final design concept.  

If two or more alternatives are kept for further 
consideration, i.e., they are indifferent given the current 
knowledge and the confidence on the knowledge, then further 
information is needed and the evaluation should go beyond 
means connectivity. For example, given the threshold 6.0=α , 
alternative a and c are indifferent if only the means 
connectivity is taken into account. But if the weight of the 
transporter is also considered a major factor for design 
evaluation, the solution a is a better choice because gears are 
usually heavier. 

5 CONCLUSION 
Conceptual design can be characterized by the unclear 

process for design concept generation and the lack of 
quantitative information for design concept evaluation [13]. 
How to choose among alternative design concepts at the early 
stage of design is a major challenge for researchers. To develop 

computer tools for design concept generation, one must devise 
a concept generation process that can use incomplete, 
subjective, and qualitative information for concept evaluation. 
Among the existing methods, few considered means 
connectivity, although it has profound impact on the final 
design results. In our research, we treat means connectivity as 
an important source of information for evaluating design 
concepts. To deal with the qualitative nature and subjectiveness 
of the knowledge on means connectivity, we introduced a fuzzy 
evaluation approach that allows designers to code their 
qualitative knowledge about means connectivity into fuzzy 
relations among the means and make their selection decisions 
based on their confidence on the knowledge that they utilized. 
The case study has shown the mechanism and the effectiveness 
of our proposed approach. 

It is worth mentioning that the reason why we could 
successfully use the means connectivity as an evaluation 
criterion for design concept selection was because HiCED 
allows function structures and means combinations to co-
evolve such that the functional relations become basis to 
evaluate the means connections. Function structures provide 
logic and physical connection relationships for the means of a 
design concept. Our current research extends the means 
connectivity based fuzzy evaluation by including other 
evaluation criteria into the framework such as case-based 
function-means mapping. 
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APPENDIX A: FUZZY SET THEORY 
Fuzzy set theory is an extension of the mathematical 

concept of a set. Zadeh [28] proposed a grade of membership, 
which allows for the gradual assessment of the membership of 
elements in relation to a set. The grade of membership of all its 
elements is defined as a fuzzy set. A grade of membership is 
normally a real number between 0 and 1. In contrast, an 
element has a deterministic condition in relation to a classic set 
-- it either belongs or does not belong to a set. 

A.1 Fuzzy weighted average 
In conceptual design evaluation, the rating criteria and 

their corresponding weighting values are vague or can not be 
precisely determined. Fuzzy weighted average (FWA) is 
proposed to compute the weighted sum of the criteria. The 
fuzzy weighted average is frequently expressed as follows: 
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Where nxxx ,..,, 21 are fuzzy numbers in fuzzy 
sets nAAA ,...,, 21 ; nwww ,...,, 21 are fuzzy weights in fuzzy set 

nWWW ,...,, 21 . 
Dong and Wong [37] described a computational algorithm 

based on the α-cut representation of fuzzy sets and interval 
analysis. However, this algorithm is very cumbersome with the 
increase of information. Liou and Wang [38] improved the 
algorithms by introducing the following notations: 
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and proving the following theorems: 
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where [ ]ii ba ,  is the end point of the intervals of ix . 
Based on their work, Lee and Park [39] proposed a more 

efficient fuzzy weighted average (EFWA) by reducing the 
number of comparisons. 

A.2 Fuzzy preference relations 
A fuzzy preference relation R on a set A is a fuzzy set on 

the product AA×  , that is characterized by a membership 
function [21][29]:  

[ ]1,0: →× AARη     (12) 

Let ( ) RbaP ∈, be fuzzy preference relation between a 
and b, where Aba ∈, , then ( )baP ,  and ( )abP ,  are 
reciprocal: 

 
( ) ( ) 1,, =+ abPbaP     (13) 

 
The fuzzy preference relations ( )baP ,  and ( )abP ,  are 

calculated as follows [21][33]: 
 

( ) ( ) ( )
( ) ( )0,0,

0,,,
bDaD

baDbaDbaP
+

∩+
=    (14) 

 

( ) ( ) ( )
( ) ( )0,0,

0,,,
bDaD

baDabDabP
+

∩+
=    (15) 

 
where ( )baD ,  is the area where a dominates b (area 5 

and 3 in Figure A-1); 
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( )abD ,  is the area where b dominates a (area 1 and 2 in 
Figure A-1); 

( )0,aD  is the area of a (area 1, 4 and 5 in Figure A-1); 
( )0,bD  is the area of b (area 2, 3, and 4 in Figure A-1); 

( )0,baD ∩  is the area where a and b are indifferent (area 
4 in Figure A-1). 
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Figure A-1: Example of fuzzy preference relation 


